metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1344-m1345

μ-Squarato-κ2O1:O2-bis­­{[2-(2-amino­ethyl)pyridine-κ2N,N′]aqua­nickel(II)} squarate 0.25-hydrate

aOndokuz Mayıs University, Art and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey, and bOndokuz Mayıs University, Art and Science Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: iucar@omu.edu.tr

(Received 15 August 2008; accepted 24 September 2008; online 27 September 2008)

The asymmetric unit of title compound, [Ni2(C4O4)(C7H10N2)4(H2O)2]C4O4·0.25H2O, contains one-half of a squarate ligand, one-half of an uncoordinated squarate dianion, two 2-(2-amino­ethyl)pyridine ligands and one aqua ligand, all coordinated to an NiII ion. The compound also contains 0.25 solvent water mol­ecules. The NiII ion has distorted octa­hedral geometry. The squarate ligand adopts a μ-1,2 coordination mode, the intra­dimer NiII⋯NiII separation being 7.1442 (7) Å, while the other squarate unit acts as a counter-anion. The crystal structure is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen-bond inter­actions, forming a three-dimensional network.

Related literature

For general background, see: Bernardinelli et al. (1989[Bernardinelli, G., Deguenon, D., Soules, R. & Castan, P. (1989). Can. J. Chem. 67, 1158-1165.]); Bulut et al. (2004[Bulut, A., Uçar, İ., Yeşilel, O. Z., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. C60, m526-m528.]); Castro et al. (1995[Castro, I., Sletten, J., Calatayud, M. L., Julve, M., Cano, J., Lloret, F. & Caneschi, A. (1995). Inorg. Chem. 34, 4903-4909.], 1997[Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997). J. Chem. Soc. Dalton Trans. pp. 811-817.]); Crispini et al. (2000[Crispini, A., Pucci, D., Aiello, I. & Ghedini, M. (2000). Inorg. Chim. Acta, 304, 219-223.]); Kirchmaier et al. (2003[Kirchmaier, R., Altin, E. & Lentz, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 1-2.]); Lee et al. (1996[Lee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966-975.]); Milet et al. (2003[Milet, P., Sabadie, L., Galy, J. & Trombe, J. C. (2003). J. Solid State Chem. 173, 49-53.]); Solans et al. (1990[Solans, X., Aguilo, M., Gleizes, A., Faus, J., Julve, M. & Verdeguer, M. (1990). Inorg. Chem. 29, 775-784.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); Trombe et al. (2002[Trombe, J. C., Sabadie, L. & Milet, P. (2002). Solid State Sci. 4, 1209-1212.]); Uçar (2008[Uçar, I. (2008). J. Coord. Chem. 61, 2590-2600.]); Uçar et al. (2006[Uçar, I., Bulut, A., Büyükgüngör, O. & Karadaĝ, A. (2006). Transition Met. Chem. 31, 1057-1058.], 2007[Uçar, I., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007). J. Phys. Chem. Solids, 68, 45-52.]); Yang et al. (2003[Yang, C. H., Chuo, C. M., Lee, G. H. & Wang, C. C. (2003). Inorg. Chem. Commun. 6, 135-140.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C4O4)(C7H10N2)4(H2O)2]C4O4·0.25H2O

  • Mr = 870.16

  • Monoclinic, C 2/c

  • a = 28.037 (3) Å

  • b = 8.0409 (5) Å

  • c = 17.7752 (16) Å

  • β = 103.572 (7)°

  • V = 3895.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 297 (2) K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.49, Tmax = 0.81

  • 12243 measured reflections

  • 3809 independent reflections

  • 3148 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.03

  • 3809 reflections

  • 282 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.81 (3) 1.93 (3) 2.716 (2) 163 (3)
N2—H2A⋯O3i 0.90 (2) 2.09 (2) 2.935 (2) 157 (2)
O5—H5B⋯O2 0.81 (3) 1.87 (3) 2.675 (2) 172 (3)
N4—H4B⋯O2ii 0.88 (2) 2.52 (2) 3.078 (2) 122.6 (18)
N4—H4B⋯O6 0.88 (2) 2.52 (3) 3.350 (2) 158 (2)
N4—H4A⋯O4iii 0.86 (2) 2.27 (2) 3.091 (2) 161 (2)
N2—H2B⋯O3iv 0.83 (2) 2.14 (3) 2.963 (2) 169 (2)
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Squarate acts as a bridge between two or more metal atoms in mono- or polydentate coordination modes when acting as a ligand towards first row transition metal ions [Trombe et al., 2002; Milet et al., 2003]. It coordinates to Fe(II), Fe(III), NiII and Cu(II) complexes in a µ-1,3 fashion, giving binuclear [Bernardinelli et al., 1989; Lee et al., 1996] and chain structures [Solans et al., 1990; Yang et al.,2003], whereas the µ-1,2 coordination mode has been reported for binuclear and chain complexes of Cu(II) and Pd(II) [Castro et al., 1997; Crispini et al., 2000]. It is also observed that the squarate anion, with Cu(II) and NiII, acts as a tetramonodentate ligand and forms polynuclear compounds [Castro et al., 1995].

In our ongoing research on squaric acid, we have synthesized some mixed–ligand metal(II) complexes of squaric acid, and their structures have been reported [Uçar et al., 2006; Uçar et al. 2007;]. In these compounds, squaric acid behaves as a monodentate ligand [Bulut et al., 2004] or acts as both a monodentate and bidentate ligand, or has a µ-1,3 coordination, while in this study, it has µ-1,2 bis(monodentate) coordination between the metal ions.

The title compound consists of an apparently centrosymmetric binuclear [Ni2(aepy)4(H2O)2(C4O4)]2+ [aepy: 2(2-aminoethyl)pyridine] complex cation, one squarate counter anion (C4O4)2-and 0.25 water molecule. In the crystal structure one of the squarates adopts a bridging position between the metal atoms, coordinating via two of its O atoms in a µ-1,2 fashion, forming a dimeric metal unit, while the other squarate acts as a counter anion (Fig.1). The geometry about NiII ion centre is a slightly distorted octahedron, the six coordination sites being occupied by four N atoms from two chelating aepy ligands and two O atoms from squarate and aqua ligands. The observed Ni1–N, Ni1–O bond distances and N–Ni1–N, N–Ni1–O and O–Ni1–O bond angles are generally consistent with those observed in related NiII squarate complexes [Uçar, 2008; Kirchmaier et al., 2003].

The crystal packing is formed by intermolecular hydrogen bonding interactions (Fig. 2). The aqua ligands and amine hydrogen atoms link the complex cation to counter the squarate anion through hydrogen bonding interactions. The intradimer Ni1(II)···Ni1 (-x, y, -z + 1/2) distance is 7.1442 (7) Å.

Related literature top

For related literature, see: Bernardinelli et al. (1989); Bulut et al. (2004); Castro et al. (1995, 1997); Crispini et al. (2000); Kirchmaier et al. (2003); Lee et al. (1996); Milet et al. (2003); Solans et al. (1990); Spek (2003); Trombe et al. (2002); Uçar (2008); Uçar et al. (2006, 2007); Yang et al. (2003).

Experimental top

Squaric acid (0.57 g, 5 mmol), dissolved in 25 ml water was neutralized with NaOH (0.40 g, 10 mmol) and was added to a hot solution of the NiCl2.6H2O (1.19 g, 5 mmol) dissolved in 100 ml water. The mixture was refluxed at 353 K for 12 h and then cooled to room temperature. The blue crystals that formed were filtered and washed with water and alcohol and dried in vacuum. A solution of 2(2-aminoethyl)pyridine) (0.25 g, 2 mmol) in ethanol (50 ml) was added dropwise with stirring to a suspension of the NiSq.2H2O (0.207 g, 1 mmol) in water (100 ml). A few days later, well formed blue crystals were selected for X-ray studies.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—H=0.93 and 0.97 Å) and were allovwed to ride on the parent atom [Uiso(H)=1.2eq(C)]. The remaining H atoms were located in a difference map. At this stage, the maximum difference density of 1.31 e Å-3 indicated the presence of a possible atom site. A check of the solvent-accessible volume using PLATON (Spek, 2003) showed a total potential volume of 33.0 Å3. Attempts to refine this peak as a water O atom (O6) resulted in a partial occupancy of 0.12. For the final cycle of refinement the occupancy of O6 was fixed at 0.125. H atoms attached to O6 were not located.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : ORTEPIII (Burnett & Johnson, 1996) plot of the [Ni2(aepy)4(sq)(H2O)2].sq 0.25H2O. Non-H atoms are drawn with displacement ellipsoids at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x + 1/2, -y + 1.5, -z]
[Figure 2] Fig. 2. : Showing of intermolecular hydrogen bonding interactions (dashed lines) in the unitcell.
µ-Squarato-κ2O1:O2-bis{[2-(2-aminoethyl)pyridine- κ2N,N']aquanickel(II)} squarate 0.25-hydrate top
Crystal data top
[Ni2(C4O4)(C7H10N2)4(H2O)2]C4O4·0.25H2OF(000) = 1816
Mr = 870.16Dx = 1.484 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 24222 reflections
a = 28.037 (3) Åθ = 1.7–28.0°
b = 8.0409 (5) ŵ = 1.03 mm1
c = 17.7752 (16) ÅT = 297 K
β = 103.572 (7)°Prism, blue
V = 3895.3 (5) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
3809 independent reflections
Radiation source: fine-focus sealed tube3148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 3434
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.49, Tmax = 0.81l = 2121
12243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.9229P]
where P = (Fo2 + 2Fc2)/3
3809 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni2(C4O4)(C7H10N2)4(H2O)2]C4O4·0.25H2OV = 3895.3 (5) Å3
Mr = 870.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.037 (3) ŵ = 1.03 mm1
b = 8.0409 (5) ÅT = 297 K
c = 17.7752 (16) Å0.3 × 0.2 × 0.1 mm
β = 103.572 (7)°
Data collection top
Stoe IPDS-II
diffractometer
3809 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3148 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.81Rint = 0.042
12243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
3809 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.01456 (9)0.6924 (3)0.42515 (16)0.0615 (6)
H10.00780.66220.37320.074*
C20.02378 (11)0.7007 (4)0.4607 (2)0.0880 (9)
H20.05570.67900.43310.106*
C30.01433 (14)0.7411 (5)0.5371 (3)0.1052 (12)
H30.03960.74860.56270.126*
C40.03335 (14)0.7707 (4)0.5755 (2)0.0885 (10)
H40.04060.79520.62810.106*
C50.07099 (10)0.7643 (3)0.53672 (15)0.0568 (6)
C60.12298 (10)0.7973 (3)0.57849 (13)0.0590 (6)
H6A0.12530.78860.63370.071*
H6B0.13110.91090.56790.071*
C70.16091 (9)0.6827 (3)0.55784 (13)0.0535 (5)
H7A0.19050.68460.59900.064*
H7B0.14850.56970.55290.064*
C80.18856 (8)0.9557 (3)0.32778 (14)0.0528 (5)
H80.19191.00990.37490.063*
C90.21215 (9)1.0213 (3)0.27497 (17)0.0667 (7)
H90.23111.11690.28650.080*
C100.20735 (10)0.9436 (3)0.20518 (17)0.0685 (7)
H100.22230.98640.16790.082*
C110.17984 (9)0.8010 (3)0.19165 (14)0.0586 (6)
H110.17590.74620.14450.070*
C120.15786 (8)0.7380 (2)0.24758 (12)0.0445 (4)
C130.13096 (9)0.5757 (3)0.23578 (13)0.0539 (5)
H13A0.13950.51750.19290.065*
H13B0.09600.59780.22160.065*
C140.14211 (8)0.4629 (2)0.30683 (13)0.0498 (5)
H14A0.13440.34880.29080.060*
H14B0.17680.46860.33130.060*
C150.02527 (7)0.9053 (2)0.27139 (11)0.0361 (4)
C160.02560 (8)1.0864 (2)0.27195 (12)0.0452 (5)
C170.24949 (7)0.8704 (2)0.01973 (11)0.0375 (4)
C180.21239 (7)0.7408 (2)0.00476 (11)0.0375 (4)
N10.06135 (7)0.7253 (2)0.46111 (11)0.0472 (4)
N20.17263 (6)0.7340 (2)0.48476 (10)0.0404 (4)
N30.16111 (6)0.81826 (19)0.31494 (9)0.0396 (4)
N40.11369 (7)0.51155 (19)0.36278 (11)0.0407 (4)
O10.05537 (5)0.79065 (16)0.29572 (8)0.0449 (3)
O20.05610 (6)1.19590 (18)0.29910 (11)0.0663 (5)
O30.24837 (5)1.01589 (15)0.04408 (9)0.0487 (4)
O40.16716 (5)0.73117 (15)0.01038 (9)0.0470 (3)
O50.10943 (6)1.01843 (17)0.41638 (11)0.0479 (4)
O60.00000.4863 (13)0.25000.121 (6)0.25
Ni10.114036 (8)0.76294 (2)0.391260 (13)0.03314 (8)
H5A0.1284 (10)1.079 (3)0.4454 (16)0.062 (8)*
H5B0.0958 (10)1.073 (3)0.3792 (16)0.062 (8)*
H2A0.1897 (8)0.829 (3)0.4946 (13)0.050 (6)*
H4B0.0829 (9)0.485 (3)0.3435 (14)0.052 (6)*
H4A0.1238 (8)0.454 (3)0.4042 (13)0.043 (6)*
H2B0.1917 (9)0.666 (3)0.4725 (14)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (13)0.0681 (13)0.0736 (17)0.0058 (11)0.0174 (12)0.0051 (12)
C20.0501 (17)0.107 (2)0.115 (3)0.0029 (15)0.0356 (18)0.005 (2)
C30.077 (2)0.125 (3)0.135 (3)0.0032 (19)0.069 (2)0.012 (2)
C40.096 (2)0.102 (2)0.085 (2)0.0014 (18)0.0552 (19)0.0172 (17)
C50.0688 (15)0.0494 (11)0.0581 (14)0.0021 (10)0.0271 (12)0.0041 (10)
C60.0784 (18)0.0595 (12)0.0405 (12)0.0028 (12)0.0168 (12)0.0056 (10)
C70.0616 (15)0.0523 (11)0.0414 (12)0.0008 (10)0.0017 (10)0.0058 (9)
C80.0499 (12)0.0523 (11)0.0573 (14)0.0113 (10)0.0150 (10)0.0018 (10)
C90.0566 (14)0.0622 (13)0.086 (2)0.0107 (11)0.0271 (14)0.0122 (13)
C100.0680 (16)0.0727 (15)0.0763 (18)0.0119 (13)0.0403 (14)0.0257 (14)
C110.0643 (15)0.0691 (14)0.0469 (13)0.0177 (12)0.0221 (11)0.0091 (11)
C120.0422 (11)0.0507 (10)0.0412 (10)0.0092 (8)0.0109 (9)0.0028 (9)
C130.0606 (14)0.0580 (12)0.0442 (12)0.0021 (10)0.0148 (10)0.0159 (10)
C140.0523 (12)0.0358 (9)0.0623 (14)0.0000 (8)0.0152 (10)0.0090 (9)
C150.0335 (10)0.0379 (9)0.0354 (10)0.0017 (7)0.0048 (8)0.0008 (7)
C160.0482 (12)0.0399 (9)0.0420 (11)0.0030 (8)0.0004 (9)0.0023 (8)
C170.0379 (10)0.0355 (8)0.0371 (10)0.0011 (7)0.0046 (9)0.0034 (7)
C180.0391 (10)0.0341 (8)0.0368 (9)0.0013 (7)0.0036 (8)0.0045 (7)
N10.0442 (10)0.0479 (9)0.0529 (10)0.0028 (7)0.0181 (8)0.0007 (8)
N20.0373 (9)0.0374 (8)0.0429 (9)0.0007 (7)0.0023 (7)0.0019 (7)
N30.0379 (9)0.0415 (8)0.0390 (9)0.0037 (6)0.0085 (7)0.0004 (7)
N40.0386 (10)0.0356 (8)0.0447 (10)0.0031 (7)0.0033 (8)0.0010 (7)
O10.0379 (7)0.0416 (7)0.0484 (8)0.0058 (6)0.0039 (6)0.0029 (6)
O20.0651 (11)0.0435 (7)0.0744 (12)0.0173 (7)0.0155 (9)0.0054 (7)
O30.0471 (8)0.0340 (6)0.0627 (10)0.0011 (6)0.0083 (7)0.0049 (6)
O40.0369 (7)0.0426 (7)0.0590 (9)0.0006 (6)0.0061 (7)0.0018 (6)
O50.0455 (8)0.0366 (7)0.0543 (9)0.0007 (6)0.0032 (7)0.0056 (7)
O60.081 (8)0.056 (6)0.196 (16)0.0000.027 (9)0.000
Ni10.03027 (13)0.03237 (12)0.03530 (13)0.00067 (9)0.00469 (9)0.00121 (9)
Geometric parameters (Å, º) top
C1—N11.344 (3)C13—C141.527 (3)
C1—C21.371 (4)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.361 (5)C14—N41.466 (3)
C2—H20.9300C14—H14A0.9700
C3—C41.371 (5)C14—H14B0.9700
C3—H30.9300C15—O11.256 (2)
C4—C51.391 (4)C15—C15i1.442 (4)
C4—H40.9300C15—C161.456 (3)
C5—N11.344 (3)C16—O21.243 (2)
C5—C61.496 (4)C16—C16i1.464 (4)
C6—C71.516 (3)C17—O31.250 (2)
C6—H6A0.9700C17—C181.465 (2)
C6—H6B0.9700C17—C18ii1.465 (3)
C7—N21.471 (3)C18—O41.251 (2)
C7—H7A0.9700C18—C17ii1.465 (3)
C7—H7B0.9700N1—Ni12.1624 (17)
C8—N31.336 (3)N2—Ni12.0576 (17)
C8—C91.374 (3)N2—H2A0.90 (2)
C8—H80.9300N2—H2B0.83 (2)
C9—C101.367 (4)N3—Ni12.1495 (16)
C9—H90.9300N4—Ni12.0833 (15)
C10—C111.372 (4)N4—H4B0.88 (2)
C10—H100.9300N4—H4A0.86 (2)
C11—C121.383 (3)O1—Ni12.0803 (13)
C11—H110.9300O5—Ni12.1126 (14)
C12—N31.344 (3)O5—H5A0.81 (3)
C12—C131.497 (3)O5—H5B0.81 (3)
N1—C1—C2123.7 (3)C13—C14—H14B109.4
N1—C1—H1118.2H14A—C14—H14B108.0
C2—C1—H1118.2O1—C15—C15i132.78 (10)
C3—C2—C1118.8 (3)O1—C15—C16136.79 (18)
C3—C2—H2120.6C15i—C15—C1690.42 (11)
C1—C2—H2120.6O2—C16—C15135.5 (2)
C2—C3—C4118.5 (3)O2—C16—C16i134.90 (12)
C2—C3—H3120.8C15—C16—C16i89.58 (11)
C4—C3—H3120.8O3—C17—C18134.03 (18)
C3—C4—C5120.7 (3)O3—C17—C18ii135.44 (18)
C3—C4—H4119.6C18—C17—C18ii90.52 (15)
C5—C4—H4119.6O4—C18—C17ii135.81 (17)
N1—C5—C4120.4 (3)O4—C18—C17134.71 (17)
N1—C5—C6118.8 (2)C17ii—C18—C1789.48 (15)
C4—C5—C6120.8 (3)C1—N1—C5117.8 (2)
C5—C6—C7115.41 (19)C1—N1—Ni1118.46 (16)
C5—C6—H6A108.4C5—N1—Ni1122.50 (15)
C7—C6—H6A108.4C7—N2—Ni1116.32 (14)
C5—C6—H6B108.4C7—N2—H2A106.6 (15)
C7—C6—H6B108.4Ni1—N2—H2A110.4 (14)
H6A—C6—H6B107.5C7—N2—H2B109.6 (17)
N2—C7—C6110.98 (18)Ni1—N2—H2B107.7 (17)
N2—C7—H7A109.4H2A—N2—H2B106 (2)
C6—C7—H7A109.4C8—N3—C12117.74 (18)
N2—C7—H7B109.4C8—N3—Ni1118.55 (14)
C6—C7—H7B109.4C12—N3—Ni1122.65 (13)
H7A—C7—H7B108.0C14—N4—Ni1116.85 (12)
N3—C8—C9123.5 (2)C14—N4—H4B108.3 (15)
N3—C8—H8118.3Ni1—N4—H4B106.0 (14)
C9—C8—H8118.3C14—N4—H4A108.5 (14)
C10—C9—C8119.0 (2)Ni1—N4—H4A109.3 (14)
C10—C9—H9120.5H4B—N4—H4A108 (2)
C8—C9—H9120.5C15—O1—Ni1134.29 (12)
C9—C10—C11118.2 (2)Ni1—O5—H5A131.0 (18)
C9—C10—H10120.9Ni1—O5—H5B113.3 (18)
C11—C10—H10120.9H5A—O5—H5B108 (3)
C10—C11—C12120.5 (2)N2—Ni1—O1179.19 (7)
C10—C11—H11119.8N2—Ni1—N492.52 (7)
C12—C11—H11119.8O1—Ni1—N487.01 (6)
N3—C12—C11121.1 (2)N2—Ni1—O590.91 (7)
N3—C12—C13118.03 (18)O1—Ni1—O589.58 (6)
C11—C12—C13120.9 (2)N4—Ni1—O5176.22 (7)
C12—C13—C14113.80 (18)N2—Ni1—N392.36 (7)
C12—C13—H13A108.8O1—Ni1—N386.99 (6)
C14—C13—H13A108.8N4—Ni1—N390.91 (7)
C12—C13—H13B108.8O5—Ni1—N390.53 (6)
C14—C13—H13B108.8N2—Ni1—N192.52 (7)
H13A—C13—H13B107.7O1—Ni1—N188.16 (7)
N4—C14—C13111.35 (17)N4—Ni1—N192.23 (7)
N4—C14—H14A109.4O5—Ni1—N186.03 (6)
C13—C14—H14A109.4N3—Ni1—N1174.08 (6)
N4—C14—H14B109.4
N1—C1—C2—C31.4 (5)C13—C12—N3—C8174.5 (2)
C1—C2—C3—C40.5 (5)C11—C12—N3—Ni1164.32 (16)
C2—C3—C4—C51.9 (5)C13—C12—N3—Ni117.4 (3)
C3—C4—C5—N11.5 (4)C13—C14—N4—Ni148.4 (2)
C3—C4—C5—C6179.7 (3)C15i—C15—O1—Ni1148.2 (2)
N1—C5—C6—C740.5 (3)C16—C15—O1—Ni133.2 (4)
C4—C5—C6—C7138.4 (2)C7—N2—Ni1—N485.75 (15)
C5—C6—C7—N279.8 (3)C7—N2—Ni1—O592.66 (15)
N3—C8—C9—C100.4 (4)C7—N2—Ni1—N3176.77 (14)
C8—C9—C10—C111.3 (4)C7—N2—Ni1—N16.59 (15)
C9—C10—C11—C120.3 (4)C15—O1—Ni1—N4168.45 (19)
C10—C11—C12—N32.9 (3)C15—O1—Ni1—O59.92 (19)
C10—C11—C12—C13175.3 (2)C15—O1—Ni1—N3100.47 (19)
N3—C12—C13—C1442.1 (3)C15—O1—Ni1—N176.12 (19)
C11—C12—C13—C14136.1 (2)C14—N4—Ni1—N292.56 (16)
C12—C13—C14—N480.6 (2)C14—N4—Ni1—O186.78 (16)
O1—C15—C16—O22.4 (5)C14—N4—Ni1—N30.16 (16)
C15i—C15—C16—O2178.7 (3)C14—N4—Ni1—N1174.82 (16)
O1—C15—C16—C16i178.5 (2)C8—N3—Ni1—N264.13 (16)
C15i—C15—C16—C16i0.4 (2)C12—N3—Ni1—N2127.95 (16)
O3—C17—C18—O40.7 (4)C8—N3—Ni1—O1116.36 (16)
C18ii—C17—C18—O4179.9 (3)C12—N3—Ni1—O151.57 (15)
O3—C17—C18—C17ii179.4 (3)C8—N3—Ni1—N4156.69 (16)
C18ii—C17—C18—C17ii0.0C12—N3—Ni1—N435.39 (16)
C2—C1—N1—C51.8 (4)C8—N3—Ni1—O526.81 (16)
C2—C1—N1—Ni1165.8 (2)C12—N3—Ni1—O5141.12 (16)
C4—C5—N1—C10.4 (3)C1—N1—Ni1—N2164.45 (17)
C6—C5—N1—C1178.5 (2)C5—N1—Ni1—N228.56 (17)
C4—C5—N1—Ni1166.70 (19)C1—N1—Ni1—O115.11 (16)
C6—C5—N1—Ni114.4 (3)C5—N1—Ni1—O1151.88 (17)
C6—C7—N2—Ni152.9 (2)C1—N1—Ni1—N471.83 (17)
C9—C8—N3—C122.1 (3)C5—N1—Ni1—N4121.19 (17)
C9—C8—N3—Ni1166.43 (19)C1—N1—Ni1—O5104.81 (17)
C11—C12—N3—C83.7 (3)C5—N1—Ni1—O562.18 (17)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.81 (3)1.93 (3)2.716 (2)163 (3)
N2—H2A···O3iii0.90 (2)2.09 (2)2.935 (2)157 (2)
O5—H5B···O20.81 (3)1.87 (3)2.675 (2)172 (3)
N4—H4B···O2iv0.88 (2)2.52 (2)3.078 (2)122.6 (18)
N4—H4B···O60.88 (2)2.52 (3)3.350 (2)158 (2)
N4—H4A···O4v0.86 (2)2.27 (2)3.091 (2)161 (2)
N2—H2B···O3vi0.83 (2)2.14 (3)2.963 (2)169 (2)
Symmetry codes: (iii) x, y+2, z+1/2; (iv) x, y1, z; (v) x, y+1, z+1/2; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C4O4)(C7H10N2)4(H2O)2]C4O4·0.25H2O
Mr870.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)28.037 (3), 8.0409 (5), 17.7752 (16)
β (°) 103.572 (7)
V3)3895.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.49, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
12243, 3809, 3148
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.03
No. of reflections3809
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.81 (3)1.93 (3)2.716 (2)163 (3)
N2—H2A···O3i0.90 (2)2.09 (2)2.935 (2)157 (2)
O5—H5B···O20.81 (3)1.87 (3)2.675 (2)172 (3)
N4—H4B···O2ii0.88 (2)2.52 (2)3.078 (2)122.6 (18)
N4—H4B···O60.88 (2)2.52 (3)3.350 (2)158 (2)
N4—H4A···O4iii0.86 (2)2.27 (2)3.091 (2)161 (2)
N2—H2B···O3iv0.83 (2)2.14 (3)2.963 (2)169 (2)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

References

First citationBernardinelli, G., Deguenon, D., Soules, R. & Castan, P. (1989). Can. J. Chem. 67, 1158–1165.  CrossRef CAS Web of Science Google Scholar
First citationBulut, A., Uçar, İ., Yeşilel, O. Z., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. C60, m526–m528.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCastro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997). J. Chem. Soc. Dalton Trans. pp. 811–817.  CSD CrossRef Web of Science Google Scholar
First citationCastro, I., Sletten, J., Calatayud, M. L., Julve, M., Cano, J., Lloret, F. & Caneschi, A. (1995). Inorg. Chem. 34, 4903–4909.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrispini, A., Pucci, D., Aiello, I. & Ghedini, M. (2000). Inorg. Chim. Acta, 304, 219–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKirchmaier, R., Altin, E. & Lentz, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 1–2.  Google Scholar
First citationLee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966–975.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMilet, P., Sabadie, L., Galy, J. & Trombe, J. C. (2003). J. Solid State Chem. 173, 49–53.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolans, X., Aguilo, M., Gleizes, A., Faus, J., Julve, M. & Verdeguer, M. (1990). Inorg. Chem. 29, 775–784.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrombe, J. C., Sabadie, L. & Milet, P. (2002). Solid State Sci. 4, 1209–1212.  Web of Science CSD CrossRef CAS Google Scholar
First citationUçar, I. (2008). J. Coord. Chem. 61, 2590–2600.  Google Scholar
First citationUçar, I., Bulut, A., Büyükgüngör, O. & Karadaĝ, A. (2006). Transition Met. Chem. 31, 1057–1058.  Google Scholar
First citationUçar, I., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007). J. Phys. Chem. Solids, 68, 45–52.  Google Scholar
First citationYang, C. H., Chuo, C. M., Lee, G. H. & Wang, C. C. (2003). Inorg. Chem. Commun. 6, 135–140.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1344-m1345
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds