Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

San-Jun Peng^a* and Hai-Yun Hou^b

^aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China

Correspondence e-mail: sanjunpeng@163.com

Received 12 September 2008; accepted 16 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.077; data-to-parameter ratio = 15.5.

The title compound, C₁₄H₁₂BrN₃O₃, was prepared by reaction of 5-bromo-3-methoxysalicylaldehyde and isonicotinohydrazide in methanol. The molecule is not planar and adopts a *trans* configuration with respect to the C=N bond. There is an intramolecular O-H···N hydrogen bond in the molecule. The dihedral angle between the benzene and pyridine rings is $12.2 (2)^{\circ}$. In the crystal structure, molecules are linked through intermolecular N-H···N hydrogen bonds, forming chains running along the *c*-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008), Chen et al. (2008); Alvarez et al. (2008); Ventura & Martins (2008); Kalinowski et al. (2008). For related structures, see: Peng & Hou (2008); Shan et al. (2008); Fun et al. (2008); Yehye et al. (2008); Ejsmont et al. (2008); Han et al. (2006); Lu et al. (2008).

Experimental

Crystal data C14H12BrN3O3 $M_r = 350.18$ Monoclinic, $P2_1/c$ a = 7.4937 (9) Å b = 15.8843 (19) Å c = 11.7994 (14) Å $\beta = 99.776 \ (2)^{\circ}$

V = 1384.1 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.98 \text{ mm}^{-1}$ T = 298 (2) K $0.20 \times 0.18 \times 0.18$ mm 8003 measured reflections

 $R_{\rm int} = 0.023$

3013 independent reflections

2299 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART 1000 CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2001)
  T_{\min} = 0.587, T_{\max} = 0.616
  (expected range = 0.557 - 0.584)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.076$	independent and constrained
S = 1.03	refinement
3013 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
195 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N2 - H2 \cdots N3^{i} \\ O1 - H1 \cdots N1 \end{array}$	0.889 (10)	2.255 (13)	3.126 (3)	166 (3)
	0.82	1.93	2.643 (2)	145

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The corresponding author gratefully acknowledges Changsha University of Science and Technology for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2539).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Alvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952-5961.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894-898.
- Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.
- El-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380-2401.
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, 01707.
- Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62. 05572-05573.
- Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331-344.
- Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, 01695.
- Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, 01864.
- Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64. 01363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612-624.
- Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, 0960.

supporting information

Acta Cryst. (2008). E64, o1995 [doi:10.1107/S1600536808029607]

N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

San-Jun Peng and Hai-Yun Hou

S1. Comment

Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl *et al.*, 2008; Chen *et al.*, 2008; Alvarez *et al.*, 2008; Ventura & Martins, 2008; Kalinowski *et al.*, 2008). In the last few years, a large number of hydrazones have been reported (Peng & Hou, 2008; Shan *et al.*, 2008; Fun *et al.*, 2008; Yehye *et al.*, 2008; Ejsmont *et al.*, 2008). As a continuation of our work in this area (Peng & Hou, 2008) we report here the crystal structure of the title compound, (I), Fig. 1.

In the molecule of the title compound (I) the C7=N1 length of 1.275 (3) Å indicates a typical C=N bond. The molecule exists in a *trans* configuration with respect to the methylidene unit (C7=N1), as observed in other similar compounds (Han *et al.*, 2006; Lu *et al.*, 2008). There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the benzene and pyridine rings is 12.2 (2)°, indicating the molecule is not planar. The bond lengths are in normal ranges (Allen *et al.*, 1987).

In the crystal structure, molecules are linked through intermolecular N—H…N hydrogen bonds (Table 1), forming chains running along the c direction (Fig. 2).

S2. Experimental

5-Bromo-3-methoxysalicylaldehyde (0.231 g, 1 mmol) was dissolved in methanol (50 ml), then isonicotinohydrazide (0.137 g, 1 mmol) was added slowly to the solution, and the mixture was heated at reflux with continuous stirring for 1 h. The solution was cooled to room temperature, yielding colorless crystallites. Recrystallization from an absolute methanol yielded block-like single crystals of the compound.

S3. Refinement

H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å, and with U_{iso} set at 0.08 Å². Other H atoms were placed in calculated positions with C—H distances of 0.93–0.96 Å, O— H distance of 0.82 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms; the intramolecular hydrogen bond is drawn as a dashed line.

Figure 2

The packing diagram of the title compound, viewed down the *b* axis. Hydrogen bonds are shown as dashed lines and hydrogen atoms not involved in these interactions have been omitted..

N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

Crystal data	
$C_{14}H_{12}BrN_{3}O_{3}$ $M_{r} = 350.18$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 7.4937 (9) Å b = 15.8843 (19) Å c = 11.7994 (14) Å $\beta = 99.776$ (2)° V = 1384.1 (3) Å ³ Z = 4	F(000) = 704 $D_x = 1.680 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3223 reflections $\theta = 2.5-29.2^{\circ}$ $\mu = 2.98 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.20 \times 0.18 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.587, T_{max} = 0.616$	8003 measured reflections 3013 independent reflections 2299 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -17 \rightarrow 20$ $l = -15 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3013 reflections	and constrained refinement
195 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 0.5984P]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.28353 (5)	0.417081 (18)	1.029574 (19)	0.06245 (12)	
01	0.1144 (2)	0.35958 (10)	0.51873 (12)	0.0457 (4)	
H1	0.1510	0.3985	0.4832	0.069*	
O2	0.0357 (2)	0.24186 (10)	0.65725 (13)	0.0473 (4)	
03	0.2696 (3)	0.49630 (11)	0.27412 (14)	0.0651 (6)	
N1	0.2592 (2)	0.50906 (11)	0.49603 (15)	0.0366 (4)	
N2	0.3058 (3)	0.57618 (11)	0.43355 (15)	0.0368 (4)	
N3	0.3899 (3)	0.77447 (12)	0.10697 (16)	0.0422 (5)	
C1	0.2305 (3)	0.45105 (13)	0.67791 (17)	0.0322 (5)	
C2	0.1524 (3)	0.37588 (13)	0.63313 (16)	0.0314 (4)	
C3	0.1127 (3)	0.31267 (13)	0.70889 (17)	0.0328 (5)	
C4	0.1548 (3)	0.32447 (14)	0.82630 (17)	0.0352 (5)	
H4	0.1314	0.2823	0.8765	0.042*	
C5	0.2323 (3)	0.39986 (14)	0.86841 (17)	0.0370 (5)	
C6	0.2695 (3)	0.46250 (14)	0.79697 (17)	0.0375 (5)	
H6	0.3208	0.5127	0.8274	0.045*	
C7	0.2776 (3)	0.51825 (13)	0.60474 (18)	0.0376 (5)	
H7	0.3220	0.5689	0.6378	0.045*	
C8	0.3013 (3)	0.56400 (14)	0.31958 (18)	0.0379 (5)	
C9	0.3367 (3)	0.64012 (13)	0.25079 (17)	0.0321 (5)	
C10	0.2656 (3)	0.63897 (14)	0.13450 (18)	0.0408 (5)	
H10	0.1991	0.5929	0.1022	0.049*	
C11	0.2945 (3)	0.70697 (15)	0.0670(2)	0.0449 (6)	
H11	0.2445	0.7055	-0.0107	0.054*	

C12	0.4597 (3)	0.77448 (14)	0.2190 (2)	0.0395 (5)	
H12	0.5287	0.8207	0.2484	0.047*	
C13	0.4358 (3)	0.71018 (13)	0.29379 (18)	0.0350 (5)	
H13	0.4853	0.7138	0.3714	0.042*	
C14	0.0108 (3)	0.17267 (14)	0.7293 (2)	0.0473 (6)	
H14A	0.1255	0.1566	0.7732	0.071*	
H14B	-0.0397	0.1261	0.6828	0.071*	
H14C	-0.0701	0.1886	0.7805	0.071*	
H2	0.331 (4)	0.6240 (12)	0.472 (2)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1005 (3)	0.0644 (2)	0.02233 (13)	-0.01755 (16)	0.01035 (12)	-0.00145 (11)
01	0.0749 (12)	0.0384 (9)	0.0233 (7)	-0.0087 (8)	0.0068 (7)	-0.0007 (6)
O2	0.0711 (11)	0.0338 (8)	0.0357 (8)	-0.0121 (8)	0.0053 (8)	0.0022 (7)
O3	0.1248 (17)	0.0381 (9)	0.0351 (9)	-0.0254 (10)	0.0207 (10)	-0.0054 (8)
N1	0.0502 (12)	0.0317 (10)	0.0292 (9)	0.0001 (8)	0.0104 (8)	0.0049 (7)
N2	0.0560 (12)	0.0280 (9)	0.0282 (9)	-0.0011 (9)	0.0123 (8)	0.0047 (7)
N3	0.0509 (12)	0.0379 (10)	0.0394 (10)	0.0030 (9)	0.0122 (9)	0.0087 (8)
C1	0.0411 (12)	0.0296 (10)	0.0269 (10)	0.0031 (9)	0.0082 (9)	0.0025 (8)
C2	0.0386 (12)	0.0318 (11)	0.0234 (9)	0.0049 (9)	0.0043 (8)	0.0006 (8)
C3	0.0373 (12)	0.0300 (11)	0.0313 (10)	0.0017 (9)	0.0062 (9)	0.0005 (9)
C4	0.0412 (13)	0.0364 (12)	0.0296 (10)	0.0030 (10)	0.0105 (9)	0.0059 (9)
C5	0.0477 (13)	0.0427 (13)	0.0215 (10)	-0.0004 (10)	0.0078 (9)	-0.0016 (9)
C6	0.0511 (14)	0.0339 (11)	0.0279 (10)	-0.0022 (10)	0.0079 (9)	-0.0036 (9)
C7	0.0523 (14)	0.0302 (11)	0.0309 (11)	-0.0003 (10)	0.0089 (10)	0.0000 (9)
C8	0.0502 (14)	0.0349 (12)	0.0296 (10)	-0.0024 (10)	0.0100 (10)	0.0013 (9)
C9	0.0390 (12)	0.0307 (11)	0.0290 (10)	0.0036 (9)	0.0123 (9)	0.0016 (8)
C10	0.0545 (15)	0.0368 (12)	0.0306 (11)	-0.0033 (11)	0.0059 (10)	-0.0002 (9)
C11	0.0582 (16)	0.0452 (14)	0.0301 (11)	0.0021 (12)	0.0042 (10)	0.0042 (10)
C12	0.0425 (13)	0.0334 (12)	0.0437 (12)	-0.0004 (10)	0.0108 (10)	0.0014 (10)
C13	0.0401 (12)	0.0361 (12)	0.0295 (10)	0.0031 (9)	0.0080 (9)	0.0001 (9)
C14	0.0624 (16)	0.0335 (12)	0.0482 (14)	-0.0057 (11)	0.0158 (12)	0.0047 (11)

Geometric parameters (Å, °)

Br1—C5	1.895 (2)	C4—C5	1.386 (3)	
O1—C2	1.356 (2)	C4—H4	0.9300	
01—H1	0.8200	C5—C6	1.363 (3)	
O2—C3	1.360 (3)	С6—Н6	0.9300	
O2—C14	1.421 (3)	С7—Н7	0.9300	
O3—C8	1.207 (3)	C8—C9	1.505 (3)	
N1—C7	1.275 (3)	C9—C10	1.385 (3)	
N1—N2	1.375 (2)	C9—C13	1.386 (3)	
N2—C8	1.353 (3)	C10—C11	1.381 (3)	
N2—H2	0.889 (10)	C10—H10	0.9300	
N3—C11	1.330 (3)	C11—H11	0.9300	

1.336 (3)	C12—C13	1.381 (3)
1.394 (3)	C12—H12	0.9300
1.397 (3)	С13—Н13	0.9300
1.454 (3)	C14—H14A	0.9600
1.409 (3)	C14—H14B	0.9600
1.380 (3)	C14—H14C	0.9600
109.5	N1—C7—H7	119.4
117.41 (17)	С1—С7—Н7	119.4
117.18 (18)	O3—C8—N2	122.6 (2)
117.15 (18)	O3—C8—C9	121.04 (19)
127 (2)	N2—C8—C9	116.37 (18)
116 (2)	C10—C9—C13	117.73 (19)
116.57 (19)	С10—С9—С8	116.78 (19)
119.70 (19)	С13—С9—С8	125.48 (19)
122.19 (18)	C11—C10—C9	119.3 (2)
118.10 (19)	C11—C10—H10	120.4
122.99 (18)	С9—С10—Н10	120.4
117.65 (18)	N3—C11—C10	123.6 (2)
119.35 (18)	N3—C11—H11	118.2
124.68 (19)	C10-C11-H11	118.2
115.10 (18)	N3—C12—C13	124.1 (2)
120.20 (19)	N3—C12—H12	118.0
119.18 (19)	C13—C12—H12	118.0
120.4	C12—C13—C9	118.7 (2)
120.4	С12—С13—Н13	120.7
121.76 (19)	С9—С13—Н13	120.7
119.16 (16)	O2—C14—H14A	109.5
119.06 (16)	O2—C14—H14B	109.5
119.8 (2)	H14A—C14—H14B	109.5
120.1	O2—C14—H14C	109.5
120.1	H14A—C14—H14C	109.5
121.2 (2)	H14B—C14—H14C	109.5
	$\begin{array}{c} 1.336 (3) \\ 1.394 (3) \\ 1.397 (3) \\ 1.454 (3) \\ 1.409 (3) \\ 1.380 (3) \\ \hline \\ 109.5 \\ 117.41 (17) \\ 117.18 (18) \\ 117.15 (18) \\ 127 (2) \\ 116 (2) \\ 116 (2) \\ 116 (2) \\ 116 (2) \\ 116 (2) \\ 116 (19) \\ 122.19 (18) \\ 118.10 (19) \\ 122.99 (18) \\ 117.65 (18) \\ 119.35 (18) \\ 124.68 (19) \\ 115.10 (18) \\ 120.20 (19) \\ 119.18 (19) \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.4 \\ 120.1 \\ 120.1 \\ 120.1 \\ 120.1 \\ 121.2 (2) \\ \end{array}$	1.336 (3) $C12-C13$ 1.394 (3) $C12-H12$ 1.397 (3) $C13-H13$ 1.454 (3) $C14-H14A$ 1.409 (3) $C14-H14B$ 1.380 (3) $C14-H14B$ 1.380 (3) $C14-H14C$ 109.5 $N1-C7-H7$ 117.41 (17) $C1-C7-H7$ 117.18 (18) $O3-C8-C9$ 127 (2) $N2-C8-C9$ 116 (2) $C10-C9-C13$ 116.57 (19) $C10-C9-C8$ 122.19 (18) $C11-C10-H10$ 122.99 (18) $C9-C10-H10$ 122.99 (18) $C9-C10-H10$ 117.65 (18) $N3-C11-H11$ 124.68 (19) $C10-C1-H11$ 115.10 (18) $N3-C12-H12$ 119.18 (19) $C13-C12-H12$ 120.20 (19) $N3-C12-H12$ 120.4 $C12-C13-H13$ 121.76 (19) $C9-C13-H13$ 119.16 (16) $O2-C14-H14A$ 19.8 (2) $H14A-C14-H14B$ 120.1 $O2-C14-H14C$ 120.2 $H14A-C14-H14C$ 121.2 (2) <td< td=""></td<>

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H2…N3 ⁱ	0.89(1)	2.26(1)	3.126 (3)	166 (3)
01—H1…N1	0.82	1.93	2.643 (2)	145

Symmetry code: (i) x, -y+3/2, z+1/2.