metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1346-m1347

μ-1,2-Bis­(di­phenyl­phos­phino)­ethane-κ2P:P′-bis­­{[1,2-bis­­(di­phenyl­phosphino)­ethane-κ2P,P′]bromidocopper(I)} acetone disolvate

aJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: swjuan2000@126.com

(Received 24 September 2008; accepted 25 September 2008; online 27 September 2008)

In the crystal structure of the title compound, [Cu2Br2(dppe)3]·2CH3COCH3 [dppe is 1,2-bis­(diphenyl­phosphino)­ethane, C26H24P2], the two Cu centers are bridged by a dppe ligand and each metal center carries one chelating dppe unit, with the fourth coordination site available for the Br anion. The mol­ecule is centrosymmetric, with the center of symmetry located between the methyl­ene C atoms of the bridging dppe ligand. The crystal structure is stabilized by intra­molecular C—H⋯Br hydrogen bonds and inter­molecular ππ inter­actions, with a centroid-to-centroid distance of 3.2055 (1) Å.

Related literature

For related research on phosphanecopper(I) compounds as biological agents, see: Berners-Price et al. (1987[Berners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem. 26, 3383-3387.]); Goldstein et al. (1992[Goldstein, S., Czapski, G., Cohen, H. & Meyerstein, D. (1992). Inorg. Chem. 31, 2439-2444.]); Navon et al. (1995[Navon, N., Golub, G., Cohen, H. & Meyerstein, D. (1995). Organometallics, 14, 5670-5676.]). For related structures, see: Albano et al. (1972[Albano, V. G., Bellon, P. L. & Ciani, G. (1972). J. Chem. Soc. Dalton Trans. pp. 1938-1943.]); Comba et al. (1999[Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777-783.]); Darensbourg et al. (1990[Darensbourg, D. J., Chao, C. C., Reibenspies, J. H. & Bischoff, C. J. (1990). Inorg. Chem. 29, 2153-2157.]); Eller et al. (1977[Eller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem. 16, 2454-2462.]); Leoni et al. (1983[Leoni, P., Pasquali, M. & Ghilardi, C. A. (1983). J. Chem. Soc. Chem. Commun. pp. 240-241.]); Mohr et al. (1991[Mohr, B., Brooks, E. E., Rath, N. & Deutsch, E. (1991). Inorg. Chem. 30, 4541-4545.]); Di Nicola et al. (2006[Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53-63.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C26H24P2)3]·2C3H6O

  • Mr = 1598.23

  • Monoclinic, P 21 /n

  • a = 12.5301 (6) Å

  • b = 21.8966 (10) Å

  • c = 14.8028 (7) Å

  • β = 105.932 (1)°

  • V = 3905.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 295 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.691, Tmax = 0.752

  • 33389 measured reflections

  • 8907 independent reflections

  • 6429 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.02

  • 8907 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—P3 2.2740 (8)
Cu1—P1 2.2992 (8)
Cu1—P2 2.3205 (9)
Cu1—Br1 2.4381 (5)
P3—Cu1—P1 113.74 (3)
P3—Cu1—P2 122.23 (3)
P1—Cu1—P2 89.30 (3)
P3—Cu1—Br1 102.02 (3)
P1—Cu1—Br1 115.56 (3)
P2—Cu1—Br1 114.67 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Br1 0.93 2.86 3.760 (4) 164
C32—H32⋯Br1i 0.93 2.82 3.666 (4) 151
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Detailed studies of solution equilibria and dynamics of copper(I) compounds of bidentate phosphanes have attracted considerable interest because of their potential application as potent antitumor agents (Berners-Price et al., 1987) and as free radical scavengers in industrial processes (Goldstein et al., 1992; Navon et al., 1995). Some mononuclear (Darensbourg et al., 1990; Leoni et al., 1983) and dinuclear phosphanecopper(I) compounds (Eller et al., 1977; Mohr et al., 1991) with coordinated and bridging halide anions and with phosphane ligands in various coordination modes have been isolated and characterized. In this work, 1,2-bis(diphenylphosphino)ethane (dppe) was adopted as a ligand which coordinates to the copper(I) ions in both bridging and chelating modes.

The asymmetric unit of the title compound (Fig. 1) consists of one half of the centrosymmetric dinuclear molecule Cu2Br2(dppe)3 and an acetone solvate molecule. In the molecule Cu2Br2(dppe)3, each copper(I) center adopts a distorted tetrahedral geometry due to the constraint imposed by a chelating dppe ligand with a P(1)—Cu(1)—P(2) angle of 89.30 (3)°, which is comparable to what has been observed in other similar structures (Albano et al., 1972; Comba et al., 1999). The copper(I)–phosphane distances are also in the range expected from other known structures (Albano et al., 1972; Comba et al., 1999; Di Nicola et al., 2006).

The title compound can be stablized by intramolecular C—H···Br hydrogen bonds between Br(1)- anions and –CH groups from phenyl rings. Additionally, the structure is held intact through intermolecular ππ stacking interactions [centroid-to-centroid distance of 3.2055 (1) Å], displaying a one-dimensional supramolecular array (Fig. 2).

Related literature top

For related research on phosphanecopper(I) compounds as biological agents, see: Berners-Price et al. (1987); Goldstein et al. (1992); Navon et al. (1995). For related structures, see: Albano et al. (1972); Comba et al. (1999); Darensbourg et al. (1990); Eller et al. (1977); Leoni et al. (1983); Mohr et al. (1991); Di Nicola et al. (2006).

Experimental top

1,2-Bis(diphenylphosphino)ethane (40 mg, 0.1 mmol) was added to an acetone suspension (7 ml) of CuBr (10 mg, 0.07 mmol). After the addition, a precipitate slowly formed and the suspension was stirred for 12 h. The precipitate was filtered off and the resulting colorless filtrate was allowed to cool in a refrigerator. Colorless block shaped crystals were obtained after two weeks. Yield: 10 mg (20%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å or 0.97 Å, Uiso = 1.2Ueq(C) for aromatic and methylene H atoms; 0.96 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [symmetry code: (A) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. Packing diagram of the title structure showing the ππ stacking interactions.
µ-1,2-Bis(diphenylphosphino)ethane-κ2P:P'-bis{[1,2-bis(diphenylphosphino)ethane-κ2P,P']bromidocopper(I)} acetone disolvate top
Crystal data top
[Cu2Br2(C26H24P2)3]·2C3H6OF(000) = 1644
Mr = 1598.23Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6062 reflections
a = 12.5301 (6) Åθ = 2.3–23.5°
b = 21.8966 (10) ŵ = 1.74 mm1
c = 14.8028 (7) ÅT = 295 K
β = 105.932 (1)°Block, colourless
V = 3905.4 (3) Å30.20 × 0.18 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEX area-detector
diffractometer
8907 independent reflections
Radiation source: fine-focus sealed tube6429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.691, Tmax = 0.752k = 2828
33389 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.6786P]
where P = (Fo2 + 2Fc2)/3
8907 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2Br2(C26H24P2)3]·2C3H6OV = 3905.4 (3) Å3
Mr = 1598.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5301 (6) ŵ = 1.74 mm1
b = 21.8966 (10) ÅT = 295 K
c = 14.8028 (7) Å0.20 × 0.18 × 0.17 mm
β = 105.932 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
8907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6429 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.752Rint = 0.035
33389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.75 e Å3
8907 reflectionsΔρmin = 0.42 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37525 (3)0.569117 (17)0.27963 (2)0.04207 (12)
Br10.43216 (4)0.472630 (18)0.22494 (3)0.06925 (14)
P10.19903 (6)0.57078 (4)0.29823 (5)0.04037 (18)
P20.32268 (6)0.64379 (4)0.16474 (5)0.04127 (18)
P30.51111 (6)0.58486 (4)0.41525 (5)0.04102 (19)
O10.6704 (6)0.6982 (3)0.0724 (5)0.200 (2)
C10.0907 (3)0.52128 (14)0.2279 (2)0.0460 (7)
C20.0179 (3)0.52408 (17)0.2345 (3)0.0589 (9)
H20.03450.54790.28090.071*
C30.1007 (3)0.4917 (2)0.1726 (3)0.0726 (11)
H30.17300.49370.17760.087*
C40.0775 (4)0.4568 (2)0.1038 (3)0.0771 (12)
H40.13420.43560.06170.093*
C50.0292 (4)0.4530 (2)0.0968 (3)0.0753 (12)
H50.04510.42900.05030.090*
C60.1137 (3)0.48532 (16)0.1596 (2)0.0571 (9)
H60.18620.48250.15520.069*
C70.1730 (2)0.57326 (15)0.4131 (2)0.0462 (7)
C80.1871 (4)0.6258 (2)0.4651 (3)0.0743 (12)
H80.20350.66200.43880.089*
C90.1774 (4)0.6263 (2)0.5561 (3)0.0931 (14)
H90.18680.66250.59020.112*
C100.1542 (4)0.5734 (2)0.5954 (3)0.0840 (13)
H100.14660.57370.65620.101*
C110.1421 (4)0.5207 (2)0.5464 (3)0.0732 (11)
H110.12800.48460.57410.088*
C120.1507 (3)0.52019 (17)0.4549 (3)0.0583 (9)
H120.14140.48370.42150.070*
C130.1466 (3)0.64480 (15)0.2445 (2)0.0500 (8)
H13A0.06720.64760.23580.060*
H13B0.18220.67800.28500.060*
C140.1726 (2)0.64918 (15)0.1491 (2)0.0475 (7)
H14A0.14530.68770.11930.057*
H14B0.13520.61640.10850.057*
C150.3318 (3)0.63429 (15)0.0446 (2)0.0470 (7)
C160.3772 (3)0.58138 (18)0.0207 (3)0.0615 (9)
H160.40250.55110.06550.074*
C170.3851 (4)0.5733 (2)0.0706 (3)0.0768 (12)
H170.41630.53760.08600.092*
C180.3486 (4)0.6159 (3)0.1366 (3)0.0796 (13)
H180.35390.60970.19740.096*
C190.3035 (4)0.6686 (2)0.1138 (3)0.0823 (13)
H190.27840.69840.15960.099*
C200.2945 (3)0.67856 (19)0.0235 (2)0.0662 (10)
H200.26370.71460.00900.079*
C210.3690 (3)0.72282 (16)0.1894 (2)0.0531 (8)
C220.4791 (3)0.7350 (2)0.1940 (3)0.0744 (11)
H220.52540.70400.18400.089*
C230.5198 (5)0.7950 (3)0.2142 (4)0.1008 (16)
H230.59350.80360.21760.121*
C240.4521 (6)0.8405 (3)0.2287 (4)0.1076 (17)
H240.47970.88000.24120.129*
C250.3452 (5)0.8287 (2)0.2252 (3)0.0970 (15)
H250.29970.85970.23640.116*
C260.3033 (4)0.76971 (17)0.2049 (3)0.0718 (10)
H260.22940.76200.20170.086*
C270.4849 (3)0.64567 (15)0.4905 (2)0.0475 (7)
C280.4577 (3)0.70269 (16)0.4509 (3)0.0602 (9)
H280.45530.70850.38810.072*
C290.4343 (4)0.75082 (19)0.5011 (3)0.0774 (12)
H290.41740.78890.47280.093*
C300.4358 (4)0.7428 (2)0.5926 (4)0.0809 (13)
H300.41830.77520.62670.097*
C310.4630 (4)0.6877 (2)0.6339 (3)0.0831 (13)
H310.46510.68250.69670.100*
C320.4880 (3)0.63863 (18)0.5832 (3)0.0651 (10)
H320.50680.60100.61240.078*
C330.6459 (2)0.60902 (15)0.4006 (2)0.0472 (7)
C340.6647 (3)0.6054 (2)0.3137 (3)0.0666 (10)
H340.61060.58950.26300.080*
C350.7655 (4)0.6258 (2)0.3016 (3)0.0855 (14)
H350.77800.62380.24260.103*
C360.8450 (4)0.6485 (2)0.3751 (4)0.0830 (13)
H360.91170.66200.36620.100*
C370.8283 (3)0.65166 (19)0.4613 (4)0.0785 (12)
H370.88380.66670.51180.094*
C380.7281 (3)0.63241 (17)0.4743 (3)0.0627 (9)
H380.71620.63530.53350.075*
C390.5496 (2)0.51720 (14)0.4915 (2)0.0455 (7)
H39A0.59140.48940.46320.055*
H39B0.59790.53000.55160.055*
C400.6595 (9)0.6699 (4)0.0016 (8)0.188 (2)
C410.6260 (8)0.6948 (4)0.0902 (6)0.193 (2)
H41A0.58540.73190.08940.289*
H41B0.57950.66610.13200.289*
H41C0.69030.70340.11130.289*
C420.7128 (8)0.6120 (4)0.0087 (7)0.198 (3)
H42A0.78860.61600.04530.297*
H42B0.71040.59750.05300.297*
H42C0.67520.58350.03870.297*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0368 (2)0.0466 (2)0.0328 (2)0.00363 (15)0.00805 (15)0.00058 (15)
Br10.0828 (3)0.0659 (3)0.0499 (2)0.0296 (2)0.0208 (2)0.00313 (17)
P10.0385 (4)0.0433 (4)0.0407 (4)0.0002 (3)0.0131 (3)0.0015 (3)
P20.0408 (4)0.0452 (4)0.0372 (4)0.0033 (3)0.0097 (3)0.0021 (3)
P30.0370 (4)0.0487 (5)0.0363 (4)0.0002 (3)0.0081 (3)0.0015 (3)
O10.242 (5)0.196 (5)0.182 (4)0.043 (4)0.090 (4)0.045 (4)
C10.0458 (17)0.0483 (18)0.0425 (17)0.0066 (14)0.0096 (14)0.0054 (14)
C20.0463 (19)0.067 (2)0.062 (2)0.0061 (16)0.0114 (16)0.0013 (18)
C30.050 (2)0.085 (3)0.076 (3)0.015 (2)0.0053 (19)0.014 (2)
C40.074 (3)0.083 (3)0.060 (2)0.031 (2)0.005 (2)0.002 (2)
C50.089 (3)0.076 (3)0.058 (2)0.023 (2)0.014 (2)0.012 (2)
C60.059 (2)0.062 (2)0.051 (2)0.0112 (17)0.0167 (17)0.0006 (17)
C70.0359 (15)0.059 (2)0.0459 (17)0.0012 (13)0.0149 (13)0.0025 (15)
C80.103 (3)0.070 (3)0.064 (2)0.018 (2)0.046 (2)0.012 (2)
C90.124 (4)0.097 (3)0.071 (3)0.023 (3)0.048 (3)0.029 (3)
C100.092 (3)0.120 (4)0.050 (2)0.010 (3)0.036 (2)0.002 (2)
C110.078 (3)0.085 (3)0.062 (2)0.004 (2)0.029 (2)0.021 (2)
C120.063 (2)0.059 (2)0.056 (2)0.0033 (17)0.0222 (17)0.0058 (17)
C130.0466 (17)0.0470 (18)0.060 (2)0.0072 (14)0.0207 (15)0.0049 (15)
C140.0435 (16)0.0478 (18)0.0487 (18)0.0021 (13)0.0084 (14)0.0085 (14)
C150.0441 (17)0.058 (2)0.0376 (16)0.0107 (15)0.0095 (13)0.0012 (14)
C160.063 (2)0.074 (2)0.051 (2)0.0039 (19)0.0222 (17)0.0006 (18)
C170.081 (3)0.099 (3)0.060 (2)0.008 (2)0.036 (2)0.013 (2)
C180.081 (3)0.116 (4)0.045 (2)0.023 (3)0.023 (2)0.008 (2)
C190.088 (3)0.110 (4)0.045 (2)0.014 (3)0.012 (2)0.020 (2)
C200.075 (3)0.072 (3)0.046 (2)0.009 (2)0.0075 (17)0.0068 (18)
C210.067 (2)0.0541 (19)0.0369 (16)0.0173 (16)0.0125 (15)0.0035 (14)
C220.070 (2)0.085 (3)0.062 (2)0.029 (2)0.0084 (19)0.006 (2)
C230.099 (3)0.113 (4)0.084 (3)0.058 (3)0.014 (3)0.005 (3)
C240.152 (5)0.083 (3)0.087 (3)0.051 (3)0.032 (3)0.019 (3)
C250.154 (4)0.064 (3)0.083 (3)0.020 (3)0.049 (3)0.012 (2)
C260.105 (3)0.050 (2)0.065 (2)0.012 (2)0.032 (2)0.0030 (18)
C270.0428 (17)0.0547 (19)0.0439 (17)0.0046 (14)0.0100 (14)0.0057 (14)
C280.068 (2)0.058 (2)0.051 (2)0.0054 (18)0.0112 (17)0.0041 (17)
C290.080 (3)0.058 (2)0.087 (3)0.006 (2)0.012 (2)0.011 (2)
C300.076 (3)0.080 (3)0.090 (3)0.008 (2)0.028 (2)0.037 (3)
C310.092 (3)0.105 (4)0.058 (2)0.016 (3)0.031 (2)0.026 (3)
C320.082 (3)0.066 (2)0.049 (2)0.005 (2)0.0206 (19)0.0041 (17)
C330.0408 (16)0.0500 (18)0.0513 (18)0.0015 (14)0.0135 (14)0.0051 (15)
C340.049 (2)0.099 (3)0.054 (2)0.0012 (19)0.0168 (17)0.007 (2)
C350.068 (3)0.121 (4)0.078 (3)0.010 (3)0.038 (2)0.025 (3)
C360.057 (2)0.085 (3)0.115 (4)0.006 (2)0.038 (3)0.014 (3)
C370.054 (2)0.075 (3)0.107 (4)0.0156 (19)0.023 (2)0.022 (3)
C380.054 (2)0.065 (2)0.072 (2)0.0098 (17)0.0218 (18)0.0135 (19)
C390.0381 (15)0.0523 (18)0.0436 (17)0.0000 (13)0.0069 (13)0.0058 (14)
C400.221 (5)0.172 (5)0.169 (4)0.058 (4)0.052 (4)0.042 (4)
C410.213 (5)0.174 (5)0.176 (4)0.071 (4)0.028 (5)0.032 (4)
C420.233 (6)0.178 (5)0.167 (5)0.041 (4)0.029 (5)0.048 (4)
Geometric parameters (Å, º) top
Cu1—P32.2740 (8)C18—H180.9300
Cu1—P12.2992 (8)C19—C201.389 (6)
Cu1—P22.3205 (9)C19—H190.9300
Cu1—Br12.4381 (5)C20—H200.9300
P1—C71.818 (3)C21—C261.374 (5)
P1—C11.824 (3)C21—C221.388 (5)
P1—C131.845 (3)C22—C231.412 (6)
P2—C151.824 (3)C22—H220.9300
P2—C211.830 (3)C23—C241.363 (8)
P2—C141.834 (3)C23—H230.9300
P3—C271.823 (3)C24—C251.352 (7)
P3—C331.838 (3)C24—H240.9300
P3—C391.845 (3)C25—C261.395 (6)
O1—C401.193 (11)C25—H250.9300
C1—C61.373 (5)C26—H260.9300
C1—C21.391 (5)C27—C321.371 (5)
C2—C31.377 (5)C27—C281.381 (5)
C2—H20.9300C28—C291.366 (5)
C3—C41.367 (6)C28—H280.9300
C3—H30.9300C29—C301.362 (6)
C4—C51.372 (6)C29—H290.9300
C4—H40.9300C30—C311.354 (6)
C5—C61.395 (5)C30—H300.9300
C5—H50.9300C31—C321.395 (6)
C6—H60.9300C31—H310.9300
C7—C81.369 (5)C32—H320.9300
C7—C121.381 (5)C33—C341.372 (5)
C8—C91.385 (6)C33—C381.377 (5)
C8—H80.9300C34—C351.396 (5)
C9—C101.362 (6)C34—H340.9300
C9—H90.9300C35—C361.352 (7)
C10—C111.349 (6)C35—H350.9300
C10—H100.9300C36—C371.351 (7)
C11—C121.387 (5)C36—H360.9300
C11—H110.9300C37—C381.387 (5)
C12—H120.9300C37—H370.9300
C13—C141.537 (5)C38—H380.9300
C13—H13A0.9700C39—C39i1.533 (6)
C13—H13B0.9700C39—H39A0.9700
C14—H14A0.9700C39—H39B0.9700
C14—H14B0.9700C40—C411.417 (9)
C15—C161.379 (5)C40—C421.422 (9)
C15—C201.385 (5)C41—H41A0.9600
C16—C171.394 (5)C41—H41B0.9600
C16—H160.9300C41—H41C0.9600
C17—C181.337 (6)C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—C191.368 (7)C42—H42C0.9600
P3—Cu1—P1113.74 (3)C19—C18—H18120.3
P3—Cu1—P2122.23 (3)C18—C19—C20121.2 (4)
P1—Cu1—P289.30 (3)C18—C19—H19119.4
P3—Cu1—Br1102.02 (3)C20—C19—H19119.4
P1—Cu1—Br1115.56 (3)C15—C20—C19119.4 (4)
P2—Cu1—Br1114.67 (3)C15—C20—H20120.3
C7—P1—C1104.76 (14)C19—C20—H20120.3
C7—P1—C13104.07 (15)C26—C21—C22118.8 (4)
C1—P1—C1398.90 (15)C26—C21—P2124.6 (3)
C7—P1—Cu1122.50 (10)C22—C21—P2116.6 (3)
C1—P1—Cu1120.75 (11)C21—C22—C23119.0 (5)
C13—P1—Cu1101.66 (10)C21—C22—H22120.5
C15—P2—C21101.58 (15)C23—C22—H22120.5
C15—P2—C14102.75 (14)C24—C23—C22120.6 (5)
C21—P2—C14102.84 (16)C24—C23—H23119.7
C15—P2—Cu1123.55 (11)C22—C23—H23119.7
C21—P2—Cu1120.64 (11)C25—C24—C23120.5 (5)
C14—P2—Cu1102.29 (10)C25—C24—H24119.8
C27—P3—C33100.83 (15)C23—C24—H24119.8
C27—P3—C39105.88 (15)C24—C25—C26119.7 (5)
C33—P3—C39102.06 (14)C24—C25—H25120.1
C27—P3—Cu1115.67 (11)C26—C25—H25120.1
C33—P3—Cu1115.37 (11)C21—C26—C25121.4 (5)
C39—P3—Cu1115.16 (10)C21—C26—H26119.3
C6—C1—C2119.0 (3)C25—C26—H26119.3
C6—C1—P1119.1 (3)C32—C27—C28117.5 (3)
C2—C1—P1121.5 (3)C32—C27—P3124.7 (3)
C3—C2—C1120.2 (4)C28—C27—P3117.8 (3)
C3—C2—H2119.9C29—C28—C27122.1 (4)
C1—C2—H2119.9C29—C28—H28119.0
C4—C3—C2120.5 (4)C27—C28—H28119.0
C4—C3—H3119.7C30—C29—C28119.7 (4)
C2—C3—H3119.7C30—C29—H29120.2
C3—C4—C5120.1 (4)C28—C29—H29120.2
C3—C4—H4120.0C31—C30—C29119.8 (4)
C5—C4—H4120.0C31—C30—H30120.1
C4—C5—C6119.8 (4)C29—C30—H30120.1
C4—C5—H5120.1C30—C31—C32120.7 (4)
C6—C5—H5120.1C30—C31—H31119.7
C1—C6—C5120.4 (4)C32—C31—H31119.7
C1—C6—H6119.8C27—C32—C31120.2 (4)
C5—C6—H6119.8C27—C32—H32119.9
C8—C7—C12117.8 (3)C31—C32—H32119.9
C8—C7—P1121.5 (3)C34—C33—C38118.7 (3)
C12—C7—P1120.3 (3)C34—C33—P3119.7 (3)
C7—C8—C9121.4 (4)C38—C33—P3121.7 (3)
C7—C8—H8119.3C33—C34—C35119.8 (4)
C9—C8—H8119.3C33—C34—H34120.1
C10—C9—C8119.7 (4)C35—C34—H34120.1
C10—C9—H9120.2C36—C35—C34120.4 (4)
C8—C9—H9120.2C36—C35—H35119.8
C11—C10—C9120.1 (4)C34—C35—H35119.8
C11—C10—H10119.9C37—C36—C35120.6 (4)
C9—C10—H10119.9C37—C36—H36119.7
C10—C11—C12120.3 (4)C35—C36—H36119.7
C10—C11—H11119.8C36—C37—C38119.7 (4)
C12—C11—H11119.8C36—C37—H37120.1
C7—C12—C11120.6 (4)C38—C37—H37120.1
C7—C12—H12119.7C33—C38—C37120.8 (4)
C11—C12—H12119.7C33—C38—H38119.6
C14—C13—P1108.1 (2)C37—C38—H38119.6
C14—C13—H13A110.1C39i—C39—P3114.0 (3)
P1—C13—H13A110.1C39i—C39—H39A108.7
C14—C13—H13B110.1P3—C39—H39A108.7
P1—C13—H13B110.1C39i—C39—H39B108.7
H13A—C13—H13B108.4P3—C39—H39B108.7
C13—C14—P2110.4 (2)H39A—C39—H39B107.6
C13—C14—H14A109.6O1—C40—C41125.0 (10)
P2—C14—H14A109.6O1—C40—C42117.3 (10)
C13—C14—H14B109.6C41—C40—C42115.1 (11)
P2—C14—H14B109.6C40—C41—H41A109.5
H14A—C14—H14B108.1C40—C41—H41B109.5
C16—C15—C20118.8 (3)H41A—C41—H41B109.5
C16—C15—P2119.1 (3)C40—C41—H41C109.5
C20—C15—P2122.1 (3)H41A—C41—H41C109.5
C15—C16—C17120.0 (4)H41B—C41—H41C109.5
C15—C16—H16120.0C40—C42—H42A109.5
C17—C16—H16120.0C40—C42—H42B109.5
C18—C17—C16121.2 (4)H42A—C42—H42B109.5
C18—C17—H17119.4C40—C42—H42C109.5
C16—C17—H17119.4H42A—C42—H42C109.5
C17—C18—C19119.4 (4)H42B—C42—H42C109.5
C17—C18—H18120.3
P3—Cu1—P1—C78.49 (14)Cu1—P2—C14—C1339.9 (2)
P2—Cu1—P1—C7133.75 (13)C21—P2—C15—C16136.2 (3)
Br1—Cu1—P1—C7109.07 (13)C14—P2—C15—C16117.6 (3)
P3—Cu1—P1—C1145.43 (12)Cu1—P2—C15—C163.3 (3)
P2—Cu1—P1—C189.31 (12)C21—P2—C15—C2043.9 (3)
Br1—Cu1—P1—C127.88 (12)C14—P2—C15—C2062.3 (3)
P3—Cu1—P1—C13106.71 (12)Cu1—P2—C15—C20176.7 (2)
P2—Cu1—P1—C1318.55 (12)C20—C15—C16—C170.2 (5)
Br1—Cu1—P1—C13135.73 (12)P2—C15—C16—C17179.9 (3)
P3—Cu1—P2—C15119.84 (12)C15—C16—C17—C180.5 (6)
P1—Cu1—P2—C15122.24 (12)C16—C17—C18—C190.5 (7)
Br1—Cu1—P2—C154.25 (12)C17—C18—C19—C200.3 (7)
P3—Cu1—P2—C2112.44 (15)C16—C15—C20—C190.1 (5)
P1—Cu1—P2—C21105.48 (14)P2—C15—C20—C19179.9 (3)
Br1—Cu1—P2—C21136.53 (14)C18—C19—C20—C150.0 (6)
P3—Cu1—P2—C14125.61 (11)C15—P2—C21—C26114.5 (3)
P1—Cu1—P2—C147.68 (11)C14—P2—C21—C268.4 (3)
Br1—Cu1—P2—C14110.30 (11)Cu1—P2—C21—C26104.5 (3)
P1—Cu1—P3—C2743.39 (12)C15—P2—C21—C2266.6 (3)
P2—Cu1—P3—C2761.77 (13)C14—P2—C21—C22172.8 (3)
Br1—Cu1—P3—C27168.53 (12)Cu1—P2—C21—C2274.3 (3)
P1—Cu1—P3—C33160.69 (12)C26—C21—C22—C230.2 (5)
P2—Cu1—P3—C3355.52 (12)P2—C21—C22—C23179.1 (3)
Br1—Cu1—P3—C3374.17 (12)C21—C22—C23—C240.1 (7)
P1—Cu1—P3—C3980.75 (12)C22—C23—C24—C250.8 (8)
P2—Cu1—P3—C39174.08 (11)C23—C24—C25—C261.2 (8)
Br1—Cu1—P3—C3944.39 (12)C22—C21—C26—C250.2 (6)
C7—P1—C1—C6147.2 (3)P2—C21—C26—C25178.6 (3)
C13—P1—C1—C6105.6 (3)C24—C25—C26—C210.9 (7)
Cu1—P1—C1—C63.7 (3)C33—P3—C27—C32109.5 (3)
C7—P1—C1—C240.1 (3)C39—P3—C27—C323.5 (3)
C13—P1—C1—C267.1 (3)Cu1—P3—C27—C32125.4 (3)
Cu1—P1—C1—C2176.4 (2)C33—P3—C27—C2871.9 (3)
C6—C1—C2—C30.8 (5)C39—P3—C27—C28177.9 (3)
P1—C1—C2—C3171.9 (3)Cu1—P3—C27—C2853.3 (3)
C1—C2—C3—C40.3 (6)C32—C27—C28—C290.1 (5)
C2—C3—C4—C50.9 (7)P3—C27—C28—C29178.6 (3)
C3—C4—C5—C60.5 (7)C27—C28—C29—C301.0 (6)
C2—C1—C6—C51.2 (5)C28—C29—C30—C311.5 (7)
P1—C1—C6—C5171.7 (3)C29—C30—C31—C320.9 (7)
C4—C5—C6—C10.6 (6)C28—C27—C32—C310.7 (5)
C1—P1—C7—C8141.9 (3)P3—C27—C32—C31177.9 (3)
C13—P1—C7—C838.5 (3)C30—C31—C32—C270.2 (7)
Cu1—P1—C7—C875.5 (3)C27—P3—C33—C34137.3 (3)
C1—P1—C7—C1245.7 (3)C39—P3—C33—C34113.6 (3)
C13—P1—C7—C12149.0 (3)Cu1—P3—C33—C3412.0 (3)
Cu1—P1—C7—C1297.0 (3)C27—P3—C33—C3840.8 (3)
C12—C7—C8—C91.2 (6)C39—P3—C33—C3868.2 (3)
P1—C7—C8—C9173.8 (4)Cu1—P3—C33—C38166.2 (3)
C7—C8—C9—C100.5 (8)C38—C33—C34—C350.5 (6)
C8—C9—C10—C110.9 (8)P3—C33—C34—C35177.7 (3)
C9—C10—C11—C121.5 (7)C33—C34—C35—C360.7 (7)
C8—C7—C12—C110.6 (5)C34—C35—C36—C370.1 (8)
P1—C7—C12—C11173.3 (3)C35—C36—C37—C381.0 (7)
C10—C11—C12—C70.8 (6)C34—C33—C38—C370.4 (6)
C7—P1—C13—C14176.0 (2)P3—C33—C38—C37178.5 (3)
C1—P1—C13—C1476.3 (2)C36—C37—C38—C331.2 (7)
Cu1—P1—C13—C1447.8 (2)C27—P3—C39—C39i80.6 (3)
P1—C13—C14—P259.6 (3)C33—P3—C39—C39i174.3 (3)
C15—P2—C14—C13168.9 (2)Cu1—P3—C39—C39i48.5 (4)
C21—P2—C14—C1385.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Br10.932.863.760 (4)164
C32—H32···Br1i0.932.823.666 (4)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C26H24P2)3]·2C3H6O
Mr1598.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)12.5301 (6), 21.8966 (10), 14.8028 (7)
β (°) 105.932 (1)
V3)3905.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.691, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
33389, 8907, 6429
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.02
No. of reflections8907
No. of parameters435
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—P32.2740 (8)Cu1—P22.3205 (9)
Cu1—P12.2992 (8)Cu1—Br12.4381 (5)
P3—Cu1—P1113.74 (3)P3—Cu1—Br1102.02 (3)
P3—Cu1—P2122.23 (3)P1—Cu1—Br1115.56 (3)
P1—Cu1—P289.30 (3)P2—Cu1—Br1114.67 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Br10.932.863.760 (4)163.5
C32—H32···Br1i0.932.823.666 (4)151.2
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

References

First citationAlbano, V. G., Bellon, P. L. & Ciani, G. (1972). J. Chem. Soc. Dalton Trans. pp. 1938–1943.  CSD CrossRef Web of Science Google Scholar
First citationBerners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem. 26, 3383–3387.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783.  CrossRef Google Scholar
First citationDarensbourg, D. J., Chao, C. C., Reibenspies, J. H. & Bischoff, C. J. (1990). Inorg. Chem. 29, 2153–2157.  CSD CrossRef CAS Web of Science Google Scholar
First citationDi Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationEller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem. 16, 2454–2462.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoldstein, S., Czapski, G., Cohen, H. & Meyerstein, D. (1992). Inorg. Chem. 31, 2439–2444.  CrossRef CAS Web of Science Google Scholar
First citationLeoni, P., Pasquali, M. & Ghilardi, C. A. (1983). J. Chem. Soc. Chem. Commun. pp. 240–241.  CrossRef Web of Science Google Scholar
First citationMohr, B., Brooks, E. E., Rath, N. & Deutsch, E. (1991). Inorg. Chem. 30, 4541–4545.  CSD CrossRef CAS Web of Science Google Scholar
First citationNavon, N., Golub, G., Cohen, H. & Meyerstein, D. (1995). Organometallics, 14, 5670–5676.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1346-m1347
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds