organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Fluoro­benzoyl)-2-hy­droxy-4-methyl­benzohydrazide

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China, and bZhejiang Textile and Fashion College, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 11 September 2008; accepted 12 September 2008; online 17 September 2008)

In the title compound, C15H13FN2O3, the aromatic rings are aligned at an angle of 10.15 (3)°. The mol­ecules are packed with ππ stacking inter­actions [mean inter­planar distances of 3.339 (2) and 3.357 (3) Å] and the crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. An intramolecular N—H⋯O interaction also occurs.

Related literature

For background on the chemistry of salicylic acid, see: Dou et al. (2006[Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. pp. 4866-4871.]). For related compounds, see: John et al. (2005[John, R. P., Lee, K. J., Kim, G. H., Suh, B. J., Rh, H. J. & Lah, M. S. (2005). Inorg. Chem. 45, 7109-7121.], 2006[John, R. P., Park, J. J., Moon, D. Y., Lee, K. J. & Lah, M. S. (2006). Chem. Commun. pp. 3699-3701.]); Liu et al. (2001[Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084-1087.]); Majumder et al. (2006[Majumder, A., Goswami, S., Batten, S. R., Fallah, M. S. E., Ribas, J. & Mitra, S. (2006). Inorg. Chim. Chem. 359, 2375-2382.]); Moon et al. (2006[Moon, D. Y., Lee, K. J., John, R. P., Kim, G. H., Suh, B. J. & Lah, M. S. (2006). Inorg. Chem. 45, 7991-7993.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13FN2O3

  • Mr = 288.27

  • Triclinic, [P \overline 1]

  • a = 7.0969 (13) Å

  • b = 7.2994 (14) Å

  • c = 13.701 (3) Å

  • α = 102.854 (2)°

  • β = 97.754 (3)°

  • γ = 105.538 (1)°

  • V = 652.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.54 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 4591 measured reflections

  • 2274 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.02

  • 2274 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond angles (°)

O1—C6—C5 120.01 (13)
O1—C6—C7 119.48 (13)
O2—C8—N1 121.54 (13)
O2—C8—C7 122.52 (13)
N1—C8—C7 115.94 (12)
O3—C9—N2 120.31 (14)
O3—C9—C10 122.26 (13)
N2—C9—C10 117.42 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1 0.86 1.92 2.6224 (19) 139
O1—H1E⋯O3i 0.82 1.88 2.7035 (18) 177
N2—H2A⋯O2ii 0.86 2.11 2.9079 (19) 154
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of salicylic acid has attracted the interest of reseachers since 1860s in the application area of skin science. After a long period, investigations in this area have received a new impulse (Dou et al., 2006) and recently there has been notable progress especially regarding the synthesis of new derivatives. N-acylsalicylhydrazide is one of the important kind, which have been used extensively as ligands in the field of coordination chemistry. Some of the reasons are that the intramolecular hydrogen bond between the O and N atoms plays an important role in the formation of metal complexes, and the N-acylsalicylhydrazide compounds show photoluminescence in the solid state by proton transfer from the O atom to the N atom (Majumder et al., 2006). There several this kind of ligand have been reported, such as N-phenylsalicylhydrazidate (Liu et al., 2001), N-(2-methylpropanoyl)salicylhydrazide (John et al., 2005), N-cyclohexanoylsalicylhydrazidate (John et al., 2006), N-3-phenyl-trans-2-propenoylsalicylhydrazide (Moon et al., 2006) and so on. With the aim of gaining a deeper insight into the structural aspects responsible for the fluorescent properties in the solid state and crystallographic analysis of the title compound (I), has been carried out and the results are presented in this paper.

The molecular structure of (I), C15H13FN2O3, is illustrated in Fig. 1. The bond length and bond angle in (I) are within normal ranges. The bond distances between C—O of carbonyl are significantly shorter than C6—O1 bond distances (Table 1). Atom O1, O2, N1 and N2 are nearly coplanar with the plane of benzene rings that contain C2–C7. The O3 atomic deviation is 0.394 (2) Å from the plane of benzene rings that contain C10–C15 and 0.703 (2) Å from the plane of benzene rings that contain C2–C7. The dihedral angel between the two planes of benzene rings is 10.15 (3)°.

The mean interplanar distance of 3.339 (2) Å between the plane of benzene rings that contain C2–C7 and 3.357 (3) Å between the plane of benzene rings that contain C10–C15 respectively suggests that the ligands are engaged in ππ stacking interactions with a offset face-to-face style. The molecular conformation is characterized by an N—H···O and C—H···O hydrogen bonds and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds(Fig. 2).

Related literature top

For background on the chemistry of salicylic acid, see: Dou et al. (2006). For related compounds, see: John et al. (2005, 2006); Liu et al. (2001); Majumder et al. (2006); Moon et al. (2006).

Experimental top

4-fluorobenzoyl chloride (0.795 g, 5 mmol) and 2-hydroxy-4-methylbenzohydrazide (0.830 g, 5 mmol) were added to 30 ml of DMF solution with an external ice–water bath. When 0.607 g (6 mmol) of triethylamine was added, a white suspension immediately appeared. The suspension was then filtered. The left solution was volume reduced to about one-third on rotary evaporator. After 7 days crystals of the title compound were obtained from the left solution. Yield: 92.2%. Melting point: 217–226 °C. Calcd. for C15H13FN2O3: C, 62.50; H, 4.51; N, 9.72; Found: C, 62.24; H, 4.55; N, 9.65%

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of ππ stacking of (I) and H bonds.
N-(4-Fluorobenzoyl)-2-hydroxy-4-methylbenzohydrazide top
Crystal data top
C15H13FN2O3Z = 2
Mr = 288.27F(000) = 300
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Melting point = 490–499 K
a = 7.0969 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2994 (14) ÅCell parameters from 6530 reflections
c = 13.701 (3) Åθ = 1.6–27.6°
α = 102.854 (2)°µ = 0.11 mm1
β = 97.754 (3)°T = 296 K
γ = 105.538 (1)°Block, colourless
V = 652.2 (2) Å30.54 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
Detector resolution: 0 pixels mm-1h = 88
ω scansk = 88
4591 measured reflectionsl = 1616
2274 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.093P)2 + 0.2642P]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H13FN2O3γ = 105.538 (1)°
Mr = 288.27V = 652.2 (2) Å3
Triclinic, P1Z = 2
a = 7.0969 (13) ÅMo Kα radiation
b = 7.2994 (14) ŵ = 0.11 mm1
c = 13.701 (3) ÅT = 296 K
α = 102.854 (2)°0.54 × 0.30 × 0.25 mm
β = 97.754 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
2090 reflections with I > 2σ(I)
4591 measured reflectionsRint = 0.024
2274 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2274 reflectionsΔρmin = 0.45 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.5146 (3)0.7327 (3)0.90895 (14)0.0382 (4)
H1A1.56880.62630.91160.057*
H1B1.48460.78240.97410.057*
H1C1.61050.83660.89310.057*
C21.3255 (2)0.6585 (2)0.82719 (12)0.0275 (4)
C31.1619 (2)0.7274 (2)0.83934 (12)0.0291 (4)
H3A1.16790.82110.89900.035*
C40.9911 (2)0.6566 (2)0.76276 (12)0.0256 (4)
H4A0.88390.70430.77220.031*
C51.3107 (2)0.5166 (2)0.73751 (12)0.0260 (4)
