inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages i67-i68

Co3(PO4)2·4H2O

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, bCentre for Heavy Metals Research, School of Chemistry, F11, University of Sydney, New South Wales 2006, Australia, cARC Centre of Excellence for Functional Nanomaterials, AIBN, University of Queensland, Brisbane, Queensland 4072, Australia, and dDepartment of Chemistry and Advanced Materials, Kosin University, 149-1 Dongsam-dong, Yeongdo-gu, Busan 606-701, Republic of Korea
*Correspondence e-mail: ykim@kosin.ac.kr

(Received 29 August 2008; accepted 4 September 2008; online 13 September 2008)

Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure.

Related literature

Besides crystals of the title compound, crystals of Co3(PO4)2·H2O (Lee et al., 2008[Lee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i69-i70.]) have also been obtained under hydro­thermal conditions. For reviews, synthesis, structures and applications of open framework structures with different cations and/or structure directing mol­ecules, see: Kuzicki et al. (2001[Kuzicki, S. M., Bell, V. A., Nair, S., Hillhouse, H. W., Jacubinas, R. M., Braunbarth, V. M., Toby, B. H. & Tsapatsis, M. (2001). Nature (London), 412, 720-724.]); Chen et al. (2006[Chen, Z., Gao, Q., Gao, D., Wei, Q. & Ruan, M. (2006). Mater. Lett. 60, 1816-1822.]); Jiang & Gao (2007[Jiang, Y. & Gao, Q. (2007). Mater. Lett. 61, 2212-2216.]); Cheetham et al. (1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Forster et al. (2003[Forster, P. M., Eckert, J., Chang, J.-S., Park, J.-S., Férey, G. & Cheatham, A. K. (2003). J. Am. Chem. Soc. 125, 1309-1312.]); Jiang et al. (2001[Jiang, Y.-C., Lai, Y.-C., Wang, S.-L. & Lii, K.-H. (2001). Inorg. Chem. 40, 5320-5321.]); Cooper et al. (2004[Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P. & Morris, R. E. (2004). Nature (London), 430, 1012-1016.]); Choudhury et al. (2000[Choudhury, A., Natarajan, S. & Rao, C. N. R. (2000). Inorg. Chem. 39, 4295-4304.]). The structure of the isotypic mineral hopeite was first described by Liebau (1965[Liebau, F. (1965). Acta Cryst. 18, 352-354.]).

Experimental

Crystal data
  • Co3(PO4)3·4H2O

  • Mr = 438.79

  • Orthorhombic, P n m a

  • a = 10.604 (3) Å

  • b = 18.288 (5) Å

  • c = 5.0070 (13) Å

  • V = 971.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 150 (2) K

  • 0.52 × 0.39 × 0.38 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.068, Tmax = 0.125

  • 8780 measured reflections

  • 1228 independent reflections

  • 1166 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.16

  • 1228 reflections

  • 101 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O7i 1.901 (3)
Co1—O1 1.918 (3)
Co1—O2ii 1.983 (3)
Co1—O2iii 1.986 (3)
Co2—O4 2.106 (4)
Co2—O5 2.118 (4)
Co2—O6 2.138 (3)
P1—O7 1.519 (3)
P1—O3 1.521 (3)
P1—O1 1.537 (3)
P1—O2 1.570 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H5⋯O3iv 0.894 (10) 2.25 (8) 2.764 (4) 116 (7)
O4—H5⋯O7v 0.894 (10) 2.49 (8) 3.209 (3) 138 (9)
O4—H6⋯O3vi 0.894 (10) 2.02 (7) 2.764 (4) 140 (10)
O5—H4⋯O3vii 0.892 (10) 2.25 (2) 3.133 (5) 170 (8)
O5—H4⋯O3viii 0.892 (10) 2.66 (8) 3.133 (5) 115 (6)
O6—H1⋯O1vii 0.90 (4) 1.94 (3) 2.690 (4) 140 (4)
O6—H2⋯O7 0.90 (3) 2.35 (3) 3.008 (5) 130 (3)
Symmetry codes: (iv) [x, -y+{\script{1\over 2}}, z+1]; (v) [x, -y+{\script{1\over 2}}, z]; (vi) x, y, z+1; (vii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WebLab ViewerPro (Molecular Simulations, 2000[Molecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.]) and POV-RAY (Cason, 2002[Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The synthesis and investigation of open-framework transition-metal phosphates has been a growing area of research over recent times. This is not only because of the rich structural chemistry involved, but is also due to many potential applications such as for catalysis, as alternatives for zeolites in separation and storage applications and, in particular, as potential gas storage materials (Kuzicki et al., 2001; Chen et al., 2006; Jiang & Gao, 2007; Cheetham et al., 1999). For example, microporous nickel phosphates incorporating 24-membered rings such as VSB-5 (Versailles/Santa Barbara-5) have been demonstrated to exhibit hydrogen uptake at low temperatures (Forster et al., 2003). Over the past couple of decades, a considerable number of metal phosphates/phosphites with open molecular architectures have also been synthesized incorporating organic units (see, for example: Jiang et al., 2001) and ionic liquids (Cooper et al., 2004) as structure-directing agents, often under hydrothermal or solvothermal conditions. One of the best known families of this type consists of zinc phosphate structures; individual materials of this type can exist as one dimensional (chain and ladder), two dimensional (layer) and three dimensional framework arrangements (Choudhury et al., 2000).

We are currently investigating the synthesis of a variety of similar functional materials through templation effects under hydrothermal conditions. The title compound, Co3(PO4)2.4H2O, (I), and the related compound Co3(PO4)2.H2O (Lee et al., 2008) were synthesized and structurally characterized as a part of these studies.

The structure of (I) is isotypic with the mineral hopeite, Zn3(PO4)2.4H2O (Liebau, 1965) and contains two different Co2+ centres bridged by orthophosphate anions (Fig. 1). The coordination environment of Co1 is slightly distorted tetrahedral while that of Co2 is close to octahedral (Table 1). Co1 is bonded to the O atoms of four different phosphate ligands, while Co2 is bonded to the O atoms of two orthophosphate ligands in a cis-arrangement. The other coordination sites are occupied by O atoms of the water ligands. A mirror plane passes through Co2 and two of the water molecules (O4 and O5). This coordination geometry leads to the formation of a three-dimensional framework (Fig. 2). A number of hydrogen bonding interactions O—H···O are present and stabilize the structure (Table 2).

Related literature top

Besides crystals of the title compound, crystals of Co3(PO4)2.H2O (Lee et al., 2008) have also been obtained under hydrothermal conditions. For reviews, synthesis, structures and applications of open framework structures with different cations and/or structure directing molecules, see: Kuzicki et al. (2001); Chen et al. (2006); Jiang & Gao (2007); Cheetham et al. (1999); Forster et al. (2003); Jiang et al. (2001); Cooper et al. (2004); Choudhury et al. (2000). The structure of the isotypic mineral hopeite was first described by Liebau (1965).

Experimental top

H3PO4 (85%wt, 2.3 g, 20 mmol) was added to an aqueous solution (20 ml) of Co(NO3)2.6H2O (2.6 g, 9 mmol) with stirring for 30 min and the ionic liquid, 1-butyl-3-methylimidazolium bromide (2.7 g, 9 mmol), was added dropwise under continuous stirring. The mixture was transferred to a teflon-coated autoclave, heated at 453 K for 3 d and then allowed to cool slowly. A mixture of plate-like and prismatic purple crystals had formed and was filtered off. The crystals were washed with water, dried under vacuum and were manually separated under a microscope. The yields were approximately 0.4 g of the plate-like crystals of the compound Co3(PO4)2.H2O (Lee et al., 2008) and and 0.2 g of the prismatic crystals of compound (I).

Refinement top

Water H atoms were located in difference Fourier maps and were refined with Uiso(H) values fixed at 1.5Ueq of the parent O atoms. O—H bond length restraints of 0.89 (1) Å were also employed. The highest peak and the deepest hole in the final Fourier map are located 0.49 Å from Co1 and 0.33 Å from P2, respectively.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WebLab ViewerPro (Molecular Simulations, 2000) and POV-RAY (Cason, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), drawn with displacement parameters at the 50% probability level. H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. A schematic representation of a section of the three-dimensional network in a projection along [001]. Hydrogen atoms are omitted for clarity.
Tricobalt(II) bis[orthophosphate(V)] tetrahydrate top
Crystal data top
Co3(PO4)3·4H2OF(000) = 860
Mr = 438.79Dx = 3.002 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5943 reflections
a = 10.604 (3) Åθ = 2.9–28.3°
b = 18.288 (5) ŵ = 5.46 mm1
c = 5.0070 (13) ÅT = 150 K
V = 971.0 (5) Å3Prism, purple
Z = 40.52 × 0.39 × 0.38 mm
Data collection top
Siemens SMART 1000 CCD
diffractometer
1228 independent reflections
Radiation source: sealed tube1166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1313
Tmin = 0.068, Tmax = 0.125k = 2424
8780 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.059P)2 + 3.8213P]
where P = (Fo2 + 2Fc2)/3
1228 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.55 e Å3
10 restraintsΔρmin = 1.38 e Å3
Crystal data top
Co3(PO4)3·4H2OV = 971.0 (5) Å3
Mr = 438.79Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.604 (3) ŵ = 5.46 mm1
b = 18.288 (5) ÅT = 150 K
c = 5.0070 (13) Å0.52 × 0.39 × 0.38 mm
Data collection top
Siemens SMART 1000 CCD
diffractometer
1228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1166 reflections with I > 2σ(I)
Tmin = 0.068, Tmax = 0.125Rint = 0.026
8780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03510 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.55 e Å3
1228 reflectionsΔρmin = 1.38 e Å3
101 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.64313 (4)0.00064 (2)0.20676 (8)0.00402 (17)
Co20.26113 (6)0.25000.42866 (12)0.00838 (19)
P10.39745 (9)0.09462 (5)0.27639 (18)0.0123 (2)
O10.5259 (3)0.07872 (14)0.1463 (7)0.0202 (6)
O20.3026 (2)0.03968 (15)0.1432 (5)0.0148 (5)
O30.3601 (3)0.17305 (16)0.2139 (6)0.0201 (7)
O40.3927 (4)0.25000.7439 (7)0.0155 (8)
O50.1149 (4)0.25000.1406 (9)0.0192 (8)
O60.1642 (3)0.16927 (15)0.6593 (6)0.0197 (6)
O70.4000 (4)0.08075 (16)0.5755 (6)0.0311 (8)
H10.098 (4)0.161 (3)0.553 (10)0.047*
H20.2194 (15)0.1390 (19)0.739 (9)0.047*
H30.132 (8)0.280 (5)0.005 (15)0.047*0.50
H40.044 (5)0.231 (5)0.204 (18)0.047*0.50
H50.403 (13)0.296 (3)0.80 (3)0.047*0.50
H60.366 (13)0.210 (4)0.83 (3)0.047*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0038 (3)0.0055 (3)0.0027 (3)0.00152 (13)0.00023 (14)0.00025 (13)
Co20.0081 (3)0.0088 (3)0.0082 (3)0.0000.0006 (2)0.000
P10.0179 (5)0.0077 (4)0.0114 (4)0.0004 (3)0.0004 (3)0.0003 (3)
O10.0128 (13)0.0123 (12)0.0357 (16)0.0008 (10)0.0008 (12)0.0038 (12)
O20.0135 (12)0.0177 (12)0.0134 (11)0.0024 (10)0.0020 (10)0.0028 (10)
O30.0331 (17)0.0099 (13)0.0174 (14)0.0061 (11)0.0094 (11)0.0022 (10)
O40.017 (2)0.0169 (19)0.0130 (16)0.0000.0012 (15)0.000
O50.0136 (18)0.026 (2)0.0183 (18)0.0000.0003 (16)0.000
O60.0175 (14)0.0149 (13)0.0267 (14)0.0024 (11)0.0027 (12)0.0026 (12)
O70.066 (2)0.0131 (13)0.0142 (13)0.0105 (14)0.0095 (15)0.0020 (10)
Geometric parameters (Å, º) top
Co1—O7i1.901 (3)P1—O71.519 (3)
Co1—O11.918 (3)P1—O31.521 (3)
Co1—O2ii1.983 (3)P1—O11.537 (3)
Co1—O2iii1.986 (3)P1—O21.570 (3)
Co2—O3iv2.058 (3)O4—H50.893 (10)
Co2—O32.058 (3)O4—H60.893 (10)
Co2—O42.106 (4)O5—H30.892 (10)
Co2—O52.118 (4)O5—H40.891 (10)
Co2—O62.138 (3)O6—H10.89 (4)
Co2—O6iv2.138 (3)O6—H20.90 (3)
O7i—Co1—O1121.18 (15)O7—P1—O3111.40 (17)
O7i—Co1—O2ii105.64 (13)O7—P1—O1111.8 (2)
O1—Co1—O2ii110.16 (12)O3—P1—O1108.79 (16)
O7i—Co1—O2iii106.57 (12)O7—P1—O2108.84 (17)
O1—Co1—O2iii108.97 (13)O3—P1—O2110.43 (17)
O2ii—Co1—O2iii102.75 (8)O1—P1—O2105.46 (16)
O3iv—Co2—O386.26 (16)P1—O1—Co1130.42 (18)
O3iv—Co2—O493.09 (12)P1—O2—Co1v128.01 (16)
O3—Co2—O493.09 (12)P1—O2—Co1iii115.24 (15)
O3iv—Co2—O591.00 (12)Co1v—O2—Co1iii116.58 (13)
O3—Co2—O591.00 (12)P1—O3—Co2132.08 (17)
O4—Co2—O5174.38 (15)Co2—O4—H5108 (10)
O3iv—Co2—O6178.01 (12)Co2—O4—H698 (10)
O3—Co2—O693.16 (12)H5—O4—H6133 (3)
O4—Co2—O685.03 (11)Co2—O5—H3112 (6)
O5—Co2—O690.91 (12)Co2—O5—H4112 (6)
O3iv—Co2—O6iv93.16 (12)H3—O5—H4134 (3)
O3—Co2—O6iv178.01 (12)Co2—O6—H1100 (4)
O4—Co2—O6iv85.03 (11)Co2—O6—H2110.7 (10)
O5—Co2—O6iv90.91 (12)H1—O6—H2132 (2)
O6—Co2—O6iv87.36 (16)P1—O7—Co1i133.79 (19)
O7—P1—O1—Co141.2 (3)O1—P1—O2—Co1iii20.9 (2)
O3—P1—O1—Co1164.7 (2)O7—P1—O3—Co222.9 (3)
O2—P1—O1—Co176.9 (3)O1—P1—O3—Co2146.5 (2)
O7i—Co1—O1—P18.8 (3)O2—P1—O3—Co298.2 (3)
O2ii—Co1—O1—P1115.1 (2)O3iv—Co2—O3—P1153.57 (18)
O2iii—Co1—O1—P1132.9 (2)O4—Co2—O3—P160.7 (3)
O7—P1—O2—Co1v34.1 (3)O5—Co2—O3—P1115.5 (3)
O3—P1—O2—Co1v88.5 (2)O6—Co2—O3—P124.5 (3)
O1—P1—O2—Co1v154.17 (19)O3—P1—O7—Co1i143.7 (3)
O7—P1—O2—Co1iii140.96 (19)O1—P1—O7—Co1i94.4 (4)
O3—P1—O2—Co1iii96.45 (18)O2—P1—O7—Co1i21.7 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H5···O3vi0.89 (1)2.25 (8)2.764 (4)116 (7)
O4—H5···O7iv0.89 (1)2.49 (8)3.209 (3)138 (9)
O4—H6···O3vii0.89 (1)2.02 (7)2.764 (4)140 (10)
O5—H4···O3v0.89 (1)2.25 (2)3.133 (5)170 (8)
O5—H4···O3viii0.89 (1)2.66 (8)3.133 (5)115 (6)
O6—H1···O1v0.90 (4)1.94 (3)2.690 (4)140 (4)
O6—H2···O70.90 (3)2.35 (3)3.008 (5)130 (3)
Symmetry codes: (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x, y+1/2, z+1; (vii) x, y, z+1; (viii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCo3(PO4)3·4H2O
Mr438.79
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)150
a, b, c (Å)10.604 (3), 18.288 (5), 5.0070 (13)
V3)971.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.52 × 0.39 × 0.38
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.068, 0.125
No. of measured, independent and
observed [I > 2σ(I)] reflections
8780, 1228, 1166
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.16
No. of reflections1228
No. of parameters101
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 1.38

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WebLab ViewerPro (Molecular Simulations, 2000) and POV-RAY (Cason, 2002), enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Co1—O7i1.901 (3)Co2—O62.138 (3)
Co1—O11.918 (3)P1—O71.519 (3)
Co1—O2ii1.983 (3)P1—O31.521 (3)
Co1—O2iii1.986 (3)P1—O11.537 (3)
Co2—O42.106 (4)P1—O21.570 (3)
Co2—O52.118 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H5···O3iv0.894 (10)2.25 (8)2.764 (4)116 (7)
O4—H5···O7v0.894 (10)2.49 (8)3.209 (3)138 (9)
O4—H6···O3vi0.894 (10)2.02 (7)2.764 (4)140 (10)
O5—H4···O3vii0.892 (10)2.25 (2)3.133 (5)170 (8)
O5—H4···O3viii0.892 (10)2.66 (8)3.133 (5)115 (6)
O6—H1···O1vii0.90 (4)1.94 (3)2.690 (4)140 (4)
O6—H2···O70.90 (3)2.35 (3)3.008 (5)130 (3)
Symmetry codes: (iv) x, y+1/2, z+1; (v) x, y+1/2, z; (vi) x, y, z+1; (vii) x1/2, y, z+1/2; (viii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the Brain Korea 21 programme and the Australian Research Council for support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationChen, Z., Gao, Q., Gao, D., Wei, Q. & Ruan, M. (2006). Mater. Lett. 60, 1816–1822.  Web of Science CrossRef CAS Google Scholar
First citationChoudhury, A., Natarajan, S. & Rao, C. N. R. (2000). Inorg. Chem. 39, 4295–4304.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P. & Morris, R. E. (2004). Nature (London), 430, 1012–1016.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationForster, P. M., Eckert, J., Chang, J.-S., Park, J.-S., Férey, G. & Cheatham, A. K. (2003). J. Am. Chem. Soc. 125, 1309–1312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, Y. & Gao, Q. (2007). Mater. Lett. 61, 2212–2216.  Web of Science CrossRef CAS Google Scholar
First citationJiang, Y.-C., Lai, Y.-C., Wang, S.-L. & Lii, K.-H. (2001). Inorg. Chem. 40, 5320–5321.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKuzicki, S. M., Bell, V. A., Nair, S., Hillhouse, H. W., Jacubinas, R. M., Braunbarth, V. M., Toby, B. H. & Tsapatsis, M. (2001). Nature (London), 412, 720–724.  Web of Science PubMed Google Scholar
First citationLee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i69–i70.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiebau, F. (1965). Acta Cryst. 18, 352–354.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMolecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.  Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages i67-i68
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds