

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,7,9,10-Tetrahydro-16,22-ethanooxyethano-5,8,11,19-tetraoxa-16,22diazadibenzo[h,g]cyclooctadecine-17,21-dione: a benzylannelated macrobicyclic diamide

Gary L. N. Smith,^a* Yang Lei,^b Douglas R. Powell^b and Richard W. Tavlor^b

^aDepartment of Chemistry, Point Loma Nazarene University, 3900 Lomaland Dr., Rohr Science 305E, San Diego, CA 92106, USA, and ^bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA

Correspondence e-mail: garysmith@pointloma.edu

Received 21 August 2008; accepted 18 September 2008

Key indicators: single-crystal X-ray study; T = 87 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.085; data-to-parameter ratio = 14.6.

The macrobicyclic title compound, C₂₄H₂₈N₂O₇, has two tertiary diamide bridgehead atoms and is composed of a 12membered ring (N₂O₂ donor set) and two 18-membered rings (N₂O₄ donor sets). The solid-state structure shows that each of the amide groups is not coplanar with the adjacent benzene ring and NMR studies indicate that this conformational relationship persists in solution.

Related literature

For general background, see: Dietrich et al. (1969); Tummler et al. (1977); Niklas et al. (2004); Schickaneder et al. (2006); Lehn (1973). For related structures, see: Tarnowska et al. (2004); Smith et al. (2007). For the synthesis, see: Dietrich et al. (1973). For NMR studies, see: Smith et al. (2007); Silverstein & Webster (1998).

 $M_r = 456.48$

Experimental

Crystal data C24H28N2O7

a = 15.125 (2) Å b = 9.3901 (14) Åc = 16.446 (2) Å $\beta = 108.416 \ (5)^{\circ}$ V = 2216.1 (5) Å³

Monoclinic, $P2_1/n$

Data collection

Bruker APEX diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 2007)	
$T_{\min} = 0.940, \ T_{\max} = 0.950$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.032 \\ wR(F^2) = 0.085 \end{array}$ 298 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 4352 reflections

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR00-030) and the National Institutes of Health (grant GM66206). The authors thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2117).

References

- Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA
- Dietrich, B., Lehn, J. M. & Sauvage, J. P. (1969). Tetrahedron Lett. 10, 2889-2892
- Dietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629-1645.
- Lehn, J. M. (1973). Struct. Bond., 16, 1-69.
- Niklas, N., Heinemann, F. W., Hampel, F., Clark, T. & Alsfasser, R. (2004). Inorg. Chem. 43, 4663-4673.
- Schickaneder, C., Heinemann, F. W. & Alsfasser, R. (2006). Eur. J. Inorg. Chem. 12, 2357-2363.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silverstein, R. M. & Webster, F. X. (1998). Spectrometric Identification of Organic Compounds, 6th ed. New York: John Wiley & Sons Inc.
- Smith, G. L. N., Alguindigue, S. S., Khan, M. A., Powell, D. R. & Taylor, R. W. (2006). Magn. Reson. Chem. 44, 901-904.
- Smith, G. L. N., Powell, D. R., Khan, M. A. & Taylor, R. W. (2007). Acta Cryst. C63, o378-o381.
- Smith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, 01253-01255.
- Tarnowska, A., Jarosz, M. & Jurczak, J. (2004). Synthesis, 3, 369-372.
- Tummler, B., Maass, G., Weber, E., Wehner, W. & Vogtle, F. (1977). J. Am. Chem. Soc. 99, 4683-4690.

Z = 4Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 87 (2) K

 $R_{\rm int} = 0.020$

 $0.58 \times 0.56 \times 0.52 \text{ mm}$

23465 measured reflections

4352 independent reflections

4142 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2008). E64, o2003 [doi:10.1107/S1600536808030067]

6,7,9,10-Tetrahydro-16,22-ethanooxyethano-5,8,11,19-tetraoxa-16,22-diazadibenzo[*h*,*q*]cyclooctadecine-17,21-dione: a benzylannelated macrobicyclic diamide

Gary L. N. Smith, Yang Lei, Douglas R. Powell and Richard W. Taylor

S1. Comment

Cryptands (Dietrich *et al.*, 1969; Lehn, 1973) and tertiary amides (Tummler *et al.*, 1977; Niklas *et al.*, 2004; Schickaneder *et al.*, 2006) are of interest as hosts for cationic guests. The title compound, (**I**), was isolated during the synthesis of the corresponding benzoannelated cryptand. A related macrobicyclic diamide without benzene rings has been reported, but the carbonyl groups are on the bridge containing the three ether O atoms (Tarnowska *et al.*, 2004).

Fig. 1 shows that (I) consists of a 12-membered ring (N1, O4, N2, O6) and two 18-membered rings (N1, O1, O2, O3, N2, (O4 or O6)). With respect to the molecular cavity formed by these rings, donor atoms O1, O2, O3, O6, N1, and N2 have an endodentate orientation while O4 and carbonyl oxygen atoms O5 and O7 are exodentate. The donor atoms shared by the 18-membered rings (N1, O1, O2, O3, N2) form a plane (average deviation = 0.0244 Å) that is almost perpendicular (dihedral angle = 92.8 (2)°) to the plane defined by the donor atoms from the 12-membered ring (N1, O4, N2, O6; average deviation = 0.0995 Å). The planar amide groups (N1, C15, O5, C16; average deviation = 0.0014 Å), (N2, C18, O7, C17; average deviation = 0.0060 Å) form dihedral angles of 86.4 (2) and 99.0 (2)° with benzene rings 1 and 2, respectively.

In this conformation the distances between protons H2 and H20 and the carbonyl O atoms (O5 and O7) are 3.70Å and 3.80 Å, respectively. In the solid-state structure of the analogous monocyclic diamide (*i.e.*, donor atoms N1, O1, O2, O3, N2, O6), each amide group and adjacent benzene ring are nearly co-planar (dihedral angles = $14.3 (2)^{\circ}$, $17.1 (2)^{\circ}$) and the distances between protons analogous to H2 and H20 to the adjacent carbonyl O atoms are between 2.29Å and 2.40Å (Smith *et al.*, 2006). In CDCl₃, the ¹H chemical shift values of the aromatic protons of (I) lie in the expected range from 6.96 - 7.25 p.p.m. (Silverstein & Webster, 1998); however, for the corresponding monocyclic diamide, the *ortho* protons are shifted downfield to 8.22 p.p.m. due to deshielding by the adjacent carbonyl O atoms. The X-ray structure and NMR chemical shift data for (I) indicate that the presence of the ethanooxyethano bridging strand prevents the amide and benzene groups from adopting a coplanar conformation both in the solid state and in solution.

S2. Experimental

Compound (I) was obtained from the reaction of the monocyclic diamine (Smith *et al.*, 2007) (3.8 m*M*) in CH₂Cl₂ containing pyridine (15 m*M*) and the 2,2'-oxydiacetyl chloride solution (4.3 m*M*) in CH₂Cl₂ under high dilution conditions (Dietrich *et al.*, 1973). The crude diamide was purified by flash column chromatography on silica gel using CH₂Cl₂ and MeOH (0–10%) as the eluent. Spectroscopic Analysis: ¹H-NMR (CDCl₃, 300 MHz) δ 3.66, 3.83 (m, 4H, NCH₂CH₂), 3,71, 4.44 (m, 4H, NCH₂), 3.85,3.96 (m, 4H, ArOCH₂CH₂), 4.17 (m, 4H, ArOCH₂), 4.39, 4.52 (m,4H, C(?O)CH₂), 6.96 - 7.25 (m, 8H, Ar); ESI-MS: m/z = 457.3 (*M* + H⁺) and 479.3 (*M* + Na⁺). Crystals suitable for X-ray

crystallography were grown by vapor diffusion of MeOH into a solution of (I) in CH₂Cl₂.

S3. Refinement

H atoms were positioned goemetrically and refined using a riding model with C-H = 0.95Å for aromatic carbons and 0.99Å for methylene carbons.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

6,7,9,10-Tetrahydro-16,22-ethanooxyethano-5,8,11,19-tetraoxa-16,22diazadibenzo[h,q]cyclooctadecine-17,21-dione

Crystal data

 $C_{24}H_{28}N_2O_7$ $M_r = 456.48$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.125 (2) Å *b* = 9.3901 (14) Å c = 16.446 (2) Å $\beta = 108.416 (5)^{\circ}$ V = 2216.1 (5) Å³ Z = 4

Data collection

Bruker APEX	23465 measured reflect
diffractometer	4352 independent refle
Radiation source: fine-focus sealed tube	4142 reflections with
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 8.366 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.2$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Sheldrick, 2007)	$l = -20 \longrightarrow 20$
$T_{\min} = 0.940, \ T_{\max} = 0.950$	

F(000) = 968 $D_{\rm x} = 1.368 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 7313 reflections $\theta = 2.6 - 28.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 87 KBlock, colorless $0.58 \times 0.56 \times 0.52 \text{ mm}$

ctions ections $I > 2\sigma(I)$ 0

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.03	H-atom parameters constrained
4352 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 0.7509P]$
298 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.64508 (5)	0.74748 (8)	0.62300 (5)	0.02150 (17)
O2	0.59736 (5)	0.89145 (8)	0.45462 (5)	0.02121 (17)
O3	0.64605 (5)	0.75428 (8)	0.31729 (5)	0.02270 (17)
O4	0.57879 (5)	0.34635 (8)	0.45980 (5)	0.02311 (17)
O5	0.84403 (5)	0.62786 (8)	0.72596 (5)	0.02390 (17)
O6	0.81395 (5)	0.53553 (8)	0.52618 (5)	0.02129 (17)
07	0.85667 (5)	0.62395 (8)	0.34044 (5)	0.02538 (18)
N1	0.72291 (6)	0.48401 (9)	0.65874 (5)	0.01944 (19)
N2	0.72987 (6)	0.49648 (9)	0.34218 (6)	0.02010 (19)
C1	0.66837 (7)	0.54166 (11)	0.70866 (6)	0.0198 (2)
C2	0.65342 (8)	0.46203 (12)	0.77389 (7)	0.0240 (2)
H2	0.6820	0.3713	0.7877	0.029*
C3	0.59674 (8)	0.51404 (12)	0.81940 (7)	0.0265 (2)
Н3	0.5869	0.4593	0.8644	0.032*
C4	0.55497 (8)	0.64576 (12)	0.79873 (7)	0.0249 (2)
H4	0.5157	0.6810	0.8292	0.030*
C5	0.56994 (7)	0.72721 (12)	0.73368 (7)	0.0224 (2)
Н5	0.5413	0.8180	0.7203	0.027*
C6	0.62683 (7)	0.67631 (11)	0.68798 (6)	0.0193 (2)
C7	0.60204 (8)	0.88484 (11)	0.60179 (7)	0.0219 (2)
H7A	0.6167	0.9449	0.6539	0.026*
H7B	0.5335	0.8740	0.5785	0.026*
C8	0.63801 (8)	0.95395 (11)	0.53658 (7)	0.0232 (2)
H8A	0.6234	1.0570	0.5336	0.028*
H8B	0.7066	0.9433	0.5540	0.028*

C9	0.63046 (8)	0.96135 (11)	0.39353 (7)	0.0228 (2)
H9A	0.6994	0.9624	0.4140	0.027*
H9B	0.6084	1.0612	0.3869	0.027*
C10	0.59670 (8)	0.88731 (11)	0.30861 (7)	0.0233 (2)
H10A	0.5288	0.8700	0.2924	0.028*
H10B	0.6092	0.9465	0.2637	0.028*
C11	0.68585 (7)	0.35454 (11)	0.60899 (7)	0.0217 (2)
H11A	0.6858	0.2759	0.6491	0.026*
H11B	0.7275	0.3269	0.5758	0.026*
C12	0.58634 (7)	0.37445 (12)	0.54701 (7)	0.0224 (2)
H12A	0.5437	0.3100	0.5644	0.027*
H12B	0.5660	0.4735	0.5517	0.027*
C13	0.61408 (7)	0.45732 (11)	0.41885 (7)	0.0219 (2)
H13A	0.6441	0.5322	0.4609	0.026*
H13B	0.5626	0.5012	0.3726	0.026*
C14	0.68495 (7)	0.39065 (11)	0.38188 (7)	0.0219 (2)
H14A	0.7333	0.3411	0.4282	0.026*
H14B	0.6533	0.3187	0.3384	0.026*
C15	0.80862 (7)	0.53954 (11)	0.67021 (7)	0.0200 (2)
C16	0.86233 (7)	0.49116 (12)	0.61103 (7)	0.0233 (2)
H16A	0.9256	0.5330	0.6299	0.028*
H16B	0.8685	0.3862	0.6131	0.028*
C17	0.86817 (7)	0.50959 (12)	0.47159 (7)	0.0235 (2)
H17A	0.8851	0.4074	0.4745	0.028*
H17B	0.9266	0.5654	0.4919	0.028*
C18	0.81667 (7)	0.54926 (11)	0.37915 (7)	0.0206 (2)
C19	0.67883 (7)	0.54321 (11)	0.25679 (7)	0.0203 (2)
C20	0.67082 (7)	0.45530 (12)	0.18772 (7)	0.0241 (2)
H20	0.6996	0.3642	0.1965	0.029*
C21	0.62088 (8)	0.49929 (13)	0.10519 (7)	0.0270(2)
H21	0.6153	0.4385	0.0576	0.032*
C22	0.57953 (8)	0.63187 (13)	0.09301 (7)	0.0262 (2)
H22	0.5462	0.6627	0.0366	0.031*
C23	0.58607 (7)	0.72109 (12)	0.16232 (7)	0.0243 (2)
H23	0.5569	0.8119	0.1531	0.029*
C24	0.63543 (7)	0.67709 (11)	0.24507 (7)	0.0207 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0234 (4)	0.0199 (4)	0.0218 (4)	0.0037 (3)	0.0079 (3)	0.0030 (3)
O2	0.0234 (4)	0.0210 (4)	0.0195 (4)	-0.0021 (3)	0.0071 (3)	-0.0003 (3)
O3	0.0257 (4)	0.0211 (4)	0.0209 (4)	0.0051 (3)	0.0067 (3)	0.0006 (3)
O4	0.0239 (4)	0.0256 (4)	0.0195 (4)	-0.0087 (3)	0.0064 (3)	-0.0022 (3)
O5	0.0218 (4)	0.0226 (4)	0.0245 (4)	-0.0028 (3)	0.0034 (3)	-0.0016 (3)
06	0.0177 (3)	0.0262 (4)	0.0196 (4)	0.0040 (3)	0.0055 (3)	0.0019 (3)
O7	0.0231 (4)	0.0266 (4)	0.0282 (4)	-0.0026 (3)	0.0105 (3)	0.0011 (3)
N1	0.0182 (4)	0.0184 (4)	0.0203 (4)	-0.0004 (3)	0.0040 (3)	-0.0012 (3)

supporting information

N2	0.0188 (4)	0.0201 (4)	0.0217 (4)	0.0006 (3)	0.0068 (4)	0.0016 (3)
C1	0.0174 (5)	0.0209 (5)	0.0191 (5)	-0.0032 (4)	0.0030 (4)	-0.0029 (4)
C2	0.0240 (5)	0.0215 (5)	0.0241 (5)	-0.0041 (4)	0.0043 (4)	0.0005 (4)
C3	0.0278 (6)	0.0297 (6)	0.0225 (5)	-0.0089 (5)	0.0086 (4)	0.0004 (4)
C4	0.0210 (5)	0.0315 (6)	0.0229 (5)	-0.0066 (4)	0.0078 (4)	-0.0069 (4)
C5	0.0198 (5)	0.0239 (5)	0.0217 (5)	-0.0005 (4)	0.0037 (4)	-0.0035 (4)
C6	0.0171 (5)	0.0216 (5)	0.0170 (5)	-0.0034 (4)	0.0023 (4)	-0.0015 (4)
C7	0.0250 (5)	0.0183 (5)	0.0207 (5)	0.0037 (4)	0.0047 (4)	-0.0008 (4)
C8	0.0261 (5)	0.0186 (5)	0.0221 (5)	-0.0018 (4)	0.0035 (4)	-0.0014 (4)
C9	0.0248 (5)	0.0195 (5)	0.0271 (6)	0.0012 (4)	0.0127 (4)	0.0026 (4)
C10	0.0248 (5)	0.0221 (5)	0.0246 (5)	0.0062 (4)	0.0101 (4)	0.0043 (4)
C11	0.0231 (5)	0.0181 (5)	0.0220 (5)	-0.0001 (4)	0.0043 (4)	-0.0021 (4)
C12	0.0204 (5)	0.0266 (5)	0.0201 (5)	-0.0034 (4)	0.0062 (4)	-0.0018 (4)
C13	0.0191 (5)	0.0224 (5)	0.0234 (5)	-0.0018 (4)	0.0057 (4)	0.0022 (4)
C14	0.0220 (5)	0.0189 (5)	0.0246 (5)	-0.0016 (4)	0.0071 (4)	0.0013 (4)
C15	0.0186 (5)	0.0191 (5)	0.0196 (5)	0.0021 (4)	0.0022 (4)	0.0041 (4)
C16	0.0174 (5)	0.0291 (6)	0.0210 (5)	0.0028 (4)	0.0026 (4)	0.0025 (4)
C17	0.0179 (5)	0.0282 (6)	0.0245 (5)	0.0034 (4)	0.0070 (4)	0.0001 (4)
C18	0.0194 (5)	0.0193 (5)	0.0245 (5)	0.0024 (4)	0.0087 (4)	-0.0015 (4)
C19	0.0161 (5)	0.0233 (5)	0.0221 (5)	-0.0024 (4)	0.0068 (4)	0.0011 (4)
C20	0.0200 (5)	0.0246 (5)	0.0291 (6)	-0.0017 (4)	0.0098 (4)	-0.0033 (4)
C21	0.0240 (5)	0.0335 (6)	0.0244 (5)	-0.0070 (5)	0.0090 (4)	-0.0072 (5)
C22	0.0224 (5)	0.0350 (6)	0.0202 (5)	-0.0047 (5)	0.0052 (4)	0.0018 (4)
C23	0.0217 (5)	0.0263 (5)	0.0251 (5)	0.0003 (4)	0.0076 (4)	0.0033 (4)
C24	0.0182 (5)	0.0236 (5)	0.0218 (5)	-0.0023 (4)	0.0085 (4)	-0.0003 (4)

Geometric parameters (Å, °)

01—C6	1.3606 (13)	C8—H8B	0.9900
O1—C7	1.4373 (12)	C9—C10	1.4979 (15)
O2—C9	1.4173 (12)	С9—Н9А	0.9900
O2—C8	1.4197 (12)	C9—H9B	0.9900
O3—C24	1.3570 (13)	C10—H10A	0.9900
O3—C10	1.4390 (12)	C10—H10B	0.9900
O4—C12	1.4270 (12)	C11—C12	1.5395 (14)
O4—C13	1.4323 (13)	C11—H11A	0.9900
O5—C15	1.2268 (13)	C11—H11B	0.9900
O6—C17	1.4151 (12)	C12—H12A	0.9900
O6—C16	1.4181 (12)	C12—H12B	0.9900
O7—C18	1.2274 (13)	C13—C14	1.5238 (15)
N1-C15	1.3540 (14)	C13—H13A	0.9900
N1—C1	1.4407 (13)	C13—H13B	0.9900
N1-C11	1.4738 (13)	C14—H14A	0.9900
N2-C18	1.3544 (14)	C14—H14B	0.9900
N2-C19	1.4408 (13)	C15—C16	1.5211 (15)
N2-C14	1.4683 (13)	C16—H16A	0.9900
C1—C2	1.3835 (15)	C16—H16B	0.9900
C1—C6	1.4050 (15)	C17—C18	1.5195 (15)

C2—C3	1.3925 (16)	C17—H17A	0.9900
C2—H2	0.9500	С17—Н17В	0.9900
C3—C4	1.3815 (17)	C19—C20	1.3782 (15)
С3—Н3	0.9500	C19—C24	1.4030 (15)
C4—C5	1.3906 (16)	C20—C21	1.3914 (16)
C4—H4	0.9500	C20—H20	0.9500
C5—C6	1,3937 (15)	C21—C22	1.3792 (17)
C5—H5	0.9500	C21—H21	0.9500
C7—C8	1 4953 (15)	C^{22} C^{23}	1 3927 (16)
C7—H7A	0.9900	C22_H22	0.9500
C7_H7B	0.9900	C_{23} C_{24}	1 3923 (15)
C8—H8A	0.9900	C23_H23	0.9500
Co—110A	0.9900	0.25-1125	0.9500
C6—O1—C7	116.27 (8)	C12—C11—H11B	109.0
C9—O2—C8	109.73 (8)	H11A—C11—H11B	107.8
C24—O3—C10	117.56 (8)	O4—C12—C11	113.21 (9)
$C_{12} - C_{13}$	114 50 (8)	04-C12-H12A	108.9
C17 - C16 - C16	110 57 (8)	C11—C12—H12A	108.9
C15 - N1 - C1	118 12 (9)	04-C12-H12B	108.9
C15 - N1 - C11	125.07 (9)	C11—C12—H12B	108.9
C1-N1-C11	116 13 (8)	H12A— $C12$ — $H12B$	107.7
$C18 - N^2 - C19$	118 10 (9)	04-C13-C14	107.60 (8)
C18 N2 C14	124 55 (9)	04-C13-H13A	110.2
C19 N2 C14	117 31 (8)	C14 $C13$ $H13A$	110.2
C_{2} C_{1} C_{6}	120.26 (10)	04-C13-H13B	110.2
$C_2 = C_1 = C_0$	120.20(10) 120.14(10)	C_{14} C_{13} H_{13B}	110.2
C_{2} C_{1} N_{1}	120.14(10) 110.53(0)	$H_{12A} = C_{12} = H_{12B}$	10.2
$C_1 = C_2 = C_3$	119.55(9) 120.42(10)	$\frac{1113}{113} = \frac{113}{113} =$	112 46 (8)
$C_1 = C_2 = C_3$	120.42 (10)	$N_2 = C_{14} = C_{15}$	112.40 (8)
$C_1 = C_2 = H_2$	119.0	N2 - C14 - H14A	109.1
$C_3 = C_2 = H_2$	119.8	N2 C14 H14A	109.1
C4 - C3 - C2	119.54 (10)	$N_2 = C_1 4 = H_1 4 B$	109.1
$C_4 = C_3 = H_3$	120.2	С13—С14—Н14В	109.1
C2—C3—H3	120.2	H14A-C14-H14B	107.8
$C_3 - C_4 - C_5$	120.58 (10)	US-CIS-NI	122.50 (10)
C3—C4—H4	119.7	05-015-016	119.00 (9)
C5—C4—H4	119.7	NI = C15 = C16	118.50 (9)
C4—C5—C6	120.30 (10)	06-016-015	109.15 (8)
C4—C5—H5	119.8	06—C16—H16A	109.9
C6—C5—H5	119.8	С15—С16—Н16А	109.9
O1—C6—C5	124.62 (9)	O6—C16—H16B	109.9
01—C6—C1	116.48 (9)	C15—C16—H16B	109.9
C5—C6—C1	118.89 (10)	H16A—C16—H16B	108.3
O1—C7—C8	108.90 (9)	O6—C17—C18	112.08 (8)
O1—C7—H7A	109.9	O6—C17—H17A	109.2
С8—С7—Н7А	109.9	C18—C17—H17A	109.2
O1—C7—H7B	109.9	O6—C17—H17B	109.2
С8—С7—Н7В	109.9	C18—C17—H17B	109.2
H7A—C7—H7B	108.3	H17A—C17—H17B	107.9

02 C8 C7	110 70 (0)	07 C18 N2	122.89 (10)
$O_2 = C_3 = C_1$	100.5	07 - C18 - C17	122.09(10) 118.56(0)
$C_2 = C_2 = H_2 \Lambda$	109.5	$N_{2} = C_{18} = C_{17}$	118.50(9)
$C^{2} = C^{2} = H^{2} D^{2}$	109.5	$N_2 = C_{18} = C_{17}$	110.51(9)
02 - 00 - 100	109.5	$C_{20} = C_{19} = C_{24}$	120.33(10)
$C / - C \delta - H \delta B$	109.5	$C_{20} = C_{19} = N_2$	120.09 (10)
H8A - C8 - H8B	108.1	C_{24} C_{19} N_{2} C_{10} C_{20} C_{21}	119.35 (9)
02 - 02 - 010	110.69 (9)	C19 - C20 - C21	120.36 (11)
02—C9—H9A	109.5	С19—С20—Н20	119.8
С10—С9—Н9А	109.5	С21—С20—Н20	119.8
O2—C9—H9B	109.5	C22—C21—C20	119.42 (10)
С10—С9—Н9В	109.5	C22—C21—H21	120.3
Н9А—С9—Н9В	108.1	C20—C21—H21	120.3
O3—C10—C9	107.28 (8)	C21—C22—C23	120.83 (10)
O3—C10—H10A	110.3	C21—C22—H22	119.6
C9—C10—H10A	110.3	С23—С22—Н22	119.6
O3—C10—H10B	110.3	C24—C23—C22	119.93 (11)
C9-C10-H10B	110.3	С24—С23—Н23	120.0
H10A—C10—H10B	108.5	С22—С23—Н23	120.0
N1—C11—C12	112.85 (8)	O3—C24—C23	125.15 (10)
N1-C11-H11A	109.0	O3—C24—C19	115.95 (9)
C12—C11—H11A	109.0	C23—C24—C19	118.90 (10)
N1-C11-H11B	109.0		
	109.0		
C15 - N1 - C1 - C2	-108.91(11)	C1-N1-C15-05	6 14 (15)
$C_{11} = N_1 = C_1 = C_2$	62 11 (12)	$C_{11} = N_{1} = C_{15} = 05$	-164.00(9)
C15 N1 $C1$ $C6$	74.13(12)	C1 N1 $C15$ $C16$	-173 30 (0)
$C_{11} = N_1 = C_1 = C_0$	-114.95(12)	$C_{11} = N_{1} = C_{15} = C_{16}$	175.50(9)
$C_{11} = N_{1} = C_{1} = C_{0}$	-114.03(10)	C17 - Of - C16 - C15	10.33(14)
$C_0 - C_1 - C_2 - C_3$	0.33(10)	C1/-06C16C13	1/1.9/ (8)
NI = CI = C2 = C3	-1/0.01(9)	05-015-016-06	-114.72(10)
C1 - C2 - C3 - C4	0.33 (16)	NI-CI5-CI6-O6	64./4 (12)
C2—C3—C4—C5	-0.75 (16)	C16—O6—C17—C18	177.25 (9)
C3—C4—C5—C6	0.51 (16)	C19—N2—C18—O7	-7.04 (15)
C7—O1—C6—C5	0.33 (14)	C14—N2—C18—O7	170.73 (10)
C7—O1—C6—C1	179.68 (8)	C19—N2—C18—C17	175.37 (9)
C4—C5—C6—O1	179.49 (9)	C14—N2—C18—C17	-6.86 (15)
C4—C5—C6—C1	0.15 (15)	O6—C17—C18—O7	130.66 (10)
C2-C1-C6-O1	-179.96 (9)	O6—C17—C18—N2	-51.64 (13)
N1-C1-C6-01	-3.01 (13)	C18—N2—C19—C20	103.13 (12)
C2-C1-C6-C5	-0.57 (15)	C14—N2—C19—C20	-74.81 (12)
N1-C1-C6-C5	176.39 (9)	C18—N2—C19—C24	-78.59 (12)
C6-01-C7-C8	173.66 (8)	C14—N2—C19—C24	103.47 (11)
C9—O2—C8—C7	178.33 (8)	C24—C19—C20—C21	1.14 (16)
01	75.03 (10)	N2-C19-C20-C21	179.40 (9)
C8—O2—C9—C10	173.86 (8)	C19—C20—C21—C22	0.11 (16)
$C_{24} = 0_{3} = C_{10} = C_{9}$	-171 74 (8)	C_{20} C_{21} C_{22} C_{23}	-0.92 (16)
02 - 09 - 010 - 03	-71 12 (10)	C_{21} C_{22} C_{23} C_{24}	0.48(16)
$C_{12} = C_{12} = C_{10} = C_{10} = C_{10}$	-133.07(10)	$C_{10} = C_{22} = C_{23} = C_{24}$	5.01 (15)
C1 = N1 = C11 = C12	133.07(10)	$C_{10} = 0_{2} = 0_{24} = 0_{25}$	3.01(13)
CI - NI - CII - CI2	30.01 (12)	C10-03-C24-C19	-1/5.55 (9)

C13—O4—C12—C11	-76.49 (11)	C22—C23—C24—O3	-179.61 (10)
N1-C11-C12-O4	122.34 (10)	C22—C23—C24—C19	0.76 (15)
C12—O4—C13—C14	125.90 (9)	C20-C19-C24-O3	178.77 (9)
C18—N2—C14—C13	101.99 (11)	N2-C19-C24-O3	0.50 (13)
C19—N2—C14—C13	-80.22 (11)	C20-C19-C24-C23	-1.56 (15)
O4—C13—C14—N2	-176.83 (8)	N2—C19—C24—C23	-179.83 (9)