H5A1.41840.46960.72850.031*
C61.1384 (2)0.4435 (2)0.66103 (11)0.0227 (3)
C70.9748 (2)0.5153 (2)0.67156 (11)0.0215 (3)
C80.7818 (2)0.4502 (2)0.59554 (11)0.0210 (3)
C90.5611 (2)0.0444 (2)0.37524 (11)0.0225 (3)
C100.3744 (2)0.0450 (2)0.29516 (12)0.0228 (4)
C110.3805 (2)0.1729 (2)0.20387 (12)0.0292 (4)
H11A0.49950.19830.19480.035*
C120.1944 (2)0.0106 (2)0.30968 (12)0.0258 (4)
H12A0.18920.07250.37080.031*
C130.0234 (2)0.1002 (2)0.23314 (13)0.0298 (4)
H13A0.09720.07860.24220.036*
C140.2107 (3)0.2622 (3)0.12657 (13)0.0332 (4)
H14A0.21400.34650.06540.040*
C150.0363 (2)0.2216 (2)0.14356 (13)0.0311 (4)
F0.13083 (16)0.30700 (16)0.06798 (8)0.0459 (3)
N10.76066 (18)0.30055 (19)0.51310 (10)0.0239 (3)
H1D0.85900.25500.50490.029*
N20.58263 (18)0.21862 (18)0.44102 (9)0.0223 (3)
H2A0.49160.27600.43860.027*
O11.12712 (16)0.30064 (17)0.57426 (8)0.0287 (3)
H1E1.18200.22230.58950.043*
O20.64816 (15)0.52694 (16)0.60736 (8)0.0270 (3)
O30.69450 (16)0.03614 (17)0.38199 (9)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (9)0.0413 (10)0.0360 (9)0.0091 (8)0.0048 (7)0.0057 (8)
C20.0260 (8)0.0262 (8)0.0273 (8)0.0051 (6)0.0005 (6)0.0084 (6)
C30.0343 (9)0.0250 (8)0.0252 (8)0.0118 (7)0.0003 (7)0.0014 (6)
C40.0285 (8)0.0245 (8)0.0259 (8)0.0134 (6)0.0045 (6)0.0056 (6)
C50.0204 (8)0.0303 (8)0.0308 (8)0.0111 (6)0.0054 (6)0.0111 (7)
C60.0243 (7)0.0233 (7)0.0228 (7)0.0099 (6)0.0049 (6)0.0074 (6)
C70.0222 (8)0.0202 (7)0.0231 (8)0.0085 (6)0.0026 (6)0.0071 (6)
C80.0217 (7)0.0220 (7)0.0225 (7)0.0102 (6)0.0052 (6)0.0079 (6)
C90.0229 (8)0.0233 (8)0.0244 (7)0.0119 (6)0.0056 (6)0.0064 (6)
C100.0231 (8)0.0194 (7)0.0251 (8)0.0068 (6)0.0023 (6)0.0057 (6)
C110.0261 (8)0.0307 (9)0.0293 (8)0.0102 (7)0.0042 (6)0.0043 (7)
C120.0263 (8)0.0201 (7)0.0310 (8)0.0089 (6)0.0043 (6)0.0056 (6)
C130.0226 (8)0.0249 (8)0.0417 (9)0.0074 (6)0.0017 (7)0.0114 (7)
C140.0371 (9)0.0316 (9)0.0244 (8)0.0078 (7)0.0009 (7)0.0015 (7)
C150.0273 (8)0.0267 (8)0.0333 (9)0.0027 (6)0.0064 (7)0.0107 (7)
F0.0361 (6)0.0447 (7)0.0410 (6)0.0040 (5)0.0165 (5)0.0046 (5)
N10.0192 (6)0.0269 (7)0.0242 (7)0.0128 (5)0.0015 (5)0.0011 (5)
N20.0184 (6)0.0238 (7)0.0241 (6)0.0112 (5)0.0011 (5)0.0024 (5)
O10.0284 (6)0.0353 (6)0.0252 (6)0.0208 (5)0.0023 (4)0.0026 (5)
O20.0255 (6)0.0305 (6)0.0271 (6)0.0171 (5)0.0025 (4)0.0032 (5)
O30.0293 (6)0.0300 (6)0.0353 (6)0.0180 (5)0.0014 (5)0.0004 (5)
Geometric parameters (Å, º) top
C1—C21.511 (2)C9—N21.342 (2)
C1—H1A0.9601C9—C101.487 (2)
C1—H1B0.9601C10—C121.397 (2)
C1—H1C0.9601C10—C111.398 (2)
C2—C51.390 (2)C11—C141.388 (2)
C2—C31.399 (2)C11—H11A0.9300
C3—C41.385 (2)C12—C131.388 (2)
C3—H3A0.9300C12—H12A0.9300
C4—C71.401 (2)C13—C151.375 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.391 (2)C14—C151.385 (3)
C5—H5A0.9300C14—H14A0.9300
C6—O11.3732 (19)C15—F1.3614 (18)
C6—C71.407 (2)N1—N21.3875 (17)
C7—C81.494 (2)N1—H1D0.8600
C8—O21.2351 (18)N2—H2A0.8600
C8—N11.345 (2)O1—H1E0.8200
C9—O31.2451 (19)
C2—C1—H1A109.5O3—C9—C10122.26 (13)
C2—C1—H1B109.5N2—C9—C10117.42 (12)
H1A—C1—H1B109.5C12—C10—C11119.65 (14)
C2—C1—H1C109.5C12—C10—C9122.36 (14)
H1A—C1—H1C109.5C11—C10—C9117.95 (13)
H1B—C1—H1C109.5C14—C11—C10120.64 (15)
C5—C2—C3118.40 (14)C14—C11—H11A119.7
C5—C2—C1119.88 (15)C10—C11—H11A119.7
C3—C2—C1121.71 (15)C13—C12—C10120.17 (15)
C4—C3—C2120.21 (14)C13—C12—H12A119.9
C4—C3—H3A119.9C10—C12—H12A119.9
C2—C3—H3A119.9C15—C13—C12118.47 (15)
C3—C4—C7122.03 (14)C15—C13—H13A120.8
C3—C4—H4A119.0C12—C13—H13A120.8
C7—C4—H4A119.0C15—C14—C11117.78 (15)
C2—C5—C6121.48 (14)C15—C14—H14A121.1
C2—C5—H5A119.3C11—C14—H14A121.1
C6—C5—H5A119.3F—C15—C13118.40 (15)
O1—C6—C5120.01 (13)F—C15—C14118.34 (15)
O1—C6—C7119.48 (13)C13—C15—C14123.26 (15)
C5—C6—C7120.50 (14)C8—N1—N2121.02 (12)
C4—C7—C6117.33 (14)C8—N1—H1D119.5
C4—C7—C8116.67 (13)N2—N1—H1D119.5
C6—C7—C8125.97 (14)C9—N2—N1115.98 (12)
O2—C8—N1121.54 (13)C9—N2—H2A122.0
O2—C8—C7122.52 (13)N1—N2—H2A122.0
N1—C8—C7115.94 (12)C6—O1—H1E109.5
O3—C9—N2120.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.861.922.6224 (19)139
O1—H1E···O3i0.821.882.7035 (18)177
N2—H2A···O2ii0.862.112.9079 (19)154
C4—H4A···O20.932.472.797 (2)101
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13FN2O3
Mr288.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0969 (13), 7.2994 (14), 13.701 (3)
α, β, γ (°)102.854 (2), 97.754 (3), 105.538 (1)
V3)652.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.54 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4591, 2274, 2090
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.02
No. of reflections2274
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O1—C6—C5120.01 (13)N1—C8—C7115.94 (12)
O1—C6—C7119.48 (13)O3—C9—N2120.31 (14)
O2—C8—N1121.54 (13)O3—C9—C10122.26 (13)
O2—C8—C7122.52 (13)N2—C9—C10117.42 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.85971.91482.6224 (19)138.64
O1—H1E···O3i0.82021.88392.7035 (18)177.34
N2—H2A···O2ii0.85982.10912.9079 (19)154.32
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationDou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. pp. 4866–4871.  Web of Science CSD CrossRef Google Scholar
First citationJohn, R. P., Lee, K. J., Kim, G. H., Suh, B. J., Rh, H. J. & Lah, M. S. (2005). Inorg. Chem. 45, 7109–7121.  Web of Science CSD CrossRef Google Scholar
First citationJohn, R. P., Park, J. J., Moon, D. Y., Lee, K. J. & Lah, M. S. (2006). Chem. Commun. pp. 3699–3701.  Web of Science CSD CrossRef Google Scholar
First citationLiu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084–1087.  CrossRef CAS Google Scholar
First citationMajumder, A., Goswami, S., Batten, S. R., Fallah, M. S. E., Ribas, J. & Mitra, S. (2006). Inorg. Chim. Chem. 359, 2375–2382.  Web of Science CrossRef CAS Google Scholar
First citationMoon, D. Y., Lee, K. J., John, R. P., Kim, G. H., Suh, B. J. & Lah, M. S. (2006). Inorg. Chem. 45, 7991–7993.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds