metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis[2-(di­cyclo­hexyl­phosphan­yl)­bi­phenyl-κP]palladium(II)

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: xubohan@163.com

(Received 21 September 2008; accepted 24 September 2008; online 30 September 2008)

The title compound, [PdBr2(C24H31P)2], has a distorted trans square-planar coordination of the Pd atom, which occupies an inversion centre. The most important bond distances include Pd—P of 2.380 (2) Å and Pd—Br of 2.515 (2) Å. Weak inter­molecular ππ inter­actions between the benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.949 (6) Å] are present via crystallographic inversion centres, resulting in a one-dimensional supra­molecular architecture.

Related literature

For related literature, see: Barder et al. (2005[Barder, T. E., Walker, S. D., Martinelli, J. R. & Buchwald, S. L. (2005). J. Am. Chem. Soc. 127, 4685-4696.]); Christmann et al. (2006[Christmann, U., Pantazis, D. A., Benet-Buchholz, J., McGrady, J. E., Maseras, F. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 6376-6390.]); Stark & Whitmire (1997[Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007.]); Tomori et al. (2000[Tomori, H., Fox, J. M. & Buchwald, S. L. (2000). J. Org. Chem. 65, 5334-5341.]); Tsuji (1995[Tsuji, J. (1995). Palladium Reagents and Catalysts. Chichester: Wiley.]); Xu et al. (2007[Xu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett. 48, 1619-1623.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C24H31P)2]

  • Mr = 967.14

  • Triclinic, [P \overline 1]

  • a = 9.817 (8) Å

  • b = 9.827 (8) Å

  • c = 11.957 (10) Å

  • α = 91.582 (11)°

  • β = 108.822 (10)°

  • γ = 103.713 (10)°

  • V = 1053.9 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 291 (2) K

  • 0.14 × 0.10 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.723, Tmax = 0.803

  • 7316 measured reflections

  • 3811 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.180

  • S = 1.10

  • 3811 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.42 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and SHELXTL.

Supporting information


Comment top

Phosphine complexes of palladium have widely been used as catalysts for various reactions (Tsuji, 1995). These complexes are easily prepared from palladium(II) salts and an excess of phosphine ligands. Among them, monophosphinobiaryl complexes of palladium are one of the most important ones (Barder et al., 2005; Christmann et al., 2006; Xu et al., 2007).

The title complex has crystallographic inversion symmetry Ci (Fig.1). The Pd atom is in a square-planar environment, while the trans 2-(Dicyclohexylphosphanyl)biphenyl ligands are in an eclipsed conformation. The dihedral angles of the benzene rings are 60.8 (2)°. The Pd—P [2.380 (2) Å] and Pd—Br [2.515 (5) Å] bond lengths are longer than the related triphenylphosphine complex of palladium [2.336 (2)Å and 2.4169 (13) Å](Stark & Whitmire, 1997) possibly due to the steric bulk of the ligand. Weak intermolecular π···π interactions between the benzene rings C19 - C24 (Cg4) of inversion related adjacent molecules [centroid-centroid distance Cg4···Cg4ii is 3.949 (6) Å, the perpendicular distance Cg4 on ring Cg4ii is 3.582 Å, and the slippage is 1.663 Å, symmetry code ii = 1 - x, 1 - y, 1 - z] were calculated for the structure of the title complex with the programme PLATON (Spek, 2003), resulting in a one-dimensional supramolecular architecture.

Related literature top

For related literature, see: Barder et al. (2005); Christmann et al. (2006); Stark & Whitmire (1997); Tomori et al. (2000); Tsuji (1995); Xu et al. (2007).

Experimental top

2-(Dicyclohexylphosphanyl)biphenyl was prepared as described in the literature (Tomori et al., 2000). A solution of PdBr2(PhCN)2 (1 mmol) and 2-(Dicyclohexylphosphanyl)biphenyl (2 mmol) in dry benzene (5 ml) was stirred for 1 day, removal of solvent resulted in a yellow powder that was recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as yellow crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms were placed in calculated positions (Csp2—H = 0.93 Å, Csp3—H = 0.97 -0.98 Å) and refined as riding on their carriers with isotropic displacement parameters Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids of the non-hydrogen atoms drawn at the 30% probability level. Inversion related atoms are labelled with an A.(Symmetry code: 2 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the chain motif of molecules formed by the intermolecular π···π interactions, extending along the a axis.
Dibromidobis[2-(dicyclohexylphosphanyl)biphenyl-κP]palladium(II) top
Crystal data top
[PdBr2(C24H31P)2]Z = 1
Mr = 967.14F(000) = 496
Triclinic, P1Dx = 1.524 Mg m3
a = 9.817 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.827 (8) ÅCell parameters from 1503 reflections
c = 11.957 (10) Åθ = 2.4–21.7°
α = 91.582 (11)°µ = 2.45 mm1
β = 108.822 (10)°T = 291 K
γ = 103.713 (10)°Block, yellow
V = 1053.9 (15) Å30.14 × 0.10 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3811 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.723, Tmax = 0.803k = 1111
7316 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0609P)2 + 7.3363P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
[PdBr2(C24H31P)2]γ = 103.713 (10)°
Mr = 967.14V = 1053.9 (15) Å3
Triclinic, P1Z = 1
a = 9.817 (8) ÅMo Kα radiation
b = 9.827 (8) ŵ = 2.45 mm1
c = 11.957 (10) ÅT = 291 K
α = 91.582 (11)°0.14 × 0.10 × 0.09 mm
β = 108.822 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3811 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2810 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.803Rint = 0.039
7316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.10Δρmax = 0.71 e Å3
3811 reflectionsΔρmin = 1.42 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd11.00000.50000.50000.0252 (2)
Br10.96825 (13)0.71510 (13)0.59715 (10)0.0612 (4)
P10.8353 (2)0.5540 (2)0.32229 (17)0.0267 (5)
C10.7959 (9)0.4354 (9)0.1852 (7)0.0306 (18)
H10.77030.33920.20600.037*
C20.6642 (9)0.4454 (10)0.0766 (7)0.038 (2)
H2A0.57630.43780.09900.045*
H2B0.68700.53580.04680.045*
C30.6343 (10)0.3264 (10)0.0199 (8)0.044 (2)
H3A0.60210.23660.00780.053*
H3B0.55460.33550.09030.053*
C40.7702 (10)0.3287 (10)0.0518 (8)0.045 (2)
H4A0.79450.41310.08930.054*
H4B0.74880.24790.10900.054*
C50.9032 (10)0.3258 (9)0.0551 (8)0.038 (2)
H5A0.99030.33440.03150.046*
H5B0.88430.23690.08790.046*
C60.9318 (9)0.4476 (9)0.1490 (7)0.0362 (19)
H6A1.01670.44560.21800.043*
H6B0.95460.53660.11710.043*
C70.9148 (9)0.7385 (9)0.2981 (7)0.0330 (18)
H70.90690.79810.36160.040*
C80.8334 (10)0.7900 (9)0.1839 (8)0.044 (2)
H8A0.84070.73750.11710.052*
H8B0.72880.77240.17510.052*
C90.8963 (11)0.9454 (10)0.1819 (10)0.056 (3)
H9A0.84710.97230.10480.067*
H9B0.87610.99870.24150.067*
C101.0617 (11)0.9819 (11)0.2059 (10)0.057 (3)
H10A1.08080.94100.13960.068*
H10B1.09931.08350.21240.068*
C111.1426 (10)0.9292 (10)0.3177 (10)0.054 (3)
H11A1.13450.97940.38530.064*
H11B1.24740.94820.32680.064*
C121.0801 (9)0.7721 (9)0.3166 (8)0.039 (2)
H12A1.13220.74190.39140.047*
H12B1.09570.72100.25310.047*
C130.6373 (9)0.2210 (10)0.3590 (8)0.043 (2)
H130.70630.27130.42960.052*
C140.6340 (11)0.0838 (10)0.3309 (9)0.048 (2)
H140.70070.04220.38320.058*
C150.5362 (12)0.0082 (11)0.2291 (10)0.055 (3)
H150.53730.08410.21070.066*
C160.4362 (12)0.0670 (11)0.1533 (9)0.056 (3)
H160.36890.01480.08290.067*
C170.4337 (10)0.2035 (10)0.1801 (8)0.047 (2)
H170.36180.24120.12920.056*
C180.5374 (9)0.2858 (9)0.2823 (7)0.0338 (19)
C190.5333 (9)0.4319 (9)0.3139 (7)0.0324 (18)
C200.4018 (9)0.4472 (10)0.3274 (8)0.043 (2)
H200.32190.36780.31140.051*
C210.3852 (10)0.5738 (11)0.3630 (8)0.047 (2)
H210.29670.57950.37330.056*
C220.4983 (11)0.6902 (11)0.3831 (8)0.046 (2)
H220.48710.77700.40560.056*
C230.6325 (10)0.6814 (10)0.3703 (8)0.040 (2)
H230.71040.76260.38620.048*
C240.6521 (9)0.5536 (9)0.3340 (7)0.0306 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0260 (5)0.0262 (5)0.0248 (5)0.0099 (4)0.0083 (3)0.0043 (3)
Br10.0626 (7)0.0682 (8)0.0511 (7)0.0210 (6)0.0141 (5)0.0072 (5)
P10.0255 (10)0.0281 (11)0.0275 (10)0.0093 (8)0.0084 (8)0.0049 (8)
C10.032 (4)0.035 (5)0.031 (4)0.014 (4)0.014 (3)0.007 (3)
C20.032 (4)0.046 (5)0.036 (5)0.015 (4)0.007 (4)0.004 (4)
C30.043 (5)0.054 (6)0.029 (5)0.009 (4)0.007 (4)0.000 (4)
C40.051 (6)0.045 (6)0.036 (5)0.001 (4)0.021 (4)0.005 (4)
C50.047 (5)0.036 (5)0.043 (5)0.015 (4)0.028 (4)0.004 (4)
C60.038 (5)0.038 (5)0.034 (4)0.012 (4)0.013 (4)0.005 (4)
C70.032 (4)0.035 (5)0.036 (5)0.014 (4)0.012 (4)0.007 (4)
C80.040 (5)0.034 (5)0.056 (6)0.010 (4)0.013 (4)0.020 (4)
C90.047 (6)0.039 (6)0.077 (7)0.012 (5)0.013 (5)0.024 (5)
C100.056 (6)0.041 (6)0.072 (7)0.007 (5)0.023 (6)0.019 (5)
C110.033 (5)0.050 (6)0.073 (7)0.002 (4)0.019 (5)0.013 (5)
C120.031 (4)0.037 (5)0.051 (5)0.010 (4)0.015 (4)0.014 (4)
C130.031 (5)0.059 (6)0.039 (5)0.016 (4)0.008 (4)0.010 (4)
C140.052 (6)0.037 (6)0.059 (6)0.020 (5)0.017 (5)0.013 (5)
C150.059 (6)0.032 (6)0.068 (7)0.005 (5)0.021 (6)0.002 (5)
C160.055 (6)0.046 (6)0.052 (6)0.005 (5)0.011 (5)0.004 (5)
C170.037 (5)0.045 (6)0.044 (5)0.001 (4)0.002 (4)0.007 (4)
C180.030 (4)0.031 (5)0.039 (5)0.003 (3)0.015 (4)0.003 (4)
C190.029 (4)0.034 (5)0.035 (4)0.010 (3)0.011 (3)0.004 (4)
C200.027 (4)0.048 (6)0.052 (6)0.010 (4)0.012 (4)0.007 (4)
C210.030 (5)0.067 (7)0.053 (6)0.023 (5)0.018 (4)0.009 (5)
C220.055 (6)0.051 (6)0.051 (6)0.034 (5)0.026 (5)0.012 (5)
C230.038 (5)0.040 (5)0.047 (5)0.015 (4)0.019 (4)0.005 (4)
C240.033 (4)0.034 (5)0.029 (4)0.014 (4)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
Pd1—P1i2.380 (2)C9—H9B0.9700
Pd1—P12.380 (2)C10—C111.495 (14)
Pd1—Br1i2.515 (2)C10—H10A0.9700
Pd1—Br12.515 (2)C10—H10B0.9700
P1—C241.848 (8)C11—C121.518 (13)
P1—C11.862 (8)C11—H11A0.9700
P1—C71.866 (8)C11—H11B0.9700
C1—C61.510 (11)C12—H12A0.9700
C1—C21.533 (11)C12—H12B0.9700
C1—H10.9800C13—C141.371 (13)
C2—C31.527 (12)C13—C181.398 (12)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.347 (14)
C3—C41.496 (12)C14—H140.9300
C3—H3A0.9700C15—C161.358 (14)
C3—H3B0.9700C15—H150.9300
C4—C51.511 (12)C16—C171.378 (14)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—C181.391 (12)
C5—C61.527 (11)C17—H170.9300
C5—H5A0.9700C18—C191.488 (12)
C5—H5B0.9700C19—C201.393 (11)
C6—H6A0.9700C19—C241.410 (11)
C6—H6B0.9700C20—C211.367 (13)
C7—C81.512 (11)C20—H200.9300
C7—C121.518 (11)C21—C221.345 (14)
C7—H70.9800C21—H210.9300
C8—C91.509 (12)C22—C231.396 (12)
C8—H8A0.9700C22—H220.9300
C8—H8B0.9700C23—C241.394 (12)
C9—C101.505 (14)C23—H230.9300
C9—H9A0.9700
P1i—Pd1—P1180.0C10—C9—C8111.9 (8)
P1i—Pd1—Br1i85.15 (7)C10—C9—H9A109.2
P1—Pd1—Br1i94.85 (7)C8—C9—H9A109.2
P1i—Pd1—Br194.85 (7)C10—C9—H9B109.2
P1—Pd1—Br185.15 (7)C8—C9—H9B109.2
Br1i—Pd1—Br1180.000 (2)H9A—C9—H9B107.9
C24—P1—C1106.1 (4)C11—C10—C9111.8 (8)
C24—P1—C7104.9 (4)C11—C10—H10A109.2
C1—P1—C7108.6 (4)C9—C10—H10A109.2
C24—P1—Pd1112.3 (3)C11—C10—H10B109.2
C1—P1—Pd1115.8 (3)C9—C10—H10B109.2
C7—P1—Pd1108.5 (3)H10A—C10—H10B107.9
C6—C1—C2109.2 (7)C10—C11—C12111.6 (8)
C6—C1—P1112.5 (6)C10—C11—H11A109.3
C2—C1—P1116.7 (5)C12—C11—H11A109.3
C6—C1—H1105.9C10—C11—H11B109.3
C2—C1—H1105.9C12—C11—H11B109.3
P1—C1—H1105.9H11A—C11—H11B108.0
C3—C2—C1109.1 (7)C11—C12—C7110.5 (7)
C3—C2—H2A109.9C11—C12—H12A109.6
C1—C2—H2A109.9C7—C12—H12A109.6
C3—C2—H2B109.9C11—C12—H12B109.6
C1—C2—H2B109.9C7—C12—H12B109.6
H2A—C2—H2B108.3H12A—C12—H12B108.1
C4—C3—C2111.7 (7)C14—C13—C18120.4 (9)
C4—C3—H3A109.3C14—C13—H13119.8
C2—C3—H3A109.3C18—C13—H13119.8
C4—C3—H3B109.3C15—C14—C13121.4 (9)
C2—C3—H3B109.3C15—C14—H14119.3
H3A—C3—H3B107.9C13—C14—H14119.3
C3—C4—C5112.5 (7)C14—C15—C16119.8 (10)
C3—C4—H4A109.1C14—C15—H15120.1
C5—C4—H4A109.1C16—C15—H15120.1
C3—C4—H4B109.1C15—C16—C17120.4 (10)
C5—C4—H4B109.1C15—C16—H16119.8
H4A—C4—H4B107.8C17—C16—H16119.8
C4—C5—C6109.5 (7)C16—C17—C18120.9 (9)
C4—C5—H5A109.8C16—C17—H17119.6
C6—C5—H5A109.8C18—C17—H17119.6
C4—C5—H5B109.8C17—C18—C13117.0 (8)
C6—C5—H5B109.8C17—C18—C19121.4 (8)
H5A—C5—H5B108.2C13—C18—C19121.4 (8)
C1—C6—C5110.0 (7)C20—C19—C24118.2 (8)
C1—C6—H6A109.7C20—C19—C18116.4 (7)
C5—C6—H6A109.7C24—C19—C18125.4 (7)
C1—C6—H6B109.7C21—C20—C19122.8 (9)
C5—C6—H6B109.7C21—C20—H20118.6
H6A—C6—H6B108.2C19—C20—H20118.6
C8—C7—C12109.9 (7)C22—C21—C20119.2 (8)
C8—C7—P1117.0 (6)C22—C21—H21120.4
C12—C7—P1113.5 (5)C20—C21—H21120.4
C8—C7—H7105.1C21—C22—C23120.5 (9)
C12—C7—H7105.1C21—C22—H22119.8
P1—C7—H7105.1C23—C22—H22119.8
C9—C8—C7111.9 (8)C24—C23—C22121.3 (9)
C9—C8—H8A109.2C24—C23—H23119.3
C7—C8—H8A109.2C22—C23—H23119.3
C9—C8—H8B109.2C23—C24—C19117.9 (7)
C7—C8—H8B109.2C23—C24—P1117.6 (6)
H8A—C8—H8B107.9C19—C24—P1124.5 (6)
P1i—Pd1—P1—C24103 (35)C9—C10—C11—C1254.5 (12)
Br1i—Pd1—P1—C24120.1 (3)C10—C11—C12—C757.0 (11)
Br1—Pd1—P1—C2459.9 (3)C8—C7—C12—C1157.1 (10)
P1i—Pd1—P1—C120 (33)P1—C7—C12—C11169.7 (7)
Br1i—Pd1—P1—C12.1 (3)C18—C13—C14—C150.5 (15)
Br1—Pd1—P1—C1177.9 (3)C13—C14—C15—C161.5 (16)
P1i—Pd1—P1—C7142 (33)C14—C15—C16—C170.2 (16)
Br1i—Pd1—P1—C7124.4 (3)C15—C16—C17—C182.9 (15)
Br1—Pd1—P1—C755.6 (3)C16—C17—C18—C133.7 (14)
C24—P1—C1—C6168.1 (6)C16—C17—C18—C19178.3 (9)
C7—P1—C1—C655.8 (6)C14—C13—C18—C172.1 (13)
Pd1—P1—C1—C666.5 (6)C14—C13—C18—C19176.6 (8)
C24—P1—C1—C240.7 (7)C17—C18—C19—C2057.9 (11)
C7—P1—C1—C271.6 (7)C13—C18—C19—C20116.4 (9)
Pd1—P1—C1—C2166.1 (5)C17—C18—C19—C24123.8 (9)
C6—C1—C2—C359.6 (9)C13—C18—C19—C2461.9 (12)
P1—C1—C2—C3171.5 (6)C24—C19—C20—C212.3 (13)
C1—C2—C3—C455.9 (10)C18—C19—C20—C21176.1 (8)
C2—C3—C4—C554.7 (11)C19—C20—C21—C221.9 (14)
C3—C4—C5—C655.3 (10)C20—C21—C22—C231.4 (14)
C2—C1—C6—C561.9 (9)C21—C22—C23—C241.5 (14)
P1—C1—C6—C5166.9 (6)C22—C23—C24—C191.8 (12)
C4—C5—C6—C158.9 (9)C22—C23—C24—P1179.1 (7)
C24—P1—C7—C864.7 (7)C20—C19—C24—C232.2 (12)
C1—P1—C7—C848.4 (7)C18—C19—C24—C23176.0 (8)
Pd1—P1—C7—C8175.1 (6)C20—C19—C24—P1179.2 (6)
C24—P1—C7—C12165.6 (6)C18—C19—C24—P11.0 (12)
C1—P1—C7—C1281.3 (7)C1—P1—C24—C23139.6 (6)
Pd1—P1—C7—C1245.3 (7)C7—P1—C24—C2324.7 (7)
C12—C7—C8—C956.0 (10)Pd1—P1—C24—C2393.0 (6)
P1—C7—C8—C9172.6 (7)C1—P1—C24—C1943.4 (8)
C7—C8—C9—C1054.0 (12)C7—P1—C24—C19158.3 (7)
C8—C9—C10—C1152.8 (13)Pd1—P1—C24—C1984.1 (7)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PdBr2(C24H31P)2]
Mr967.14
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.817 (8), 9.827 (8), 11.957 (10)
α, β, γ (°)91.582 (11), 108.822 (10), 103.713 (10)
V3)1053.9 (15)
Z1
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.14 × 0.10 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.723, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
7316, 3811, 2810
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.180, 1.10
No. of reflections3811
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.42

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University, People's Republic of China.

References

First citationBarder, T. E., Walker, S. D., Martinelli, J. R. & Buchwald, S. L. (2005). J. Am. Chem. Soc. 127, 4685–4696.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristmann, U., Pantazis, D. A., Benet-Buchholz, J., McGrady, J. E., Maseras, F. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 6376–6390.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC9700007.  CrossRef IUCr Journals Google Scholar
First citationTomori, H., Fox, J. M. & Buchwald, S. L. (2000). J. Org. Chem. 65, 5334–5341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTsuji, J. (1995). Palladium Reagents and Catalysts. Chichester: Wiley.  Google Scholar
First citationXu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett. 48, 1619–1623.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds