organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Methyl-2-phenyl-2H-pyrazol-3-ol

Qiang Wang,^a Yi Zhang,^a Rong Wang,^a Yi-Lin Yang^{a*} and Feng Zhi^b*

^aDepartment of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, and ^bLaboratory of Neuronal Injury and Protection, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China

Correspondence e-mail: czfph@yahoo.com.cn, danielzhif@yahoo.com.cn

Received 28 August 2008; accepted 6 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.107; data-to-parameter ratio = 16.1.

The title compound, C₁₀H₁₀N₂O, known as Edaravone (MCI-186), was crystallized from methanol. The two independent molecules in the asymmetric unit are linked through an O- $H \cdots O$ hydrogen bond. One molecule adopts a ketone form, while the other adopts an enol form. In the crystal structure, molecules are linked through intermolecular N-H···O hydrogen bonds, forming chains running along the b axis.

Related literature

For background to the compound, see: Watanabe et al. (1994); The Edaravone Acute Infarction Study Group (2003). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_{10}H_{10}N_2O$

 $M_r = 174.20$

Monoclinic, $P2_1/c$	
a = 10.336 (2) Å	
b = 11.154 (2) Å	
c = 15.863 (3) Å	
$\beta = 95.157 \ (3)^{\circ}$	
V = 1821.4 (6) Å ³	

Data collection

Bruker SMART CCD area-detector	10551 measured reflections
diffractometer	3923 independent reflections
Absorption correction: multi-scan	2894 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.025$
$T_{\min} = 0.981, \ T_{\max} = 0.983$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$vR(F^2) = 0.106$	independent and constrained
S = 1.04	refinement
3923 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
2 restraints	

Z = 8

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N2 - H2A \cdots N4^{i} \\ O2 - H2B \cdots O1 \end{array}$	0.907(9) 0.870(9)	1.904 (10) 1.618 (10)	2.7999 (17) 2.4813 (15)	169.4 (17) 170.9 (19)
02-1120-001	0.070 (5)	1.010 (10)	2.4015 (15)	170.5 (1

Symmetry code: (i) x, y - 1, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2259).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

The Edaravone Acute Infarction Study Group (2003). Cerebrovasc. Dis. 15, 222-229

Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1994). J. Pharmacol. Exp. Ther. 268, 1597-1604.

 $0.23 \times 0.23 \times 0.20 \text{ mm}$

supporting information

Acta Cryst. (2008). E64, o1924 [doi:10.1107/S1600536808028559]

5-Methyl-2-phenyl-2H-pyrazol-3-ol

Qiang Wang, Yi Zhang, Rong Wang, Yi-Lin Yang and Feng Zhi

S1. Comment

Edaravone (5-methyl-2-phenyl-2*H*-pyrazol-3-ol, MCI-186) is a free-radical scavenger that was approved by the Ministry of Health, Labor, and Welfare of Japan in 2001, and is now widely used for the treatment of acute cerebral infarction (Watanabe *et al.*, 1994; The Edaravone Acute Infarction Study Group, 2003). We report in this paper the crystal structure of the compound, (I).

The compound consists of two independent molecules (Fig. 1), which are linked through an intramolecular O2— $H2B\cdotsO1$ hydrogen bond (Table 1). One molecule adopts a ketone form, while the other adopts an enol form. In the ketone molecule, the dihedral angle between the C1–C6 benzene ring and the N1/N2/C9/C8/C7 ring is 22.9 (2)°. In the enol molecule, the dihedral angle between the C11–C16 benzene ring and the N3/N4/C19/C18/C17 ring is 34.3 (2)°. In the compound, all the bond lengths are within normal ranges (Allen *et al.*, 1987). The bond length of C17–O2 [1.325 (2) Å] is longer than that of C7–O1 [1.260 (2) Å], which is caused by the enol form.

In the crystal structure, molecules are linked through intermolecular N–H \cdots O hydrogen bonds (Table 1), forming chains running along the *b* axis (Fig. 2).

S2. Experimental

The crystal of the compound was recrystallized by edaravone in methanol.

S3. Refinement

H2A and H2B were located in a difference Fourier map and refined isotropically, with N–H and O–H distances restrained to 0.90 (1) and 0.85 (1) Å, and with U_{iso} (H) set to 0.08 Å². Other H atoms were constrained to idealized geometries, with C–H = 0.93–0.96 Å, and with U_{iso} (H) set to $1.2U_{eq}$ (C) and $1.5U_{eq}$ (methyl C).

Figure 1

The structure of (I) at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

5-Methyl-2-phenyl-2H-pyrazol-3-ol

Crystal data $C_{10}H_{10}N_{2}O$ $M_{r} = 174.20$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 10.336 (2) Å b = 11.154 (2) Å c = 15.863 (3) Å $\beta = 95.157 (3)^{\circ}$ $V = 1821.4 (6) \text{ Å}^{3}$ Z = 8

F(000) = 736 $D_x = 1.271 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3931 reflections $\theta = 2.3-29.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.23 \times 0.23 \times 0.20 \text{ mm}$ Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.981, T_{\max} = 0.983$ Refinement	10551 measured reflections 3923 independent reflections 2894 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -13 \rightarrow 11$ $k = -13 \rightarrow 14$ $l = -20 \rightarrow 18$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent
$wR(F^2) = 0.106$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.3053P]$
3923 reflections	where $P = (F_o^2 + 2F_c^2)/3$
243 parameters	$(\Delta/\sigma)_{max} < 0.001$
2 restraints	$\Delta\rho_{max} = 0.17$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.14$ e Å ⁻³
direct methods	Extinction correction: <i>SHELXL</i> ,
Secondary atom site location: difference Fourier	Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
map	Extinction coefficient: 0.0087 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.76081 (11)	0.23408 (9)	0.09473 (8)	0.0652 (3)	
02	0.63865 (11)	0.42520 (9)	0.07652 (7)	0.0577 (3)	
N1	0.80235 (11)	0.03414 (9)	0.07061 (8)	0.0469 (3)	
N2	0.76341 (13)	-0.04917 (10)	0.00921 (8)	0.0516 (3)	
N3	0.69321 (11)	0.62596 (9)	0.06745 (7)	0.0418 (3)	
N4	0.76998 (12)	0.70070 (10)	0.02382 (8)	0.0490 (3)	
C1	0.91015 (13)	0.01075 (12)	0.12978 (9)	0.0457 (3)	
C2	0.92942 (16)	0.07840 (15)	0.20276 (10)	0.0603 (4)	
H2	0.8722	0.1399	0.2131	0.072*	
C3	1.03427 (19)	0.05375 (19)	0.26009 (12)	0.0768 (5)	
Н3	1.0481	0.0997	0.3090	0.092*	
C4	1.1181 (2)	-0.0372 (2)	0.24600 (13)	0.0814 (6)	
H4	1.1881	-0.0536	0.2853	0.098*	
C5	1.09872 (17)	-0.10395 (18)	0.17403 (14)	0.0755 (5)	
H5	1.1557	-0.1661	0.1647	0.091*	

C6	0.00550(15)	-0.08041(15)	0 11475 (11)	0.0507 (4)
	0.99330 (13)	-0.08041 (13)	0.11473(11)	0.0397 (4)
Ho	0.9837	-0.1255	0.0653	0.072*
C7	0./3814 (14)	0.14046 (12)	0.05144 (10)	0.0486 (4)
C8	0.65398 (16)	0.11675 (14)	-0.02083 (10)	0.0566 (4)
H8	0.5970	0.1713	-0.0486	0.068*
C9	0.66976 (15)	0.00076 (14)	-0.04331 (10)	0.0536 (4)
C10	0.6047 (2)	-0.07170 (17)	-0.11335 (11)	0.0760 (5)
H10A	0.6586	-0.0744	-0.1596	0.114*
H10B	0.5227	-0.0359	-0.1321	0.114*
H10C	0.5908	-0.1517	-0.0937	0.114*
C11	0.61818 (14)	0.67394 (12)	0.12999 (8)	0.0441 (3)
C12	0.49765 (15)	0.62664 (14)	0.14196 (10)	0.0545 (4)
H12	0.4655	0.5611	0.1104	0.065*
C13	0.42556 (18)	0.67832 (19)	0.20167 (12)	0.0755 (6)
H13	0.3450	0.6462	0.2108	0.091*
C14	0.4708 (2)	0.7760 (2)	0.24752 (12)	0.0860 (7)
H14	0.4205	0.8110	0.2866	0.103*
C15	0.5904 (2)	0.82150 (17)	0.23553 (11)	0.0799 (6)
H15	0.6213	0.8876	0.2669	0.096*
C16	0.66614 (18)	0.77067 (13)	0.17737 (10)	0.0584 (4)
H16	0.7482	0.8012	0.1703	0.070*
C17	0.70530 (13)	0.51085 (11)	0.04194 (9)	0.0430 (3)
C18	0.79096 (15)	0.51055 (13)	-0.01882 (10)	0.0526 (4)
H18	0.8190	0.4445	-0.0479	0.063*
C19	0.82756 (15)	0.62954 (13)	-0.02813 (10)	0.0510 (4)
C20	0.91583 (19)	0.68181 (17)	-0.08846 (13)	0.0794 (6)
H20A	0.9060	0.7674	-0.0900	0.119*
H20B	0.8938	0.6496	-0.1440	0.119*
H20C	1.0042	0.6619	-0.0700	0.119*
H2A	0.7692 (17)	-0.1287 (9)	0.0208 (11)	0.080*
H2B	0.6823 (16)	0.3585 (12)	0.0773 (12)	0.080*
	- (-)	- ()	- ()	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0757 (7)	0.0322 (5)	0.0864 (8)	0.0043 (5)	-0.0001 (6)	-0.0043 (5)
O2	0.0673 (7)	0.0311 (5)	0.0772 (7)	0.0007 (5)	0.0205 (6)	0.0059 (5)
N1	0.0531 (7)	0.0283 (6)	0.0577 (7)	0.0011 (5)	-0.0031 (6)	0.0011 (5)
N2	0.0640 (8)	0.0310 (6)	0.0581 (7)	0.0018 (5)	-0.0030 (6)	0.0012 (5)
N3	0.0493 (6)	0.0298 (6)	0.0476 (6)	0.0024 (5)	0.0114 (5)	0.0017 (5)
N4	0.0588 (8)	0.0324 (6)	0.0582 (7)	-0.0021 (5)	0.0185 (6)	0.0015 (5)
C1	0.0456 (8)	0.0362 (7)	0.0551 (8)	-0.0040 (6)	0.0031 (6)	0.0098 (6)
C2	0.0646 (10)	0.0555 (10)	0.0603 (10)	-0.0023 (8)	0.0035 (8)	0.0003 (8)
C3	0.0793 (13)	0.0876 (14)	0.0607 (11)	-0.0113 (11)	-0.0084 (9)	0.0024 (10)
C4	0.0653 (12)	0.1020 (16)	0.0736 (12)	-0.0004 (11)	-0.0122 (10)	0.0206 (12)
C5	0.0569 (10)	0.0769 (12)	0.0919 (14)	0.0161 (9)	0.0016 (10)	0.0187 (11)
C6	0.0567 (9)	0.0531 (9)	0.0687 (10)	0.0082 (7)	0.0024 (8)	0.0050 (8)
C7	0.0513 (8)	0.0310 (7)	0.0640 (9)	0.0023 (6)	0.0082 (7)	0.0075 (7)

C8	0.0597 (9)	0.0453 (9)	0.0635 (10)	0.0101 (7)	-0.0019 (8)	0.0127 (7)
C9	0.0599 (9)	0.0477 (9)	0.0523 (8)	0.0013 (7)	-0.0006 (7)	0.0069 (7)
C10	0.0886 (13)	0.0739 (12)	0.0622 (10)	-0.0045 (10)	-0.0120 (9)	-0.0032 (9)
C11	0.0544 (8)	0.0339 (7)	0.0447 (7)	0.0122 (6)	0.0093 (6)	0.0067 (6)
C12	0.0524 (9)	0.0531 (9)	0.0586 (9)	0.0130 (7)	0.0090 (7)	0.0135 (7)
C13	0.0686 (11)	0.0872 (14)	0.0749 (12)	0.0326 (10)	0.0304 (9)	0.0286 (11)
C14	0.1171 (18)	0.0853 (15)	0.0612 (11)	0.0533 (13)	0.0383 (12)	0.0143 (11)
C15	0.1298 (18)	0.0540 (11)	0.0579 (10)	0.0258 (11)	0.0198 (11)	-0.0063 (8)
C16	0.0812 (11)	0.0414 (8)	0.0537 (9)	0.0066 (8)	0.0121 (8)	-0.0019 (7)
C17	0.0495 (8)	0.0285 (6)	0.0511 (7)	0.0027 (6)	0.0048 (6)	0.0015 (6)
C18	0.0622 (9)	0.0379 (8)	0.0597 (9)	0.0065 (7)	0.0166 (7)	-0.0068 (7)
C19	0.0538 (8)	0.0432 (8)	0.0580 (9)	0.0022 (6)	0.0163 (7)	-0.0002 (7)
C20	0.0868 (13)	0.0683 (12)	0.0901 (13)	-0.0032 (10)	0.0467 (11)	0.0008 (10)

Geometric parameters (Å, °)

01—C7	1.260 (2)	C8—C9	1.356 (2)
O2—C17	1.325 (2)	C8—H8	0.9300
O2—H2B	0.870 (9)	C9—C10	1.485 (2)
N1—C7	1.379 (2)	C10—H10A	0.9600
N1—N2	1.380 (2)	C10—H10B	0.9600
N1—C1	1.415 (2)	C10—H10C	0.9600
N2—C9	1.340 (2)	C11—C16	1.381 (2)
N2—H2A	0.907 (9)	C11—C12	1.382 (2)
N3—C17	1.355 (2)	C12—C13	1.383 (2)
N3—N4	1.379 (2)	C12—H12	0.9300
N3—C11	1.418 (2)	C13—C14	1.369 (3)
N4—C19	1.323 (2)	C13—H13	0.9300
C1—C6	1.381 (2)	C14—C15	1.365 (3)
C1—C2	1.381 (2)	C14—H14	0.9300
С2—С3	1.378 (2)	C15—C16	1.384 (2)
С2—Н2	0.9300	C15—H15	0.9300
С3—С4	1.366 (3)	C16—H16	0.9300
С3—Н3	0.9300	C17—C18	1.366 (2)
C4—C5	1.362 (3)	C18—C19	1.392 (2)
C4—H4	0.9300	C18—H18	0.9300
С5—С6	1.383 (2)	C19—C20	1.498 (2)
С5—Н5	0.9300	C20—H20A	0.9600
С6—Н6	0.9300	C20—H20B	0.9600
С7—С8	1.400 (2)	C20—H20C	0.9600
C17 O2 H2B	100 5 (13)	C0 C10 H10B	109 5
C1 = 02 = 112B C7 = N1 = N2	109.5(13) 108.62(11)	$H_{10A} = C_{10} = H_{10B}$	109.5
C7 - N1 - N2	100.02(11) 120.74(12)	$C_{0} C_{10} H_{10}C$	109.5
$N_{1} = N_{1} = C_{1}$	129.74(12) 120.42(11)	$H_{10A} = C_{10} = H_{10C}$	109.5
$\frac{1}{1}$	120.42(11) 107.01(11)	H10R $C10$ H10C	109.5
$C_{2} = 1N2 = 1N1$ $C_{2} = 1N2 = 12A$	107.91(11) 124.3(11)	$C_{16} C_{11} C_{12}$	109.5 120 50 (14)
V_{7} M_{2} M_{2	124.3(11) 120.4(12)	C10-C11-C12	120.30 (14)
$INI - INZ - \Pi ZA$	120.4 (12)	C10-C11-IN3	116.91 (13)

C17—N3—N4	110.49 (11)	C12—C11—N3	120.57 (13)
C17—N3—C11	129.60 (11)	C11—C12—C13	118.88 (17)
N4—N3—C11	119.90 (10)	C11—C12—H12	120.6
C19—N4—N3	105.14 (11)	C13—C12—H12	120.6
C6—C1—C2	120.05 (14)	C14—C13—C12	121.09 (19)
C6-C1-N1	119.90 (13)	C14—C13—H13	119.5
C2-C1-N1	120.05 (13)	C12—C13—H13	119.5
C3—C2—C1	119.32 (17)	C15—C14—C13	119.52 (17)
С3—С2—Н2	120.3	C15—C14—H14	120.2
C1—C2—H2	120.3	C13—C14—H14	120.2
C4—C3—C2	120.86 (18)	C14—C15—C16	120.93 (19)
С4—С3—Н3	119.6	C14—C15—H15	119.5
С2—С3—Н3	119.6	C16—C15—H15	119.5
C5—C4—C3	119.69 (17)	C11—C16—C15	119.06 (18)
C5—C4—H4	120.2	C11—C16—H16	120.5
C3—C4—H4	120.2	C15—C16—H16	120.5
C4—C5—C6	120.84 (18)	O2—C17—N3	119.60 (12)
С4—С5—Н5	119.6	O2—C17—C18	133.19 (13)
С6—С5—Н5	119.6	N3—C17—C18	107.21 (12)
C1—C6—C5	119.23 (17)	C17—C18—C19	105.80 (12)
С1—С6—Н6	120.4	C17—C18—H18	127.1
С5—С6—Н6	120.4	C19—C18—H18	127.1
O1—C7—N1	122.01 (13)	N4-C19-C18	111.36 (13)
O1—C7—C8	132.37 (13)	N4—C19—C20	119.87 (13)
N1—C7—C8	105.62 (12)	C18—C19—C20	128.74 (14)
C9—C8—C7	108.35 (13)	C19—C20—H20A	109.5
С9—С8—Н8	125.8	С19—С20—Н20В	109.5
С7—С8—Н8	125.8	H20A-C20-H20B	109.5
N2—C9—C8	109.29 (14)	С19—С20—Н20С	109.5
N2—C9—C10	119.47 (14)	H20A—C20—H20C	109.5
C8—C9—C10	131.23 (15)	H20B—C20—H20C	109.5
C9—C10—H10A	109.5		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····N4 ⁱ	0.91 (1)	1.90(1)	2.7999 (17)	169 (2)
O2—H2 <i>B</i> ···O1	0.87 (1)	1.62 (1)	2.4813 (15)	171 (2)

Symmetry code: (i) x, y-1, z.