metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1308-m1309

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) tris­­(pyridine-2,6-di­carboxyl­ato)­zirconate(IV) tetra­hydrate

aDepartment of Chemistry, Islamic Azad University, Ardabil Branch, Ardabil, Iran, bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and cFaculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 22 August 2008; accepted 17 September 2008; online 20 September 2008)

The title compound, (C3H7N6)2[Zr(C7H3NO4)3]·4H2O or (tataH)2[Zr(pydc)3]·4H2O (tata is 2,4,6-triamino-1,3,5-triazine and pydcH2 is pyridine-2,6-dicarboxylic acid), was obtained by reaction between pydcH2, tata and zirconyl chloride octa­hydrate in aqueous solution. In the structure, the ZrIV atom is nine-coordinated by three (pydc)2− groups, resulting in an anionic complex which is balanced by two (tataH)+ cations. One of the NH2 groups shows positional disorder, with site occupation factors of 0.60 and 0.40. There are four uncoordinated water mol­ecules (one of which is disordered with occupation factors of 0.70 and 0.30) in the crystal structure. Several inter­molecular inter­actions, including O—H⋯O, O—H⋯N, N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds, a C—O⋯π inter­action [O⋯Cg 3.89, C⋯Cg 4.068 (3) Å; C—O⋯Cg 89° where Cg is the centroid of the triamine ring], and ππ stacking [with centroid–centroid distances of 3.694 (2) and 3.802 (2) Å] are also present.

Related literature

For related literature, see: Aghabozorg et al. (2005[Aghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.], 2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Harben et al. (2004[Harben, S. M., Smith, P. D., Beddoes, R. L., Collison, D. & Garner, C. D. (2004). Angew. Chem. Int. Ed. 36, 1897-1898.]); Soleimannejad et al. (2007[Soleimannejad, J., Aghabozorg, H., Nakhjavan, B., Attar Gharamaleki, J. & Ramezanipour, F. (2007). Acta Cryst. E63, m3170-m3171.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H7N6)2[Zr(C7H3NO4)3]·4H2O

  • Mr = 912.89

  • Triclinic, [P \overline 1]

  • a = 9.3749 (16) Å

  • b = 12.308 (3) Å

  • c = 16.934 (4) Å

  • α = 97.926 (19)°

  • β = 106.050 (12)°

  • γ = 107.839 (11)°

  • V = 1733.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 120 (2) K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.940

  • 17993 measured reflections

  • 8355 independent reflections

  • 6766 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.00

  • 8355 reflections

  • 545 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N12 0.82 2.43 3.106 (3) 140
O1W—H1WB⋯O4W 0.82 2.03 2.824 (4) 163
O2W—H2WA⋯O2i 0.82 1.96 2.746 (3) 160
O2W—H2WB⋯O7 0.82 2.24 3.051 (3) 169
O2W—H2WB⋯O8 0.82 2.58 3.091 (3) 122
N4—H4A⋯O8 0.87 2.05 2.805 (3) 144
O3W—H3WA⋯O5i 0.82 2.26 2.992 (4) 149
O3W—H3WA⋯O11i 0.82 2.44 3.008 (4) 127
O3W—H3WB⋯O10 0.82 2.12 2.890 (3) 155
O4W—H4WA⋯O4ii 0.82 2.06 2.858 (5) 166
N7—H7A⋯O2W 0.87 2.06 2.921 (3) 168
N7—H7B⋯O4iii 0.87 2.09 2.949 (3) 169
O4W—H4WB⋯O2iv 0.82 2.46 3.283 (4) 180
N8—H8A⋯O1W 0.87 2.10 2.813 (3) 139
N8—H8B⋯O8 0.87 1.94 2.762 (3) 156
N9—H9A⋯O2v 0.87 2.23 2.944 (3) 139
N9—H9B⋯N10vi 0.87 2.08 2.947 (3) 176
N11—H11A⋯O9 0.87 2.42 3.134 (3) 139
N13—H13A⋯O4iv 0.87 2.32 2.957 (3) 130
N13—H13B⋯N6vi 0.87 2.10 2.958 (3) 170
N14—H14A⋯O1i 0.87 2.54 3.398 (6) 169
N14—H14A⋯O2i 0.87 2.48 3.167 (6) 136
N14—H14B⋯O3W 0.87 2.55 3.119 (6) 124
N14—H14B⋯O9 0.87 2.51 3.121 (6) 127
N14—H14B⋯O10 0.87 2.42 3.228 (5) 156
N15—H15A⋯O6vii 0.87 1.94 2.797 (3) 166
N15—H15B⋯O12iv 0.87 2.06 2.911 (3) 167
C3—H3⋯O2Wviii 0.95 2.36 3.130 (3) 138
C12—H12⋯O1W 0.95 2.58 3.326 (3) 136
C17—H17⋯N12ix 0.95 2.48 3.417 (4) 169
C19—H19⋯O3Wx 0.95 2.31 3.215 (4) 158
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z; (iii) -x+2, -y+2, -z+1; (iv) x, y-1, z; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1; (vii) -x, -y+1, -z; (viii) -x+1, -y+2, -z+1; (ix) -x+1, -y+1, -z; (x) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal organic frameworks (MOFs) derived from proton transfer compounds are of interest in our team work. In this way, more than 160 compounds were synthesized and reported, most of which were reviewed in a recent paper (Aghabozorg et al., 2008). Up to now, many nine-coordinated complexes of (pydc)2- have been reported. For instance, a complex of ZrIV, [bis(oxyiminodiacetate)aquazirconate(IV)]2-, has been reported (Harben et al., 2004). We have reported a nine-coordinated ZrIV, very similar to the title compound, formulated as (pydaH)2[Zr(pydc)3].5H2O (Aghabozorg et al., 2005). Also, a nine-coordinated YIII compound, (phenH)3[Y(pydc)3].DMSO.5H2O (phen is 1,10-phenanthroline) (Soleimannejad et al., 2007), has been synthesized. The molecular structure of the title compound illustrated in Fig. 1 consists of three (pydc)2– coordinated to ZrIV, two (tataH)+ groups and four water molecules. The central atom is nine-coordinated by O1, O3, N1; O5, O7, N2 and O9, O11, N3 atoms of three (pydc)2– groups. Studying the angles around ZrIV reveals that sum of the angles between N1, N2 and N3 equals exactly to 360°. Therefore, Zr1 lies in the center of the N1/N2/N3 plane, and, as shown in Fig. 2, the coordination polyhedron is distorted tricapped trigonal prismatic. The metal–ligand bond distances are consistent with those found in (pydaH)2[Zr(pydc)3].5H2O (Aghabozorg et al., 2005). The structure has numerous intermolecular interactions including C—O···π (with O···π distance of 3.893 (2) Å, π-π stacking (with centroid to centroid distances of 3.694 (2) and 3.802 (2) Å) (Fig. 3) as well as strong and weak hydrogen bonds (Table 1 and Fig. 4).

Related literature top

For related literature, see: Aghabozorg et al. (2005, 2008); Harben et al. (2004); Soleimannejad et al. (2007).

Experimental top

By refluxing 1 mmol (0.167 g) pyridine-2,6-dicarboxylic acid (pydcH2) and 1 mmol (0.126 g) 2,4,6-triamino-1,3,5-triazine (tata) in 150 ml water for 1.5 h, then adding 0.33 mmol (0.107 g) zirconyl chloride octahydrate (ZrOCl2.8H2O) and continuing to reflux for 1.5 h at 70°C, a cloudy solution was obtained. On refluxing the solution without heating for 3 h, it became completely clear and allowing it to concentrate at room temperature, colourless prismatic crystals were obtained after three weeks. The crystals were decomposed at 583 K.

Refinement top

The hydrogen atoms of NH groups and water molecules were found in difference Fourier synthesis. Except for two disordered groups, N—H and O—H distances were normalized to 0.87 and 0.82 Å, respectively, and the hydrogen atoms treated as riding on their bonded atoms. The H(C) atom positions were positioned geometrically with C—H = 0.95 Å. All hydrogen atoms were refined with isotropic thermal parameters having Uiso(H) equal to 1.2 Ueq of the bonded atom. One of the NH2 groups showed large thermal motion and was split into two sites, N14 and N14', with occupancies fixed at 0.60 and 0.40, respectively. The two hydrogen atoms are shared by these two atoms and they were fixed at the positions that were found in a difference Fourier map. One of the water molecules is also disordered into two sites with occupancies of 0.7:0.3 selected such that almost equal Uiso's for O4w and O4w' were achieved. Four hydrogen atoms were located for these two O atoms but only those for the major site were normalized.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Coordination geometry (°) around the central atom.
[Figure 3] Fig. 3. π-π stacking with centroid···centroid distances (Å).
[Figure 4] Fig. 4. Crystal packing of the title compound along the crystallographic axis a. Hydrogen bonds are shown with dashed lines. Only the hydrogen atoms that take part in hydrogen bonding are depicted.
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) tris(pyridine-2,6-dicarboxylato)zirconate(IV) tetrahydrate top
Crystal data top
(C3H7N6)2[Zr(C7H3NO4)3]·4H2OZ = 2
Mr = 912.89F(000) = 932
Triclinic, P1Dx = 1.749 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3749 (16) ÅCell parameters from 658 reflections
b = 12.308 (3) Åθ = 3–28°
c = 16.934 (4) ŵ = 0.42 mm1
α = 97.926 (19)°T = 120 K
β = 106.050 (12)°Prism, colourless
γ = 107.839 (11)°0.40 × 0.20 × 0.15 mm
V = 1733.8 (7) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8355 independent reflections
Radiation source: fine-focus sealed tube6766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.851, Tmax = 0.940k = 1616
17993 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.104H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
8355 reflections(Δ/σ)max = 0.003
545 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
(C3H7N6)2[Zr(C7H3NO4)3]·4H2Oγ = 107.839 (11)°
Mr = 912.89V = 1733.8 (7) Å3
Triclinic, P1Z = 2
a = 9.3749 (16) ÅMo Kα radiation
b = 12.308 (3) ŵ = 0.42 mm1
c = 16.934 (4) ÅT = 120 K
α = 97.926 (19)°0.40 × 0.20 × 0.15 mm
β = 106.050 (12)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8355 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6766 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.940Rint = 0.027
17993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.00Δρmax = 1.00 e Å3
8355 reflectionsΔρmin = 0.77 e Å3
545 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.28559 (3)0.802835 (18)0.195072 (14)0.01451 (7)
N10.3709 (2)0.94504 (17)0.32273 (12)0.0168 (4)
O10.10400 (19)0.77557 (14)0.25919 (11)0.0198 (3)
O20.0216 (2)0.82091 (17)0.36581 (14)0.0340 (5)
O30.53253 (19)0.93108 (14)0.22590 (10)0.0185 (3)
O40.7468 (2)1.08521 (15)0.30894 (11)0.0231 (4)
C10.1197 (3)0.8424 (2)0.32888 (16)0.0212 (5)
C20.2728 (3)0.9455 (2)0.36620 (15)0.0187 (5)
C30.3136 (3)1.0328 (2)0.43831 (16)0.0234 (5)
H30.24141.03170.46830.028*
C40.4617 (3)1.1214 (2)0.46564 (16)0.0236 (5)
H40.49251.18280.51460.028*
C50.5654 (3)1.1200 (2)0.42086 (15)0.0221 (5)
H50.66821.17960.43900.026*
C60.5155 (3)1.0298 (2)0.34937 (15)0.0173 (5)
C70.6084 (3)1.0150 (2)0.29175 (15)0.0175 (5)
N20.1737 (2)0.60123 (16)0.19282 (12)0.0155 (4)
O50.05699 (19)0.70749 (14)0.08778 (10)0.0182 (3)
O60.1565 (2)0.54563 (15)0.01431 (11)0.0239 (4)
O70.43417 (19)0.74858 (14)0.30198 (10)0.0183 (3)
O80.4862 (2)0.61348 (15)0.36795 (11)0.0265 (4)
C80.0300 (3)0.5985 (2)0.07296 (15)0.0171 (5)
C90.0356 (3)0.5343 (2)0.13438 (14)0.0165 (4)
C100.0384 (3)0.4166 (2)0.13214 (16)0.0216 (5)
H100.13810.37020.08990.026*
C110.0358 (3)0.3686 (2)0.19240 (16)0.0221 (5)
H110.01190.28840.19230.027*
C120.1816 (3)0.4392 (2)0.25330 (15)0.0182 (5)
H120.23540.40810.29540.022*
C130.2465 (3)0.5554 (2)0.25141 (14)0.0158 (4)
C140.4018 (3)0.6443 (2)0.31261 (14)0.0169 (5)
N30.3092 (2)0.86076 (16)0.07171 (12)0.0160 (4)
O90.39755 (19)0.70295 (14)0.12953 (10)0.0177 (3)
O100.5097 (2)0.67269 (16)0.03268 (11)0.0250 (4)
O110.1938 (2)0.94406 (14)0.17254 (10)0.0190 (3)
O120.1385 (2)1.07302 (15)0.09910 (11)0.0233 (4)
C150.4337 (3)0.7215 (2)0.06333 (15)0.0172 (5)
C160.3755 (3)0.80986 (19)0.02482 (14)0.0165 (4)
C170.3836 (3)0.8366 (2)0.05096 (15)0.0202 (5)
H170.43430.80160.08270.024*
C180.3155 (3)0.9160 (2)0.07950 (16)0.0225 (5)
H180.31630.93410.13220.027*
C190.2463 (3)0.9689 (2)0.03055 (15)0.0206 (5)
H190.19921.02330.04900.025*
C200.2480 (3)0.9398 (2)0.04572 (15)0.0175 (5)
C210.1862 (3)0.9920 (2)0.10879 (15)0.0167 (5)
N40.7448 (2)0.58832 (17)0.48483 (12)0.0175 (4)
H4A0.69600.62700.45540.021*
N50.7533 (2)0.40707 (17)0.51036 (13)0.0194 (4)
N60.9696 (2)0.58949 (17)0.58959 (12)0.0184 (4)
N70.9521 (2)0.76211 (18)0.55671 (14)0.0227 (4)
H7A0.89820.79240.52170.027*
H7B1.04700.80080.59340.027*
N80.5335 (2)0.41661 (18)0.41288 (13)0.0234 (5)
H8A0.48550.34060.39670.028*
H8B0.49360.46350.38840.028*
N90.9768 (2)0.41118 (18)0.61023 (13)0.0224 (4)
H9A0.93580.33480.59380.027*
H9B1.06590.44600.65230.027*
C220.8915 (3)0.6470 (2)0.54501 (14)0.0170 (5)
C230.6774 (3)0.4676 (2)0.46958 (15)0.0187 (5)
C240.8975 (3)0.4710 (2)0.56878 (14)0.0181 (5)
N100.7164 (3)0.48215 (18)0.24952 (14)0.0253 (5)
N110.4934 (3)0.48189 (19)0.14323 (14)0.0271 (5)
H11A0.45060.52200.11220.032*
N120.4830 (2)0.30662 (17)0.18547 (13)0.0192 (4)
N130.7066 (3)0.30818 (19)0.28279 (14)0.0268 (5)
H13A0.65420.23360.27540.032*
H13B0.80040.34620.32070.032*
N140.7048 (6)0.6558 (5)0.2174 (3)0.0262 (11)0.60
N14'0.7338 (10)0.6400 (7)0.1863 (5)0.0341 (19)0.40
H14A0.80890.68540.23580.041*
H14B0.66590.68370.17550.041*
N150.2681 (2)0.31340 (18)0.08405 (13)0.0207 (4)
H15A0.21800.35010.05320.025*
H15B0.22400.23850.07960.025*
C250.6329 (3)0.3668 (2)0.23774 (15)0.0188 (5)
C260.6431 (3)0.5381 (2)0.20080 (19)0.0322 (6)
C270.4140 (3)0.3657 (2)0.13757 (15)0.0180 (5)
O1W0.2873 (2)0.21473 (16)0.29928 (12)0.0313 (4)
H1WA0.30230.20680.25370.038*
H1WB0.19760.17180.29470.038*
O2W0.7796 (2)0.84349 (18)0.42014 (12)0.0296 (4)
H2WA0.84540.84690.39630.036*
H2WB0.69160.81700.38310.036*
O3W0.8371 (3)0.8297 (2)0.11479 (16)0.0483 (6)
H3WA0.91640.81180.12700.058*
H3WB0.75620.77790.08090.058*
O4W0.0041 (4)0.0297 (3)0.2674 (2)0.0310 (7)0.70
H4WA0.08390.04220.27010.037*0.70
H4WB0.00240.02250.29200.037*0.70
O4W'0.0135 (12)0.0610 (8)0.2484 (6)0.036 (2)*0.30
H4WC0.05920.01320.20820.043*0.30
H4WD0.08610.06870.26620.043*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01427 (12)0.01246 (11)0.01488 (12)0.00449 (8)0.00258 (8)0.00297 (8)
N10.0181 (10)0.0154 (9)0.0170 (9)0.0068 (8)0.0046 (8)0.0053 (8)
O10.0185 (8)0.0156 (8)0.0245 (9)0.0049 (7)0.0072 (7)0.0056 (7)
O20.0375 (11)0.0250 (10)0.0528 (13)0.0126 (9)0.0328 (10)0.0119 (9)
O30.0166 (8)0.0174 (8)0.0190 (8)0.0034 (7)0.0055 (7)0.0036 (7)
O40.0147 (8)0.0183 (8)0.0298 (10)0.0013 (7)0.0040 (7)0.0038 (7)
C10.0221 (12)0.0222 (12)0.0276 (13)0.0131 (10)0.0130 (10)0.0110 (10)
C20.0225 (12)0.0170 (11)0.0196 (11)0.0090 (10)0.0083 (10)0.0067 (9)
C30.0348 (14)0.0218 (12)0.0222 (12)0.0168 (11)0.0135 (11)0.0090 (10)
C40.0340 (14)0.0179 (12)0.0173 (12)0.0126 (11)0.0045 (10)0.0013 (9)
C50.0252 (13)0.0163 (11)0.0202 (12)0.0064 (10)0.0030 (10)0.0026 (9)
C60.0184 (11)0.0145 (11)0.0176 (11)0.0066 (9)0.0026 (9)0.0049 (9)
C70.0150 (11)0.0138 (11)0.0223 (12)0.0055 (9)0.0028 (9)0.0065 (9)
N20.0149 (9)0.0148 (9)0.0158 (9)0.0054 (7)0.0042 (8)0.0030 (7)
O50.0159 (8)0.0158 (8)0.0197 (8)0.0049 (6)0.0016 (7)0.0050 (7)
O60.0185 (9)0.0206 (9)0.0229 (9)0.0028 (7)0.0035 (7)0.0065 (7)
O70.0173 (8)0.0168 (8)0.0181 (8)0.0053 (7)0.0028 (7)0.0040 (6)
O80.0228 (9)0.0214 (9)0.0255 (9)0.0067 (7)0.0055 (7)0.0069 (7)
C80.0162 (11)0.0155 (11)0.0184 (11)0.0064 (9)0.0039 (9)0.0031 (9)
C90.0175 (11)0.0169 (11)0.0160 (11)0.0082 (9)0.0047 (9)0.0037 (9)
C100.0167 (11)0.0186 (12)0.0215 (12)0.0010 (9)0.0008 (10)0.0034 (10)
C110.0224 (12)0.0155 (11)0.0259 (13)0.0038 (10)0.0068 (10)0.0069 (10)
C120.0202 (11)0.0186 (11)0.0177 (11)0.0091 (9)0.0059 (9)0.0065 (9)
C130.0178 (11)0.0152 (11)0.0152 (11)0.0073 (9)0.0057 (9)0.0032 (9)
C140.0155 (11)0.0184 (11)0.0166 (11)0.0066 (9)0.0045 (9)0.0043 (9)
N30.0137 (9)0.0131 (9)0.0166 (9)0.0022 (7)0.0013 (8)0.0031 (7)
O90.0191 (8)0.0158 (8)0.0182 (8)0.0076 (7)0.0047 (7)0.0047 (6)
O100.0261 (9)0.0282 (10)0.0257 (9)0.0157 (8)0.0102 (8)0.0055 (8)
O110.0226 (9)0.0161 (8)0.0188 (8)0.0083 (7)0.0061 (7)0.0045 (7)
O120.0268 (9)0.0198 (9)0.0255 (9)0.0118 (7)0.0074 (8)0.0075 (7)
C150.0129 (10)0.0157 (11)0.0164 (11)0.0022 (9)0.0004 (9)0.0003 (9)
C160.0137 (10)0.0133 (10)0.0171 (11)0.0017 (8)0.0018 (9)0.0017 (9)
C170.0182 (11)0.0208 (12)0.0187 (11)0.0039 (9)0.0064 (9)0.0025 (9)
C180.0205 (12)0.0242 (12)0.0181 (12)0.0032 (10)0.0039 (10)0.0075 (10)
C190.0182 (11)0.0184 (11)0.0215 (12)0.0042 (9)0.0023 (10)0.0073 (10)
C200.0152 (11)0.0147 (11)0.0187 (11)0.0031 (9)0.0022 (9)0.0043 (9)
C210.0141 (10)0.0132 (10)0.0200 (11)0.0039 (9)0.0021 (9)0.0059 (9)
N40.0147 (9)0.0154 (9)0.0205 (10)0.0067 (8)0.0010 (8)0.0056 (8)
N50.0177 (10)0.0166 (10)0.0215 (10)0.0062 (8)0.0030 (8)0.0047 (8)
N60.0176 (10)0.0188 (10)0.0163 (9)0.0065 (8)0.0024 (8)0.0035 (8)
N70.0186 (10)0.0169 (10)0.0255 (11)0.0052 (8)0.0015 (9)0.0041 (8)
N80.0189 (10)0.0164 (10)0.0274 (11)0.0048 (8)0.0009 (9)0.0040 (9)
N90.0209 (10)0.0189 (10)0.0234 (11)0.0086 (8)0.0000 (9)0.0054 (8)
C220.0150 (11)0.0202 (11)0.0154 (11)0.0057 (9)0.0053 (9)0.0043 (9)
C230.0178 (11)0.0183 (11)0.0195 (11)0.0064 (9)0.0062 (9)0.0041 (9)
C240.0201 (11)0.0217 (12)0.0154 (11)0.0100 (10)0.0069 (9)0.0058 (9)
N100.0204 (11)0.0191 (10)0.0304 (12)0.0064 (9)0.0007 (9)0.0088 (9)
N110.0239 (11)0.0189 (10)0.0312 (12)0.0078 (9)0.0038 (9)0.0106 (9)
N120.0190 (10)0.0186 (10)0.0183 (10)0.0074 (8)0.0030 (8)0.0048 (8)
N130.0228 (11)0.0167 (10)0.0307 (12)0.0057 (9)0.0053 (9)0.0071 (9)
N140.023 (2)0.018 (2)0.027 (3)0.0026 (17)0.0054 (19)0.012 (2)
N14'0.026 (4)0.023 (3)0.042 (5)0.006 (3)0.003 (4)0.009 (4)
N150.0185 (10)0.0209 (10)0.0211 (10)0.0080 (8)0.0023 (8)0.0070 (8)
C250.0201 (12)0.0199 (12)0.0175 (11)0.0094 (9)0.0056 (9)0.0051 (9)
C260.0252 (14)0.0218 (13)0.0381 (16)0.0055 (11)0.0053 (12)0.0112 (12)
C270.0184 (11)0.0185 (11)0.0174 (11)0.0080 (9)0.0056 (9)0.0034 (9)
O1W0.0360 (11)0.0244 (10)0.0247 (10)0.0027 (8)0.0064 (8)0.0052 (8)
O2W0.0213 (9)0.0449 (12)0.0224 (9)0.0128 (9)0.0080 (8)0.0040 (8)
