metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(1-ethyl­imidazole-κN3)cobalt(II)]-μ-isophthalato-κ2O1:O3]

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 19 September 2008; accepted 24 September 2008; online 27 September 2008)

In the title compound, [Co(C8H4O4)(C5H8N2)2]n, each cobalt(II) ion is coordinated by two N and two O atoms in a distorted tetra­hedral geometry. The isophthalate ligands bridge the metal ions to form polymeric zigzag chains extending along the b axis. Weak C—H⋯O inter­actions contribute to the crystal packing stability.

Related literature

For the crystal structures of related copper and cobalt compounds, see: Song et al. (2007[Song, J., Chen, Y., Li, Z., Zhou, R., Xu, X. & Xu, J. (2007). J. Mol. Struct. 842, 125-131.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O4)(C5H8N2)2]

  • Mr = 415.31

  • Monoclinic, P 21 /c

  • a = 15.174 (3) Å

  • b = 9.6650 (19) Å

  • c = 13.183 (3) Å

  • β = 104.63 (3)°

  • V = 1870.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.833, Tmax = 0.911

  • 3360 measured reflections

  • 3276 independent reflections

  • 2711 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.152

  • S = 1.02

  • 3276 reflections

  • 233 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—O1 1.956 (3)
Co—N2 2.008 (4)
Co—O4i 2.008 (3)
Co—N4 2.035 (3)
O1—Co—N2 118.23 (14)
O1—Co—O4i 115.92 (12)
N2—Co—O4i 104.31 (13)
O1—Co—N4 108.77 (13)
N2—Co—N4 109.39 (15)
O4i—Co—N4 98.31 (13)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1 0.93 2.45 2.768 (5) 100
C3—H3A⋯O3ii 0.93 2.40 3.260 (6) 154
C5—H5A⋯O3iii 0.93 2.41 3.327 (7) 168
Symmetry codes: (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound (Fig. 1), the cobalt(II) ion is coordinated by two N and two O atoms in a distorted tetrahedral geometry. The values of bond distances and angles (Table 1) agree well with those observed in [Co(isophthalato)(1-H-imidazole)2] (Song, et al., 2007). Each isophthalate dianion acts as a bidentate ligand to bridge two cobalt(II) atoms through the monodentate carboxylate groups, building a zigzag chain structure along the b axis (Fig. 2). The metal-metal distance across the polymer backbone is 9.665 (7) Å. Weak C—H···O hydrogen interactions contribute to the crystal packing stability (Table 2).

Related literature top

For the crystal structures of related copper and cobalt compounds, see: Song et al. (2007).

Experimental top

The reaction of CoCl2.6H2O (1.19 g, 5 mmol) with isophthalic acid (0.83 g, 5 mmol) in a water/ethanol (3:1 v/v) solution (40 ml) at 363 K for 30 minutes produced a blue solution, to which 1-ethylimidazole (0.84 g,10 mmol) was added. The reaction solution was kept at room temperature after stirring for an hour at 333 K. Pink crystals were obtained after a few days on slow evaporation of he solvent.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis.
catena-Poly[[bis(1-ethylimidazole-κN3)cobalt(II]-µ-isophthalato- κ2O1:O3] top
Crystal data top
[Co(C8H4O4)(C5H8N2)2]F(000) = 860
Mr = 415.31Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.174 (3) Åθ = 10–14°
b = 9.6650 (19) ŵ = 0.95 mm1
c = 13.183 (3) ÅT = 293 K
β = 104.63 (3)°Block, pink
V = 1870.7 (7) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3276 independent reflections
Radiation source: fine-focus sealed tube2711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Thin–slice ω scansθmax = 25.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1817
Tmin = 0.833, Tmax = 0.911k = 011
3360 measured reflectionsl = 015
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.08P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3276 reflectionsΔρmax = 0.73 e Å3
233 parametersΔρmin = 1.49 e Å3
40 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (14)
Crystal data top
[Co(C8H4O4)(C5H8N2)2]V = 1870.7 (7) Å3
Mr = 415.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.174 (3) ŵ = 0.95 mm1
b = 9.6650 (19) ÅT = 293 K
c = 13.183 (3) Å0.20 × 0.10 × 0.10 mm
β = 104.63 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2711 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.911Rint = 0.034
3360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05740 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.73 e Å3
3276 reflectionsΔρmin = 1.49 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.26136 (4)0.30808 (5)0.53367 (4)0.0305 (2)
O10.2699 (2)0.1668 (3)0.6419 (2)0.0427 (8)
N10.0386 (3)0.3053 (5)0.2750 (4)0.0612 (12)
C10.0178 (5)0.3839 (7)0.0953 (5)0.083
H1A0.04690.35390.02540.124*
H1B0.04040.42370.09630.124*
H1C0.05520.45180.11740.124*
N20.1440 (2)0.3249 (3)0.4223 (3)0.0393 (8)
O20.2455 (2)0.0313 (3)0.5018 (2)0.0454 (8)
C20.0054 (5)0.2678 (8)0.1649 (6)0.089
H2A0.03180.19910.14150.107*
H2B0.06420.22630.16170.107*
N30.4528 (2)0.2000 (4)0.3686 (3)0.0393 (8)
C30.1228 (3)0.2707 (5)0.3287 (4)0.0561 (13)
H3A0.16160.21450.30240.067*
O30.1949 (2)0.5482 (3)0.6821 (3)0.0489 (8)
N40.3661 (2)0.2814 (3)0.4648 (3)0.0351 (8)
C40.0695 (4)0.4016 (6)0.4269 (5)0.0667 (15)
H4A0.06510.45500.48410.080*
O40.2898 (2)0.4975 (3)0.5853 (2)0.0401 (7)
C50.0032 (4)0.3894 (7)0.3373 (5)0.0772 (18)
H5A0.05420.42980.32160.093*
C60.5078 (4)0.0300 (6)0.3365 (6)0.0754 (18)
H6A0.52750.08540.28590.113*
H6B0.45590.07270.35290.113*
H6C0.55630.02260.39910.113*
C70.4823 (3)0.1117 (5)0.2922 (4)0.0512 (12)
H7A0.53420.15370.27380.061*
H7B0.43330.10420.22890.061*
C80.5036 (3)0.2923 (5)0.4353 (4)0.0535 (13)
H8A0.56390.31620.44000.064*
C90.4501 (3)0.3430 (5)0.4934 (4)0.0506 (12)
H9A0.46740.41000.54520.061*
C100.3710 (3)0.1963 (4)0.3889 (3)0.0386 (10)
H10A0.32320.14020.35360.046*
C110.2681 (4)0.1647 (4)0.8394 (3)0.0476 (12)
H11A0.27410.15010.91050.057*
C120.2682 (3)0.0546 (4)0.7746 (3)0.0434 (11)
H12A0.27330.03470.80180.052*
C130.2608 (3)0.0744 (4)0.6689 (3)0.0303 (8)
C140.2555 (3)0.2084 (4)0.6290 (3)0.0283 (8)
H14A0.25280.22260.55850.034*
C150.2541 (3)0.3208 (4)0.6941 (3)0.0284 (8)
C160.2593 (3)0.2984 (4)0.7997 (3)0.0423 (11)
H16A0.25680.37280.84360.051*
C170.2589 (3)0.0479 (4)0.5977 (3)0.0318 (9)
C180.2449 (3)0.4664 (4)0.6524 (3)0.0309 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0457 (4)0.0143 (3)0.0364 (3)0.0020 (2)0.0193 (2)0.0006 (2)
O10.072 (2)0.0137 (13)0.0492 (17)0.0018 (13)0.0275 (16)0.0019 (12)
N10.053 (2)0.061 (3)0.063 (3)0.017 (2)0.0013 (19)0.015 (2)
C10.0830.0830.0830.0000.0240.000
N20.047 (2)0.0293 (18)0.0450 (19)0.0059 (15)0.0176 (16)0.0005 (15)
O20.071 (2)0.0290 (15)0.0397 (16)0.0045 (14)0.0194 (14)0.0074 (13)
C20.0890.0890.0890.0000.0220.000
N30.045 (2)0.0357 (19)0.0419 (19)0.0005 (16)0.0201 (16)0.0050 (16)
C30.047 (3)0.052 (3)0.066 (3)0.012 (2)0.009 (2)0.021 (2)
O30.066 (2)0.0172 (14)0.075 (2)0.0053 (14)0.0375 (18)0.0017 (14)
N40.045 (2)0.0225 (16)0.0430 (19)0.0001 (14)0.0211 (16)0.0021 (14)
C40.061 (3)0.079 (4)0.064 (3)0.027 (3)0.023 (2)0.013 (3)
O40.069 (2)0.0155 (13)0.0435 (16)0.0009 (13)0.0284 (15)0.0034 (12)
C50.058 (3)0.087 (4)0.084 (4)0.028 (3)0.015 (3)0.012 (3)
C60.074 (4)0.046 (3)0.120 (5)0.007 (3)0.050 (4)0.017 (3)
C70.053 (3)0.053 (3)0.055 (3)0.006 (2)0.027 (2)0.013 (2)
C80.047 (3)0.061 (3)0.060 (3)0.017 (2)0.028 (2)0.014 (3)
C90.063 (3)0.043 (3)0.054 (3)0.022 (2)0.031 (2)0.017 (2)
C100.043 (2)0.030 (2)0.047 (2)0.0020 (18)0.0191 (19)0.0082 (19)
C110.088 (4)0.030 (2)0.029 (2)0.003 (2)0.024 (2)0.0025 (18)
C120.082 (3)0.0154 (18)0.038 (2)0.001 (2)0.025 (2)0.0050 (17)
C130.045 (2)0.0152 (17)0.033 (2)0.0021 (16)0.0156 (17)0.0009 (15)
C140.041 (2)0.0208 (18)0.0267 (18)0.0020 (16)0.0141 (16)0.0008 (15)
C150.039 (2)0.0169 (18)0.033 (2)0.0019 (15)0.0156 (16)0.0003 (15)
C160.076 (3)0.022 (2)0.036 (2)0.003 (2)0.026 (2)0.0046 (17)
C170.043 (2)0.0185 (18)0.038 (2)0.0002 (16)0.0164 (17)0.0023 (16)
C180.045 (2)0.0134 (17)0.037 (2)0.0051 (16)0.0143 (17)0.0026 (15)
Geometric parameters (Å, º) top
Co—O11.956 (3)O4—C181.281 (5)
Co—N22.008 (4)O4—Coii2.008 (3)
Co—O4i2.008 (3)C5—H5A0.9300
Co—N42.035 (3)C6—C71.501 (8)
O1—C171.281 (5)C6—H6A0.9600
N1—C31.337 (7)C6—H6B0.9600
N1—C51.358 (7)C6—H6C0.9600
N1—C21.481 (8)C7—H7A0.9700
C1—C21.432 (9)C7—H7B0.9700
C1—H1A0.9600C8—C91.341 (7)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—H9A0.9300
N2—C31.303 (6)C10—H10A0.9300
N2—C41.366 (6)C11—C121.365 (6)
O2—C171.239 (5)C11—C161.387 (6)
C2—H2A0.9700C11—H11A0.9300
C2—H2B0.9700C12—C131.382 (6)
N3—C101.336 (6)C12—H12A0.9300
N3—C81.349 (6)C13—C141.393 (5)
N3—C71.473 (6)C13—C171.505 (5)
C3—H3A0.9300C14—C151.387 (5)
O3—C181.227 (5)C14—H14A0.9300
N4—C101.312 (5)C15—C161.391 (6)
N4—C91.370 (6)C15—C181.505 (5)
C4—C51.350 (8)C16—H16A0.9300
C4—H4A0.9300
O1—Co—N2118.23 (14)H6A—C6—H6B109.5
O1—Co—O4i115.92 (12)C7—C6—H6C109.5
N2—Co—O4i104.31 (13)H6A—C6—H6C109.5
O1—Co—N4108.77 (13)H6B—C6—H6C109.5
N2—Co—N4109.39 (15)N3—C7—C6110.8 (4)
O4i—Co—N498.31 (13)N3—C7—H7A109.5
C17—O1—Co108.5 (2)C6—C7—H7A109.5
C3—N1—C5107.5 (5)N3—C7—H7B109.5
C3—N1—C2126.2 (5)C6—C7—H7B109.5
C5—N1—C2126.2 (5)H7A—C7—H7B108.1
C2—C1—H1A109.5C9—C8—N3106.6 (4)
C2—C1—H1B109.5C9—C8—H8A126.7
H1A—C1—H1B109.5N3—C8—H8A126.7
C2—C1—H1C109.5C8—C9—N4109.9 (4)
H1A—C1—H1C109.5C8—C9—H9A125.1
H1B—C1—H1C109.5N4—C9—H9A125.1
C3—N2—C4104.5 (4)N4—C10—N3111.8 (4)
C3—N2—Co128.4 (3)N4—C10—H10A124.1
C4—N2—Co127.0 (3)N3—C10—H10A124.1
C1—C2—N1113.0 (6)C12—C11—C16120.4 (4)
C1—C2—H2A109.0C12—C11—H11A119.8
N1—C2—H2A109.0C16—C11—H11A119.8
C1—C2—H2B109.0C11—C12—C13120.6 (4)
N1—C2—H2B109.0C11—C12—H12A119.7
H2A—C2—H2B107.8C13—C12—H12A119.7
C10—N3—C8107.1 (4)C12—C13—C14119.5 (3)
C10—N3—C7125.4 (4)C12—C13—C17120.3 (3)
C8—N3—C7127.4 (4)C14—C13—C17120.3 (3)
N2—C3—N1112.1 (4)C15—C14—C13120.2 (3)
N2—C3—H3A124.0C15—C14—H14A119.9
N1—C3—H3A124.0C13—C14—H14A119.9
C10—N4—C9104.7 (3)C14—C15—C16119.4 (3)
C10—N4—Co128.3 (3)C14—C15—C18121.4 (3)
C9—N4—Co126.8 (3)C16—C15—C18119.2 (3)
C5—C4—N2110.8 (5)C11—C16—C15119.8 (4)
C5—C4—H4A124.6C11—C16—H16A120.1
N2—C4—H4A124.6C15—C16—H16A120.1
C18—O4—Coii110.3 (2)O2—C17—O1123.3 (3)
C4—C5—N1105.1 (5)O2—C17—C13120.5 (3)
C4—C5—H5A127.4O1—C17—C13116.2 (3)
N1—C5—H5A127.4O3—C18—O4123.3 (4)
C7—C6—H6A109.5O3—C18—C15119.6 (3)
C7—C6—H6B109.5O4—C18—C15117.1 (3)
N2—Co—O1—C1761.4 (3)N3—C8—C9—N41.0 (6)
O4i—Co—O1—C17173.7 (3)C10—N4—C9—C80.8 (6)
N4—Co—O1—C1764.1 (3)Co—N4—C9—C8175.2 (3)
O1—Co—N2—C395.9 (4)C9—N4—C10—N30.4 (5)
O4i—Co—N2—C3133.6 (4)Co—N4—C10—N3175.6 (3)
N4—Co—N2—C329.3 (5)C8—N3—C10—N40.2 (5)
O1—Co—N2—C487.1 (4)C7—N3—C10—N4176.4 (4)
O4i—Co—N2—C443.4 (5)C16—C11—C12—C131.0 (8)
N4—Co—N2—C4147.7 (4)C11—C12—C13—C141.6 (7)
C3—N1—C2—C1110.4 (7)C11—C12—C13—C17178.7 (4)
C5—N1—C2—C164.5 (9)C12—C13—C14—C152.4 (6)
C4—N2—C3—N11.7 (6)C17—C13—C14—C15177.8 (4)
Co—N2—C3—N1179.2 (3)C13—C14—C15—C160.8 (6)
C5—N1—C3—N21.0 (7)C13—C14—C15—C18177.7 (4)
C2—N1—C3—N2176.6 (5)C12—C11—C16—C152.6 (8)
O1—Co—N4—C1083.3 (4)C14—C15—C16—C111.7 (7)
N2—Co—N4—C1047.2 (4)C18—C15—C16—C11179.8 (4)
O4i—Co—N4—C10155.7 (4)Co—O1—C17—O20.2 (5)
O1—Co—N4—C991.9 (4)Co—O1—C17—C13178.5 (3)
N2—Co—N4—C9137.7 (4)C12—C13—C17—O2174.6 (4)
O4i—Co—N4—C929.2 (4)C14—C13—C17—O25.6 (6)
C3—N2—C4—C51.8 (7)C12—C13—C17—O14.0 (6)
Co—N2—C4—C5179.4 (4)C14—C13—C17—O1175.7 (4)
N2—C4—C5—N11.3 (8)Coii—O4—C18—O32.6 (5)
C3—N1—C5—C40.2 (7)Coii—O4—C18—C15176.4 (3)
C2—N1—C5—C4175.5 (6)C14—C15—C18—O3138.0 (4)
C10—N3—C7—C678.9 (6)C16—C15—C18—O340.5 (6)
C8—N3—C7—C696.6 (6)C14—C15—C18—O441.0 (6)
C10—N3—C8—C90.7 (6)C16—C15—C18—O4140.5 (4)
C7—N3—C8—C9176.8 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.932.452.768 (5)100
C3—H3A···O3iii0.932.403.260 (6)154
C5—H5A···O3iv0.932.413.327 (7)168
Symmetry codes: (iii) x, y1/2, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C5H8N2)2]
Mr415.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.174 (3), 9.6650 (19), 13.183 (3)
β (°) 104.63 (3)
V3)1870.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.833, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
3360, 3276, 2711
Rint0.034
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.152, 1.02
No. of reflections3276
No. of parameters233
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co—O11.956 (3)Co—O4i2.008 (3)
Co—N22.008 (4)Co—N42.035 (3)
O1—Co—N2118.23 (14)O1—Co—N4108.77 (13)
O1—Co—O4i115.92 (12)N2—Co—N4109.39 (15)
N2—Co—O4i104.31 (13)O4i—Co—N498.31 (13)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.932.452.768 (5)100
C3—H3A···O3ii0.932.403.260 (6)154
C5—H5A···O3iii0.932.413.327 (7)168
Symmetry codes: (ii) x, y1/2, z1/2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J., Chen, Y., Li, Z., Zhou, R., Xu, X. & Xu, J. (2007). J. Mol. Struct. 842, 125–131.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds