Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2',2"-[Nitrilotris(methylene-p-phenylene)ltribenzonitrile

Li-Zhuang Chen

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: clz1977@sina.com

Received 29 August 2008; accepted 16 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.188; data-to-parameter ratio = 18.1.

In the title compound, $C_{42}H_{30}N_4$, the conformations of the three wings of the molecule are not similar to each other as the torsion angles between the planes of the benzene rings are significantly different. In addition to van der Waals interactions, the crystal structure is stabilized only by intramolecular C-H···N hydrogen bonds.

Related literature

For related structures, see: Fox et al. (1996); Menage et al. (1992); Murthy & Karlin (1993); Schrock (1997); Foces-Foces et al. (1999); Chen et al. (2005); Iwasaki & Iwasaki (1972).

Experimental

Crystal data

C42H30N4 $V = 3289.5 (11) \text{ Å}^3$ $M_r = 590.70$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-3}$ a = 21.257 (4) Å b = 15.085 (3) Å T = 298 (2) K c = 10.294 (2) Å $0.27 \times 0.18 \times 0.15 \text{ mm}$ $\beta = 94.73(3)^{\circ}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.985, T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	6 restraints
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
7524 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
415 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C4-H4A\cdots N3^{i} \\ C24-H24A\cdots N2^{ii} \end{array}$	0.93	2.55	3.446 (5)	162
	0.93	2.59	3.350 (4)	139

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 2.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2103).

References

Chen, Q., Buss, C. E., Young, V. G. Jr & Fox, S. (2005). J. Chem. Crystallogr. 35, 177-181.

Foces-Foces, C., Llamas-Saiz, A. L., Alajarín, M., López-Lázaro, A. & Molina, P. (1999). Acta Cryst. C55, 373-377.

Fox, S., Nanthakumar, A., Wikström, M., Karlin, K. D. & Blackburn, N. J. (1996). J. Am. Chem. Soc. 118, 24-34.

Iwasaki, F. & Iwasaki, H. (1972). Acta Cryst. B28, 3370-3376.

Menage, S., Zang, Y., Hendrich, M. P. & Que, L. Jr (1992). J. Am. Chem. Soc. 114. 7786-7792.

Murthy, N. N. & Karlin, K. D. (1993). J. Am. Chem. Soc. 115, 1236-1238.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Schrock, R. R. (1997). Acc. Chem. Res. 30, 9-16.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

32746 measured reflections 7524 independent reflections 4007 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.081$

ed

supporting information

Acta Cryst. (2008). E64, o1980 [doi:10.1107/S1600536808029784]

2,2',2''-[Nitrilotris(methylene-p-phenylene)]tribenzonitrile

Li-Zhuang Chen

S1. Comment

Tripodal ligands have shown tremendous scope in the synthesis of transition-metal complexes. Perhaps the most extensively studied examples are those comprising tris-(2-pyridylmethyl)amine, which has been widely exploited in complexes (Fox *et al.* 1996; Menage *et al.* 1992; Murthy & Karlin 1993), tris(2-aminobenzyl)amine (Foces-Foces *et al.* 1999), tris(2-chlorobenzl)amine and tris(2-bromobenzyl)amine (Chen *et al.* 2005) and tribenzylamine (Iwasaki & Iwasaki 1972). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry (Schrock 1997). We report here the crystal structure of the title compound tris[4-(2-cyanophenyl)benzyl]amine, (I).

In the title compound (Fig.1), the conformations of the three wings of the molecule do not appear to be similar as the torsion angles between the planes of benzene rings are significantly different from each other. The pairs of benzene rings in the three wings form dihedral angle of 47.70 (10)°, 54.36 (7)° and 87.89 (9)°, respectively. In addition to van der Waals interactions, the crystal structure is stabilized only by intramolecular C—H…N hydrogen bonds: C4—H4A…N3 and C24 —H24A…N2 (Table 1).

S2. Experimental

The title compount was obtained from the combination of 2-cyano-4'-(bromomethyl)biphenyl (8.13 g, 30.0 mmol) with 29% aqueous ammonia (2.64 g, 45.0 mmol) in ethanol (50 ml) at room temperature. A white solid precipitated during stirring over 24 h. The precipitate was collected by filtration, washed with ethanol, and allowed to air-dry to yield 2.67 g (43%) of colorless microcrystals. Recrystallization was effected from hot acetonitrile to yield colorless blocks suitable for X-ray analysis.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C-H = 0.93 Å(aromatic), 0.97 Å(methylene), and $U_{iso}(H) = 1.2$ Ueq(C).

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

2,2',2"-[Nitrilotris(methylene-p-phenylene)]tribenzonitrile

Crystal data	
$C_{42}H_{30}N_4$ $M_r = 590.70$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc $a = 21.257$ (4) Å $b = 15.085$ (3) Å $c = 10.294$ (2) Å $\beta = 94.73$ (3)° $V = 3289.5$ (11) Å ³ $Z = 4$	F(000) = 1240 $D_x = 1.193 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7512 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.27 \times 0.18 \times 0.15 \text{ mm}$
Data collection	
Rigaku Mercury2 (2x2 bin mode) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)

$T_{\min} = 0.985, T_{\max} = 0.989$	$\theta_{\rm max} = 27.5^\circ, \theta_{\rm min} = 3.2^\circ$
32746 measured reflections	$h = -27 \rightarrow 27$
7524 independent reflections	$k = -19 \rightarrow 19$
4007 reflections with $I > 2\sigma(I)$	$l = -13 \rightarrow 13$
$R_{\rm int} = 0.081$	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.187$	neighbouring sites
S = 1.02	H-atom parameters constrained
7524 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0804P)^2 + 0.198P]$
415 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.17 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.10835 (14)	0.41593 (18)	0.1399 (3)	0.0704 (7)	
C2	0.04158 (12)	0.40234 (15)	0.1365 (3)	0.0635 (7)	
C3	0.00882 (16)	0.39289 (18)	0.0152 (3)	0.0819 (9)	
H3A	0.0302	0.3986	-0.0596	0.098*	
C4	-0.05428 (19)	0.3753 (2)	0.0036 (4)	0.0946 (11)	
H4A	-0.0759	0.3692	-0.0781	0.114*	
C5	-0.08530 (15)	0.3669 (2)	0.1143 (4)	0.0947 (11)	
H5A	-0.1283	0.3546	0.1068	0.114*	
C6	-0.05411 (12)	0.37614 (18)	0.2376 (3)	0.0818 (9)	
H6A	-0.0763	0.3695	0.3113	0.098*	
C7	0.01046 (11)	0.39535 (14)	0.2513 (3)	0.0604 (7)	
C8	0.04395 (10)	0.40436 (15)	0.3830 (3)	0.0576 (6)	
C9	0.08923 (11)	0.46989 (15)	0.4118 (3)	0.0613 (7)	
H9A	0.0968	0.5120	0.3489	0.074*	
C10	0.12276 (11)	0.47328 (16)	0.5310(3)	0.0623 (7)	
H10A	0.1529	0.5175	0.5470	0.075*	
C11	0.11309 (11)	0.41278 (15)	0.6284 (2)	0.0559 (6)	
C12	0.06633 (12)	0.35033 (17)	0.6025 (3)	0.0706 (7)	
H12A	0.0572	0.3105	0.6673	0.085*	
C13	0.03285 (12)	0.34602 (17)	0.4821 (3)	0.0720 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H13A	0.0020	0.3027	0.4671	0.086*
C14	0.15284 (11)	0.41551 (17)	0.7558 (2)	0.0621 (7)
H14A	0.1525	0.4752	0.7909	0.074*
H14B	0.1348	0.3762	0.8174	0.074*
C15	0.25982 (12)	0.41470 (14)	0.8554 (2)	0.0545 (6)
H15A	0.3000	0.3845	0.8533	0.065*
H15B	0.2409	0.3958	0.9334	0.065*
C16	0.27119 (10)	0.51310 (14)	0.8625 (2)	0.0499 (6)
C17	0.29125 (16)	0.55906 (17)	0.7584 (2)	0.0854 (9)
H17A	0.2969	0.5288	0.6815	0.103*
C18	0.30323 (16)	0.64887 (17)	0.7647 (2)	0.0843 (9)
H18A	0.3166	0.6781	0.6923	0.101*
C19	0.29559 (10)	0.69558 (14)	0.8768 (2)	0.0471 (5)
C20	0.27620 (13)	0.64986 (16)	0.9803 (2)	0.0674 (7)
H20A	0.2710	0.6800	1.0575	0.081*
C21	0.26400 (12)	0.56002 (16)	0.9737 (2)	0.0641 (7)
H21A	0.2507	0.5310	1.0463	0.077*
C22	0.31100 (10)	0.79189 (13)	0.8858 (2)	0.0458 (5)
C23	0.37045 (12)	0.82099 (15)	0.9309 (2)	0.0615 (7)
H23A	0.4012	0.7794	0.9571	0.074*
C24	0.38549 (13)	0.90998 (16)	0.9382 (2)	0.0641 (7)
H24A	0.4260	0.9275	0.9682	0.077*
C25	0.34097 (13)	0.97222 (16)	0.9014 (2)	0.0601 (6)
H25A	0.3511	1.0322	0.9065	0.072*
C26	0.28152 (13)	0.94626 (15)	0.8570 (3)	0.0657 (7)
H26A	0.2512	0.9886	0.8318	0.079*
C27	0.26623 (11)	0.85714 (15)	0.8493 (2)	0.0556 (6)
C28	0.20387 (15)	0.83188 (18)	0.8029 (3)	0.0873 (10)
C29	0.22125 (11)	0.29298 (14)	0.7186 (2)	0.0548 (6)
H29A	0.1867	0.2761	0.6561	0.066*
H29B	0.2154	0.2627	0.7998	0.066*
C30	0.28224 (10)	0.26225 (13)	0.6692 (2)	0.0456 (5)
C31	0.31594 (11)	0.31379 (14)	0.5885 (2)	0.0570 (6)
H31A	0.3017	0.3707	0.5672	0.068*
C32	0.37013 (11)	0.28319 (15)	0.5387 (2)	0.0572 (6)
H32A	0.3920	0.3197	0.4852	0.069*
C33	0.39231 (10)	0.19792 (14)	0.5679 (2)	0.0455 (5)
C34	0.35817 (10)	0.14595 (13)	0.6485 (2)	0.0472 (5)
H34A	0.3717	0.0886	0.6689	0.057*
C35	0.30462 (10)	0.17814 (13)	0.6985 (2)	0.0473 (5)
H35A	0.2830	0.1423	0.7534	0.057*
C36	0.44926 (10)	0.16442 (13)	0.5103 (2)	0.0480 (5)
C37	0.45515 (12)	0.17505 (16)	0.3787 (3)	0.0653 (7)
H37A	0.4230	0.2033	0.3276	0.078*
C38	0.50730 (14)	0.14503 (19)	0.3209 (3)	0.0791 (8)
H38A	0.5099	0.1531	0.2319	0.095*
C39	0.55515 (13)	0.10347 (17)	0.3934 (3)	0.0745 (8)
H39A	0.5903	0.0836	0.3539	0.089*

C40	0.55158 (11)	0.09101 (15)	0.5233 (3)	0.0654 (7)	
H40A	0.5842	0.0625	0.5726	0.078*	
C41	0.49847 (11)	0.12139 (14)	0.5828 (2)	0.0568 (5)	
C42	0.49593 (11)	0.10864 (16)	0.7198 (3)	0.0615 (5)	
N1	0.21846 (8)	0.38865 (11)	0.74051 (18)	0.0498 (5)	
N2	0.49418 (13)	0.09735 (19)	0.8305 (3)	0.1000 (9)	
N3	0.15370 (15)	0.8150 (2)	0.7631 (4)	0.1453 (15)	
N4	0.16140 (12)	0.42632 (19)	0.1407 (3)	0.0936 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0622 (18)	0.0750 (18)	0.0733 (19)	0.0106 (14)	0.0013 (15)	0.0096 (14)
C2	0.0589 (16)	0.0502 (14)	0.0784 (19)	0.0069 (11)	-0.0127 (14)	0.0018 (13)
C3	0.087 (2)	0.0690 (18)	0.085 (2)	0.0123 (15)	-0.0181 (18)	-0.0046 (15)
C4	0.099 (3)	0.074 (2)	0.103 (3)	0.0135 (18)	-0.039 (2)	-0.0101 (19)
C5	0.0617 (19)	0.0684 (19)	0.147 (3)	0.0030 (14)	-0.036 (2)	-0.016 (2)
C6	0.0502 (16)	0.0723 (18)	0.120 (3)	-0.0008 (13)	-0.0081 (17)	-0.0153 (17)
C7	0.0466 (14)	0.0420 (13)	0.090(2)	0.0037 (10)	-0.0076 (14)	-0.0032 (13)
C8	0.0431 (13)	0.0496 (14)	0.0794 (18)	0.0033 (10)	0.0015 (12)	-0.0006 (13)
C9	0.0587 (15)	0.0525 (14)	0.0719 (18)	-0.0067 (11)	0.0006 (13)	0.0012 (12)
C10	0.0579 (15)	0.0548 (15)	0.0735 (17)	-0.0081 (11)	0.0006 (13)	-0.0027 (13)
C11	0.0484 (14)	0.0508 (13)	0.0690 (17)	0.0086 (11)	0.0072 (12)	-0.0049 (12)
C12	0.0631 (17)	0.0680 (17)	0.081 (2)	-0.0004 (13)	0.0092 (15)	0.0131 (14)
C13	0.0562 (16)	0.0610 (16)	0.098 (2)	-0.0108 (12)	0.0009 (15)	0.0044 (15)
C14	0.0620 (15)	0.0597 (15)	0.0654 (17)	0.0130 (12)	0.0105 (13)	-0.0061 (12)
C15	0.0695 (15)	0.0446 (13)	0.0489 (14)	0.0077 (11)	0.0013 (12)	0.0008 (10)
C16	0.0570 (14)	0.0471 (13)	0.0448 (13)	0.0072 (10)	-0.0003 (11)	0.0001 (11)
C17	0.164 (3)	0.0500 (15)	0.0443 (15)	-0.0021 (17)	0.0204 (17)	-0.0055 (12)
C18	0.160 (3)	0.0517 (15)	0.0433 (15)	-0.0013 (17)	0.0203 (17)	0.0055 (12)
C19	0.0521 (13)	0.0433 (12)	0.0455 (13)	0.0053 (10)	0.0019 (10)	-0.0014 (10)
C20	0.095 (2)	0.0570 (15)	0.0540 (15)	-0.0191 (14)	0.0294 (14)	-0.0129 (12)
C21	0.0887 (19)	0.0570 (15)	0.0497 (15)	-0.0178 (13)	0.0238 (13)	-0.0036 (12)
C22	0.0552 (14)	0.0427 (12)	0.0398 (12)	0.0043 (10)	0.0065 (10)	0.0018 (10)
C23	0.0617 (16)	0.0504 (14)	0.0714 (17)	0.0070 (11)	-0.0006 (13)	0.0010 (12)
C24	0.0655 (16)	0.0589 (15)	0.0668 (17)	-0.0075 (12)	-0.0024 (13)	-0.0009 (13)
C25	0.0798 (18)	0.0471 (13)	0.0539 (15)	-0.0019 (13)	0.0085 (13)	-0.0008 (11)
C26	0.0755 (18)	0.0463 (14)	0.0756 (18)	0.0130 (12)	0.0075 (15)	0.0111 (12)
C27	0.0554 (14)	0.0511 (14)	0.0593 (15)	0.0034 (11)	-0.0005 (12)	0.0082 (11)
C28	0.072 (2)	0.0641 (17)	0.122 (3)	0.0005 (15)	-0.0199 (19)	0.0240 (17)
C29	0.0571 (14)	0.0423 (12)	0.0657 (16)	0.0014 (10)	0.0088 (12)	-0.0032 (11)
C30	0.0530 (13)	0.0381 (11)	0.0450 (12)	-0.0003 (9)	0.0009 (10)	-0.0029 (10)
C31	0.0697 (16)	0.0384 (12)	0.0647 (16)	0.0147 (11)	0.0157 (13)	0.0077 (11)
C32	0.0686 (16)	0.0444 (13)	0.0602 (15)	0.0089 (11)	0.0152 (12)	0.0098 (11)
C33	0.0513 (13)	0.0408 (12)	0.0432 (12)	0.0048 (9)	-0.0032 (10)	-0.0014 (10)
C34	0.0523 (13)	0.0342 (11)	0.0538 (14)	0.0033 (9)	-0.0034 (11)	0.0021 (10)
C35	0.0535 (13)	0.0385 (11)	0.0496 (13)	-0.0032 (10)	0.0018 (10)	0.0026 (10)
C36	0.0501 (13)	0.0379 (11)	0.0556 (14)	0.0018 (9)	0.0020(11)	-0.0032 (10)

supporting information

C37 C38 C39 C40 C41 C42 N1	0.0677 (16) 0.082 (2) 0.0667 (18) 0.0468 (14) 0.0529 (11) 0.0559 (11)	0.0667 (16) 0.0767 (19) 0.0627 (17) 0.0489 (14) 0.0468 (10) 0.0533 (11) 0.0409 (10)	0.0630 (17) 0.082 (2) 0.097 (2) 0.099 (2) 0.0684 (12) 0.0723 (13) 0.0530 (11)	0.0152 (13) 0.0141 (16) 0.0042 (13) 0.0018 (10) 0.0022 (9) 0.0054 (9) 0.0087 (8)	0.0139 (13) 0.0280 (17) 0.0250 (17) -0.0033 (14) -0.0103 (11) -0.0128 (11) 0.0009 (9)	$\begin{array}{c} 0.0042 \ (13) \\ 0.0019 \ (15) \\ -0.0140 \ (16) \\ -0.0088 \ (14) \\ -0.0051 \ (10) \\ -0.0034 \ (11) \\ -0.0067 \ (8) \end{array}$
N1	0.0539 (11)	0.0409 (10)	0.0723 (13)	0.0034 (9)	0.0009 (9)	-0.0067(8)
N2	0.093(2)	0.125 (2)	0.0771 (19)	0.0226 (15)	-0.0209(15)	0.0079 (16)
N4	0.080 (2) 0.0671 (17)	0.113 (2) 0.121 (2)	0.223(4) 0.094(2)	0.0082 (17)	0.0118 (15)	0.034 (2) 0.0107 (16)

Geometric parameters (Å, °)

C1—N4	1.138 (3)	C21—H21A	0.9300
C1—C2	1.432 (4)	C22—C23	1.381 (3)
C2—C3	1.386 (4)	C22—C27	1.399 (3)
C2—C7	1.406 (4)	C23—C24	1.381 (3)
C3—C4	1.363 (4)	C23—H23A	0.9300
С3—НЗА	0.9300	C24—C25	1.364 (3)
C4—C5	1.368 (5)	C24—H24A	0.9300
C4—H4A	0.9300	C25—C26	1.365 (3)
C5—C6	1.390 (4)	C25—H25A	0.9300
C5—H5A	0.9300	C26—C27	1.384 (3)
С6—С7	1.399 (3)	C26—H26A	0.9300
С6—Н6А	0.9300	C27—C28	1.424 (4)
С7—С8	1.485 (4)	C28—N3	1.139 (4)
C8—C13	1.382 (4)	C29—N1	1.463 (3)
C8—C9	1.394 (3)	C29—C30	1.504 (3)
C9—C10	1.369 (3)	C29—H29A	0.9700
С9—Н9А	0.9300	C29—H29B	0.9700
C10—C11	1.383 (3)	C30—C35	1.380 (3)
C10—H10A	0.9300	C30—C31	1.380 (3)
C11—C12	1.379 (3)	C31—C32	1.379 (3)
C11—C14	1.501 (3)	C31—H31A	0.9300
C12—C13	1.379 (4)	C32—C33	1.394 (3)
C12—H12A	0.9300	C32—H32A	0.9300
С13—Н13А	0.9300	C33—C34	1.388 (3)
C14—N1	1.473 (3)	C33—C36	1.480 (3)
C14—H14A	0.9700	C34—C35	1.376 (3)
C14—H14B	0.9700	C34—H34A	0.9300
C15—N1	1.468 (3)	C35—H35A	0.9300
C15—C16	1.505 (3)	C36—C37	1.380 (3)
C15—H15A	0.9700	C36—C41	1.394 (3)
C15—H15B	0.9700	C37—C38	1.377 (3)
C16—C21	1.365 (3)	С37—Н37А	0.9300
C16—C17	1.374 (3)	C38—C39	1.364 (4)
C17—C18	1.379 (3)	C38—H38A	0.9300
С17—Н17А	0.9300	C39—C40	1.358 (4)

C18—C19	1.373 (3)	С39—Н39А	0.9300
C18—H18A	0.9300	C40—C41	1.405 (3)
C19—C20	1.361 (3)	C40—H40A	0.9300
C19—C22	1.490 (3)	C41—C42	1.429 (4)
C20—C21	1.380 (3)	C42—N2	1.156 (3)
C20—H20A	0.9300		
N4—C1—C2	179.0 (3)	C20—C21—H21A	119.5
C3—C2—C7	120.9 (3)	C23—C22—C27	116.7 (2)
C3—C2—C1	117.4 (3)	C23—C22—C19	121.39 (19)
C7—C2—C1	121.7 (2)	C27—C22—C19	121.9 (2)
C4—C3—C2	121.1 (3)	C24—C23—C22	121.9 (2)
С4—С3—НЗА	119.5	С24—С23—Н23А	119.0
С2—С3—НЗА	119.5	С22—С23—Н23А	119.0
C3—C4—C5	119.0 (3)	C25—C24—C23	120.1 (2)
C3—C4—H4A	120.5	C25—C24—H24A	119.9
C5—C4—H4A	120.5	C23—C24—H24A	119.9
C4—C5—C6	121.7 (3)	C24—C25—C26	119.8 (2)
С4—С5—Н5А	119.2	С24—С25—Н25А	120.1
С6—С5—Н5А	119.2	C26—C25—H25A	120.1
C5—C6—C7	120.2 (3)	C25—C26—C27	120.3 (2)
С5—С6—Н6А	119.9	C25—C26—H26A	119.9
С7—С6—Н6А	119.9	C27—C26—H26A	119.9
C6—C7—C2	117.2 (3)	C26—C27—C22	121.1 (2)
C6—C7—C8	120.3 (3)	C26—C27—C28	119.1 (2)
C2—C7—C8	122.5 (2)	C22—C27—C28	119.7 (2)
C13—C8—C9	116.9 (2)	N3—C28—C27	177.1 (3)
C13—C8—C7	121.1 (2)	N1—C29—C30	113.78 (18)
C9—C8—C7	121.9 (2)	N1—C29—H29A	108.8
C10—C9—C8	121.1 (2)	С30—С29—Н29А	108.8
С10—С9—Н9А	119.5	N1—C29—H29B	108.8
С8—С9—Н9А	119.5	С30—С29—Н29В	108.8
C9—C10—C11	121.8 (2)	H29A—C29—H29B	107.7
С9—С10—Н10А	119.1	C35—C30—C31	117.6 (2)
C11—C10—H10A	119.1	C35—C30—C29	120.0 (2)
C12—C11—C10	117.3 (2)	C31—C30—C29	122.31 (19)
C12—C11—C14	122.1 (2)	C32—C31—C30	121.8 (2)
C10—C11—C14	120.5 (2)	С32—С31—Н31А	119.1
C13—C12—C11	121.0 (3)	С30—С31—Н31А	119.1
C13—C12—H12A	119.5	C31—C32—C33	120.4 (2)
C11—C12—H12A	119.5	С31—С32—Н32А	119.8
C12—C13—C8	121.8 (2)	С33—С32—Н32А	119.8
C12—C13—H13A	119.1	C34—C33—C32	117.8 (2)
C8—C13—H13A	119.1	C34—C33—C36	122.11 (19)
N1-C14-C11	111.64 (19)	C32—C33—C36	120.1 (2)
N1—C14—H14A	109.3	C35—C34—C33	120.90(19)
C11—C14—H14A	109.3	C35—C34—H34A	119.6
N1-C14-H14B	109.3	C33—C34—H34A	119.6

C11—C14—H14B	109.3	C34—C35—C30	121.6 (2)
H14A—C14—H14B	108.0	С34—С35—Н35А	119.2
N1-C15-C16	112.73 (17)	С30—С35—Н35А	119.2
N1—C15—H15A	109.0	C37—C36—C41	117.1 (2)
C16—C15—H15A	109.0	C37—C36—C33	119.8 (2)
N1—C15—H15B	109.0	C41—C36—C33	123.1 (2)
C16—C15—H15B	109.0	C38—C37—C36	121.8 (3)
H15A—C15—H15B	107.8	С38—С37—Н37А	119.1
C21—C16—C17	117.1 (2)	С36—С37—Н37А	119.1
C21—C16—C15	121.6 (2)	C39—C38—C37	120.4 (3)
C17—C16—C15	121.3 (2)	С39—С38—Н38А	119.8
C16—C17—C18	121.8 (2)	С37—С38—Н38А	119.8
C16—C17—H17A	119.1	C40—C39—C38	120.2 (3)
C18—C17—H17A	119.1	С40—С39—Н39А	119.9
C19—C18—C17	120.6 (2)	С38—С39—Н39А	119.9
C19—C18—H18A	119.7	C39—C40—C41	119.8 (2)
C17—C18—H18A	119.7	С39—С40—Н40А	120.1
C20—C19—C18	117.5 (2)	C41—C40—H40A	120.1
C20—C19—C22	121.6 (2)	C36—C41—C40	120.8 (2)
C18—C19—C22	120.8 (2)	C36—C41—C42	120.2 (2)
C19—C20—C21	121.8 (2)	C40—C41—C42	118.9 (2)
C19—C20—H20A	119.1	N2—C42—C41	179.2 (3)
C21—C20—H20A	119.1	C29—N1—C15	111.04 (17)
C16—C21—C20	121.1 (2)	C29—N1—C14	109.79 (17)
C16—C21—H21A	119.5	C15—N1—C14	110.46 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C4—H4A····N3 ⁱ	0.93	2.55	3.446 (5)	162
C24—H24A···N2 ⁱⁱ	0.93	2.59	3.350 (4)	139

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z+2.