O3W0.0403 (13)0.0441 (13)0.0590 (16)0.0177 (11)0.0113 (12)0.0140 (12)
O4W0.0331 (17)0.0289 (17)0.0353 (18)0.0144 (14)0.0147 (14)0.0079 (15)
Geometric parameters (Å, º) top
Zr1—O112.1964 (16)C19—C201.384 (3)
Zr1—O92.2144 (17)C19—H190.9500
Zr1—O12.2276 (17)C20—C211.507 (3)
Zr1—O32.2337 (17)N4—C221.366 (3)
Zr1—O52.2336 (17)N4—C231.380 (3)
Zr1—O72.2743 (17)N4—H4A0.8700
Zr1—N32.343 (2)N5—C231.316 (3)
Zr1—N12.349 (2)N5—C241.349 (3)
Zr1—N22.370 (2)N6—C221.329 (3)
N1—C21.329 (3)N6—C241.353 (3)
N1—C61.340 (3)N7—C221.318 (3)
O1—C11.286 (3)N7—H7A0.8700
O2—C11.233 (3)N7—H7B0.8700
O3—C71.269 (3)N8—C231.318 (3)
O4—C71.244 (3)N8—H8A0.8700
C1—C21.494 (3)N8—H8B0.8701
C2—C31.386 (3)N9—C241.333 (3)
C3—C41.382 (4)N9—H9A0.8700
C3—H30.9500N9—H9B0.8700
C4—C51.391 (4)N10—C261.327 (3)
C4—H40.9500N10—C251.351 (3)
C5—C61.383 (3)N11—C261.364 (3)
C5—H50.9500N11—C271.371 (3)
C6—C71.504 (3)N11—H11A0.8700
N2—C91.322 (3)N12—C271.329 (3)
N2—C131.335 (3)N12—C251.342 (3)
O5—C81.285 (3)N13—C251.321 (3)
O6—C81.230 (3)N13—H13A0.8699
O7—C141.275 (3)N13—H13B0.8700
O8—C141.233 (3)N14—C261.340 (6)
C8—C91.502 (3)N14—H14A0.8749
C9—C101.392 (3)N14—H14B0.8687
C10—C111.379 (3)N14'—C261.380 (9)
C10—H100.9500N14'—H14A0.9028
C11—C121.390 (3)N14'—H14B0.9488
C11—H110.9500N15—C271.312 (3)
C12—C131.382 (3)N15—H15A0.8700
C12—H120.9500N15—H15B0.8700
C13—C141.506 (3)O1W—H1WA0.8200
N3—C161.335 (3)O1W—H1WB0.8201
N3—C201.338 (3)O2W—H2WA0.8199
O9—C151.287 (3)O2W—H2WB0.8200
O10—C151.233 (3)O3W—H3WA0.8199
O11—C211.295 (3)O3W—H3WB0.8200
O12—C211.224 (3)O4W—H4WA0.8199
C15—C161.506 (3)O4W—H4WB0.8201
C16—C171.384 (3)O4W—H4WC0.9759
C17—C181.392 (4)O4W—H4WD1.0210
C17—H170.9500O4W'—H4WA0.8285
C18—C191.393 (4)O4W'—H4WC0.9537
C18—H180.9500O4W'—H4WD0.8410
O11—Zr1—O9135.20 (6)O8—C14—C13119.7 (2)
O11—Zr1—O177.18 (6)O7—C14—C13115.10 (19)
O9—Zr1—O1140.70 (6)C16—N3—C20120.0 (2)
O11—Zr1—O389.27 (6)C16—N3—Zr1119.94 (15)
O9—Zr1—O376.40 (6)C20—N3—Zr1119.92 (16)
O1—Zr1—O3134.77 (6)C15—O9—Zr1125.29 (14)
O11—Zr1—O577.71 (6)C21—O11—Zr1127.15 (15)
O9—Zr1—O588.12 (6)O10—C15—O9124.2 (2)
O1—Zr1—O577.03 (6)O10—C15—C16121.4 (2)
O3—Zr1—O5142.19 (6)O9—C15—C16114.4 (2)
O11—Zr1—O7140.58 (6)N3—C16—C17121.8 (2)
O9—Zr1—O777.15 (6)N3—C16—C15112.2 (2)
O1—Zr1—O787.39 (6)C17—C16—C15126.0 (2)
O3—Zr1—O776.22 (6)C16—C17—C18118.3 (2)
O5—Zr1—O7134.02 (6)C16—C17—H17120.9
O11—Zr1—N367.37 (7)C18—C17—H17120.9
O9—Zr1—N367.83 (6)C17—C18—C19119.8 (2)
O1—Zr1—N3135.82 (6)C17—C18—H18120.1
O3—Zr1—N371.70 (6)C19—C18—H18120.1
O5—Zr1—N370.52 (6)C20—C19—C18118.0 (2)
O7—Zr1—N3136.80 (6)C20—C19—H19121.0
O11—Zr1—N170.33 (6)C18—C19—H19121.0
O9—Zr1—N1135.65 (6)N3—C20—C19122.0 (2)
O1—Zr1—N167.44 (7)N3—C20—C21112.4 (2)
O3—Zr1—N167.36 (7)C19—C20—C21125.6 (2)
O5—Zr1—N1136.22 (7)O12—C21—O11125.7 (2)
O7—Zr1—N170.25 (6)O12—C21—C20121.5 (2)
N3—Zr1—N1120.12 (7)O11—C21—C20112.80 (19)
O11—Zr1—N2135.82 (7)C22—N4—C23119.5 (2)
O9—Zr1—N271.12 (6)C22—N4—H4A119.9
O1—Zr1—N269.59 (6)C23—N4—H4A120.6
O3—Zr1—N2134.88 (6)C23—N5—C24115.7 (2)
O5—Zr1—N267.27 (6)C22—N6—C24115.8 (2)
O7—Zr1—N266.76 (6)C22—N7—H7A116.1
N3—Zr1—N2120.74 (7)C22—N7—H7B118.8
N1—Zr1—N2119.13 (7)H7A—N7—H7B124.5
C2—N1—C6119.8 (2)C23—N8—H8A122.4
C2—N1—Zr1120.07 (16)C23—N8—H8B115.6
C6—N1—Zr1120.01 (15)H8A—N8—H8B121.7
C1—O1—Zr1124.99 (15)C24—N9—H9A117.4
C7—O3—Zr1125.60 (15)C24—N9—H9B122.3
O2—C1—O1123.5 (2)H9A—N9—H9B120.3
O2—C1—C2121.4 (2)N7—C22—N6121.6 (2)
O1—C1—C2114.9 (2)N7—C22—N4117.4 (2)
N1—C2—C3122.1 (2)N6—C22—N4120.9 (2)
N1—C2—C1112.4 (2)N5—C23—N8122.0 (2)
C3—C2—C1125.6 (2)N5—C23—N4121.4 (2)
C4—C3—C2118.5 (2)N8—C23—N4116.6 (2)
C4—C3—H3120.8N9—C24—N5116.6 (2)
C2—C3—H3120.8N9—C24—N6116.8 (2)
C3—C4—C5119.4 (2)N5—C24—N6126.6 (2)
C3—C4—H4120.3C26—N10—C25115.4 (2)
C5—C4—H4120.3C26—N11—C27119.3 (2)
C6—C5—C4118.5 (2)C26—N11—H11A118.4
C6—C5—H5120.7C27—N11—H11A122.2
C4—C5—H5120.7C27—N12—C25116.2 (2)
N1—C6—C5121.7 (2)C25—N13—H13A117.1
N1—C6—C7112.0 (2)C25—N13—H13B119.3
C5—C6—C7126.3 (2)H13A—N13—H13B123.4
O4—C7—O3125.2 (2)C26—N14—H14A114.1
O4—C7—C6119.9 (2)C26—N14—H14B113.2
O3—C7—C6114.8 (2)H14A—N14—H14B110.9
C9—N2—C13119.7 (2)C26—N14'—H14A108.8
C9—N2—Zr1119.59 (15)C26—N14'—H14B104.7
C13—N2—Zr1120.67 (15)H14A—N14'—H14B101.7
C8—O5—Zr1125.56 (14)C27—N15—H15A122.7
C14—O7—Zr1125.03 (14)C27—N15—H15B116.3
O6—C8—O5125.9 (2)H15A—N15—H15B121.0
O6—C8—C9119.7 (2)N13—C25—N12117.2 (2)
O5—C8—C9114.3 (2)N13—C25—N10116.3 (2)
N2—C9—C10122.0 (2)N12—C25—N10126.5 (2)
N2—C9—C8113.2 (2)N10—C26—N14119.5 (3)
C10—C9—C8124.9 (2)N10—C26—N11121.7 (2)
C11—C10—C9118.7 (2)N14—C26—N11117.9 (3)
C11—C10—H10120.6N10—C26—N14'118.7 (4)
C9—C10—H10120.6N11—C26—N14'115.9 (4)
C10—C11—C12119.0 (2)N15—C27—N12120.3 (2)
C10—C11—H11120.5N15—C27—N11118.9 (2)
C12—C11—H11120.5N12—C27—N11120.8 (2)
C13—C12—C11118.6 (2)H1WA—O1W—H1WB111.2
C13—C12—H12120.7H2WA—O2W—H2WB107.1
C11—C12—H12120.7H3WA—O3W—H3WB115.2
N2—C13—C12121.9 (2)H4WA—O4W—H4WB106.9
N2—C13—C14112.32 (19)H4WB—O4W—H4WC103.3
C12—C13—C14125.7 (2)H4WB—O4W—H4WD123.7
O8—C14—O7125.2 (2)H4WC—O4W'—H4WD106.2
O11—Zr1—N1—C279.81 (17)N2—C9—C10—C110.5 (4)
O9—Zr1—N1—C2144.77 (16)C8—C9—C10—C11179.7 (2)
O1—Zr1—N1—C24.07 (16)C9—C10—C11—C120.1 (4)
O3—Zr1—N1—C2177.53 (19)C10—C11—C12—C130.3 (4)
O5—Zr1—N1—C234.2 (2)C9—N2—C13—C120.1 (3)
O7—Zr1—N1—C299.62 (18)Zr1—N2—C13—C12177.89 (17)
N3—Zr1—N1—C2126.98 (17)C9—N2—C13—C14179.9 (2)
N2—Zr1—N1—C252.46 (19)Zr1—N2—C13—C141.9 (3)
O11—Zr1—N1—C696.45 (17)C11—C12—C13—N20.3 (4)
O9—Zr1—N1—C639.0 (2)C11—C12—C13—C14179.4 (2)
O1—Zr1—N1—C6179.67 (18)Zr1—O7—C14—O8176.13 (18)
O3—Zr1—N1—C61.27 (15)Zr1—O7—C14—C134.2 (3)
O5—Zr1—N1—C6142.04 (15)N2—C13—C14—O8176.6 (2)
O7—Zr1—N1—C684.13 (17)C12—C13—C14—O83.7 (4)
N3—Zr1—N1—C649.28 (18)N2—C13—C14—O73.7 (3)
N2—Zr1—N1—C6131.28 (16)C12—C13—C14—O7176.0 (2)
O11—Zr1—O1—C172.21 (18)O11—Zr1—N3—C16178.94 (18)
O9—Zr1—O1—C1137.22 (17)O9—Zr1—N3—C160.52 (15)
O3—Zr1—O1—C13.7 (2)O1—Zr1—N3—C16141.75 (15)
O5—Zr1—O1—C1152.33 (19)O3—Zr1—N3—C1681.86 (17)
O7—Zr1—O1—C171.25 (18)O5—Zr1—N3—C1696.63 (17)
N3—Zr1—O1—C1109.06 (19)O7—Zr1—N3—C1637.8 (2)
N1—Zr1—O1—C11.57 (17)N1—Zr1—N3—C16130.51 (16)
N2—Zr1—O1—C1137.39 (19)N2—Zr1—N3—C1650.06 (18)
O11—Zr1—O3—C770.44 (18)O11—Zr1—N3—C204.98 (16)
O9—Zr1—O3—C7152.41 (18)O9—Zr1—N3—C20175.56 (18)
O1—Zr1—O3—C70.6 (2)O1—Zr1—N3—C2034.3 (2)
O5—Zr1—O3—C7139.11 (17)O3—Zr1—N3—C20102.06 (17)
O7—Zr1—O3—C772.56 (18)O5—Zr1—N3—C2079.44 (17)
N3—Zr1—O3—C7136.80 (19)O7—Zr1—N3—C20146.12 (15)
N1—Zr1—O3—C71.50 (17)N1—Zr1—N3—C2053.42 (18)
N2—Zr1—O3—C7107.71 (18)N2—Zr1—N3—C20126.02 (16)
Zr1—O1—C1—O2175.06 (18)O11—Zr1—O9—C153.7 (2)
Zr1—O1—C1—C20.7 (3)O1—Zr1—O9—C15140.88 (16)
C6—N1—C2—C31.3 (3)O3—Zr1—O9—C1571.07 (17)
Zr1—N1—C2—C3175.02 (17)O5—Zr1—O9—C1574.13 (17)
C6—N1—C2—C1178.1 (2)O7—Zr1—O9—C15149.76 (18)
Zr1—N1—C2—C15.7 (3)N3—Zr1—O9—C154.43 (16)
O2—C1—C2—N1171.7 (2)N1—Zr1—O9—C15106.57 (18)
O1—C1—C2—N14.2 (3)N2—Zr1—O9—C15140.72 (18)
O2—C1—C2—C37.5 (4)O9—Zr1—O11—C212.9 (2)
O1—C1—C2—C3176.6 (2)O1—Zr1—O11—C21150.93 (19)
N1—C2—C3—C40.4 (4)O3—Zr1—O11—C2172.58 (18)
C1—C2—C3—C4178.8 (2)O5—Zr1—O11—C2171.65 (18)
C2—C3—C4—C50.6 (4)O7—Zr1—O11—C21139.58 (17)
C3—C4—C5—C60.7 (4)N3—Zr1—O11—C212.15 (17)
C2—N1—C6—C51.1 (3)N1—Zr1—O11—C21138.73 (19)
Zr1—N1—C6—C5175.18 (17)N2—Zr1—O11—C21109.31 (19)
C2—N1—C6—C7179.5 (2)Zr1—O9—C15—O10172.67 (17)
Zr1—N1—C6—C73.3 (2)Zr1—O9—C15—C167.2 (3)
C4—C5—C6—N10.1 (4)C20—N3—C16—C170.2 (3)
C4—C5—C6—C7178.3 (2)Zr1—N3—C16—C17176.24 (17)
Zr1—O3—C7—O4179.05 (17)C20—N3—C16—C15178.54 (19)
Zr1—O3—C7—C63.7 (3)Zr1—N3—C16—C152.5 (2)
N1—C6—C7—O4178.3 (2)O10—C15—C16—N3174.0 (2)
C5—C6—C7—O43.4 (4)O9—C15—C16—N35.8 (3)
N1—C6—C7—O34.3 (3)O10—C15—C16—C177.3 (4)
C5—C6—C7—O3174.1 (2)O9—C15—C16—C17172.8 (2)
O11—Zr1—N2—C938.2 (2)N3—C16—C17—C182.1 (3)
O9—Zr1—N2—C998.20 (17)C15—C16—C17—C18176.4 (2)
O1—Zr1—N2—C981.91 (17)C16—C17—C18—C192.0 (4)
O3—Zr1—N2—C9144.46 (16)C17—C18—C19—C200.0 (4)
O5—Zr1—N2—C92.13 (16)C16—N3—C20—C192.0 (3)
O7—Zr1—N2—C9178.05 (18)Zr1—N3—C20—C19174.09 (17)
N3—Zr1—N2—C950.07 (19)C16—N3—C20—C21177.09 (19)
N1—Zr1—N2—C9129.38 (17)Zr1—N3—C20—C216.8 (2)
O11—Zr1—N2—C13139.83 (16)C18—C19—C20—N32.0 (3)
O9—Zr1—N2—C1383.78 (17)C18—C19—C20—C21176.9 (2)
O1—Zr1—N2—C1396.11 (18)Zr1—O11—C21—O12177.80 (17)
O3—Zr1—N2—C1337.5 (2)Zr1—O11—C21—C200.5 (3)
O5—Zr1—N2—C13179.84 (19)N3—C20—C21—O12173.6 (2)
O7—Zr1—N2—C130.03 (16)C19—C20—C21—O125.4 (4)
N3—Zr1—N2—C13131.91 (16)N3—C20—C21—O114.8 (3)
N1—Zr1—N2—C1348.65 (19)C19—C20—C21—O11176.2 (2)
O11—Zr1—O5—C8150.83 (19)C24—N6—C22—N7177.1 (2)
O9—Zr1—O5—C871.97 (18)C24—N6—C22—N42.7 (3)
O1—Zr1—O5—C871.37 (18)C23—N4—C22—N7179.2 (2)
O3—Zr1—O5—C8136.75 (17)C23—N4—C22—N60.7 (3)
O7—Zr1—O5—C81.9 (2)C24—N5—C23—N8177.7 (2)
N3—Zr1—O5—C8139.08 (19)C24—N5—C23—N41.7 (3)
N1—Zr1—O5—C8107.32 (19)C22—N4—C23—N51.7 (3)
N2—Zr1—O5—C81.68 (17)C22—N4—C23—N8177.7 (2)
O11—Zr1—O7—C14137.40 (17)C23—N5—C24—N9179.4 (2)
O9—Zr1—O7—C1472.30 (18)C23—N5—C24—N60.7 (4)
O1—Zr1—O7—C1471.31 (18)C22—N6—C24—N9177.2 (2)
O3—Zr1—O7—C14151.21 (19)C22—N6—C24—N52.8 (4)
O5—Zr1—O7—C142.2 (2)C27—N12—C25—N13176.6 (2)
N3—Zr1—O7—C14108.38 (19)C27—N12—C25—N103.8 (4)
N1—Zr1—O7—C14138.25 (19)C26—N10—C25—N13176.9 (3)
N2—Zr1—O7—C142.44 (17)C26—N10—C25—N123.5 (4)
Zr1—O5—C8—O6179.53 (18)C25—N10—C26—N14169.0 (3)
Zr1—O5—C8—C91.1 (3)C25—N10—C26—N110.2 (4)
C13—N2—C9—C100.6 (3)C25—N10—C26—N14'157.4 (4)
Zr1—N2—C9—C10177.49 (18)C27—N11—C26—N102.4 (4)
C13—N2—C9—C8179.6 (2)C27—N11—C26—N14166.5 (3)
Zr1—N2—C9—C82.3 (3)C27—N11—C26—N14'160.7 (4)
O6—C8—C9—N2178.5 (2)C25—N12—C27—N15179.4 (2)
O5—C8—C9—N20.9 (3)C25—N12—C27—N110.8 (3)
O6—C8—C9—C101.7 (4)C26—N11—C27—N15177.7 (3)
O5—C8—C9—C10178.9 (2)C26—N11—C27—N122.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N120.822.433.106 (3)140
O1W—H1WB···O4W0.822.032.824 (4)163
O2W—H2WA···O2i0.821.962.746 (3)160
O2W—H2WB···O70.822.243.051 (3)169
O2W—H2WB···O80.822.583.091 (3)122
N4—H4A···O80.872.052.805 (3)144
O3W—H3WA···O5i0.822.262.992 (4)149
O3W—H3WA···O11i0.822.443.008 (4)127
O3W—H3WB···O100.822.122.890 (3)155
O4W—H4WA···O4ii0.822.062.858 (5)166
N7—H7A···O2W0.872.062.921 (3)168
N7—H7B···O4iii0.872.092.949 (3)169
O4W—H4WB···O2iv0.822.463.283 (4)180
N8—H8A···O1W0.872.102.813 (3)139
N8—H8B···O80.871.942.762 (3)156
N9—H9A···O2v0.872.232.944 (3)139
N9—H9B···N10vi0.872.082.947 (3)176
N11—H11A···O90.872.423.134 (3)139
N13—H13A···O4iv0.872.322.957 (3)130
N13—H13B···N6vi0.872.102.958 (3)170
N14—H14A···O1i0.872.543.398 (6)169
N14—H14A···O2i0.872.483.167 (6)136
N14—H14B···O3W0.872.553.119 (6)124
N14—H14B···O90.872.513.121 (6)127
N14—H14B···O100.872.423.228 (5)156
N15—H15A···O6vii0.871.942.797 (3)166
N15—H15B···O12iv0.872.062.911 (3)167
C3—H3···O2Wviii0.952.363.130 (3)138
C12—H12···O1W0.952.583.326 (3)136
C17—H17···N12ix0.952.483.417 (4)169
C19—H19···O3Wx0.952.313.215 (4)158
C14—O8···Cg11.233.894.068 (3)89
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z; (iii) x+2, y+2, z+1; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x, y+1, z; (viii) x+1, y+2, z+1; (ix) x+1, y+1, z; (x) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C3H7N6)2[Zr(C7H3NO4)3]·4H2O
Mr912.89
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.3749 (16), 12.308 (3), 16.934 (4)
α, β, γ (°)97.926 (19), 106.050 (12), 107.839 (11)
V3)1733.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.851, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
17993, 8355, 6766
Rint0.027
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.00
No. of reflections8355
No. of parameters545
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.77

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N120.822.433.106 (3)140
O1W—H1WB···O4W0.822.032.824 (4)163
O2W—H2WA···O2i0.821.962.746 (3)160
O2W—H2WB···O70.822.243.051 (3)169
O2W—H2WB···O80.822.583.091 (3)122
N4—H4A···O80.872.052.805 (3)144
O3W—H3WA···O5i0.822.262.992 (4)149
O3W—H3WA···O11i0.822.443.008 (4)127
O3W—H3WB···O100.822.122.890 (3)155
O4W—H4WA···O4ii0.822.062.858 (5)166
N7—H7A···O2W0.872.062.921 (3)168
N7—H7B···O4iii0.872.092.949 (3)169
O4W—H4WB···O2iv0.822.463.283 (4)180
N8—H8A···O1W0.872.102.813 (3)139
N8—H8B···O80.871.942.762 (3)156
N9—H9A···O2v0.872.232.944 (3)139
N9—H9B···N10vi0.872.082.947 (3)176
N11—H11A···O90.872.423.134 (3)139
N13—H13A···O4iv0.872.322.957 (3)130
N13—H13B···N6vi0.872.102.958 (3)170
N14—H14A···O1i0.872.543.398 (6)169
N14—H14A···O2i0.872.483.167 (6)136
N14—H14B···O3W0.872.553.119 (6)124
N14—H14B···O90.872.513.121 (6)127
N14—H14B···O100.872.423.228 (5)156
N15—H15A···O6vii0.871.942.797 (3)166
N15—H15B···O12iv0.872.062.911 (3)167
C3—H3···O2Wviii0.952.363.130 (3)138
C12—H12···O1W0.952.583.326 (3)136
C17—H17···N12ix0.952.483.417 (4)169
C19—H19···O3Wx0.952.313.215 (4)158
C14—O8···Cg11.233.894.068 (3)89
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z; (iii) x+2, y+2, z+1; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x, y+1, z; (viii) x+1, y+2, z+1; (ix) x+1, y+1, z; (x) x+1, y+2, z.
 

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarben, S. M., Smith, P. D., Beddoes, R. L., Collison, D. & Garner, C. D. (2004). Angew. Chem. Int. Ed. 36, 1897–1898.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Nakhjavan, B., Attar Gharamaleki, J. & Ramezanipour, F. (2007). Acta Cryst. E63, m3170–m3171.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1308-m1309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds