# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *trans-rac-*Methyl 2-hexyl-1-oxo-3-(2pyridyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate

# Sema Öztürk Yıldırım,<sup>a</sup> Mehmet Akkurt,<sup>a</sup>\* Meglena I. Kandinska,<sup>b</sup> Milen G. Bogdanov<sup>b</sup> and Orhan Büyükgüngör<sup>c</sup>

<sup>a</sup>Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>b</sup>Faculty of Chemistry, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria, and <sup>c</sup>Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 9 September 2008; accepted 10 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.089; wR factor = 0.280; data-to-parameter ratio = 15.7.

The title compound,  $C_{22}H_{26}N_2O_3$ , was synthesized by esterification of *trans-rac*-2-hexyl-1-oxo-3-(2-pyridyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid in the presence of  $H_2SO_4$  in methanol. The dihedral angle between the benzene and pyridine rings is 84.46 (17)°. The piperidine ring adopts a screw-boat conformation. In the crystal, inversion dimers linked by two C-H···O bonds occur.

# **Related literature**

For background on potential applications of this family of compounds and the synthesis, see: Kandinska *et al.* (2006, 2007). For bond-length data, see: Allen *et al.* (1987). For puckering parameters, see: Cremer & Pople (1975).

# 



# Crystal data

 $\begin{array}{l} C_{22}H_{26}N_2O_3 \\ M_r = 366.45 \\ Orthorhombic, Pbca \\ a = 8.8404 \ (2) \ \text{\AA} \\ b = 15.6719 \ (5) \ \text{\AA} \\ c = 29.1488 \ (10) \ \text{\AA} \end{array}$ 

### Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002)  $T_{min} = 0.947, T_{max} = 0.956$ 

### Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.089 & 2 \text{ restraints} \\ wR(F^2) = 0.279 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.71 \text{ e } \text{\AA}^{-3} \\ 3735 \text{ reflections} & \Delta\rho_{\min} = -0.58 \text{ e } \text{\AA}^{-3} \end{array}$ 

V = 4038.5 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.69 \times 0.63 \times 0.57 \text{ mm}$ 

30845 measured reflections

3735 independent reflections

2647 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 293 (2) K

 $R_{\rm int}=0.078$ 

Z = 8

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$     | D-H                 | $H \cdots A$   | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------|---------------------|----------------|--------------|---------------------------|
| $C6-H6\cdots O2^{i}$ | 0.93                | 2.54           | 3.460 (5)    | 169                       |
| Symmetry code: (i) - | $x \pm 2 = y \pm 2$ | $-\pi \perp 1$ |              |                           |

Symmetry code: (i) -x + 2, -y + 2, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2280).

## References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). *Molecules*, **11**, 403–414.
- Kandinska, M. I., Todorov, I. S., Shivachev, B. & Bogdanov, M. G. (2007). Acta Cryst. E63, 02544–02546.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.



# supporting information

Acta Cryst. (2008). E64, o1932 [doi:10.1107/S1600536808029048]

# Methyl *trans-rac*-2-hexyl-1-oxo-3-(2-pyridyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate

# Sema Öztürk Yıldırım, Mehmet Akkurt, Meglena I. Kandinska, Milen G. Bogdanov and Orhan Büyükgüngör

# S1. Comment

The title compound was synthesized as part of a research project to find precursors for the production of new tetrahydroquinolone derivatives with potential biological activity (Kandinska *et al.*, 2006; Kandinska *et al.*, 2007).

The molecular structure is shown in Fig.1. The bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The dihedral angle between the benzene and pyridine rings is 84.46 (17) °. The piperidine ring adopts a screw boat conformation and its puckering parameters (Cremer & Pople, 1975) are  $Q_T = 0.465$  (3) Å,  $\theta = 114.9$  (4)° and  $\varphi = 93.7$  (4) °.

The crystal structure is stabilized by intermolecular C-H···O hydrogen bonds (Table 1 and Fig. 2).

# **S2. Experimental**

The title compound was synthesized by esterification of *trans-rac*-2-hexyl-1-oxo-3-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (3.81 g, 0.011 mol) (Kandinska *et al.*, 2007) in the presence of H<sub>2</sub>SO<sub>4</sub> (1.7 ml, 0.032 mol) in methanol. After working up the reaction mixture, the title compound crystallized as white crystals from ethyl acetate (yield 3.56 g, 90%; m.p. 357–359 K). Analysis, calculated for  $C_{22}H_{26}N_2O_3$  (366.45): C 72.11, H 7.15%; found: C 72.35, H7.08%. The product was further characterized by <sup>1</sup>H NMR and IR spectra.

# **S3. Refinement**

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 - 0.97 Å, and with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(carrier atom)$ . Atoms C19, C20 and C21 in the hexyl group appear to have unresolved disorder, so atom C21 was refined isotropically and the distances C19—C20 and C20—C21 were restrained by *SHELXL DFIX* instructions to a value of 1.530 Å (Allen *et al.*, 1987). Probably due to the poor crystal quality, the observed and calculated structure factors showed rather large disagreement. Hence, to improve the R factor, 81 reflections were suppressed in the refinement process.



# Figure 1

A view of the molecular structure of the title compound, with the atom-numbering scheme and displacement ellipsoids drawn at the 20% probability level. H atoms are represented by spheres of arbitrary radius.



# Figure 2

A view of the packing and hydrogen bonding (dashed lines) of the title compound, viewed down the a-axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

# trans-rac-Methyl 2-hexyl-1-oxo-3-(2-pyridyl)-1,2,3,4-tetrahydro- isoquinoline-4-carboxylate

| Crystal | data |
|---------|------|
|---------|------|

| $C_{22}H_{26}N_2O_3$                              | F(000) = 1568                                                             |
|---------------------------------------------------|---------------------------------------------------------------------------|
| $M_r = 366.45$                                    | $D_{\rm x} = 1.205 {\rm ~Mg} {\rm ~m}^{-3}$                               |
| Orthorhombic, Pbca                                | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å                             |
| Hall symbol: -P 2ac 2ab                           | Cell parameters from 35910 reflections                                    |
| a = 8.8404 (2) Å                                  | $\theta = 1.3 - 26.1^{\circ}$                                             |
| b = 15.6719(5) Å                                  | $\mu = 0.08 \text{ mm}^{-1}$                                              |
| c = 29.1488 (10)  Å                               | T = 293  K                                                                |
| V = 4038.5 (2) Å <sup>3</sup>                     | Block, colourless                                                         |
| Z = 8                                             | $0.69\times0.63\times0.57~mm$                                             |
| Data collection                                   |                                                                           |
| STOE IPDS 2                                       | $T_{\min} = 0.947, T_{\max} = 0.956$                                      |
| diffractometer                                    | 30845 measured reflections                                                |
| Radiation source: sealed X-ray tube, 12 x 0.4     | 3735 independent reflections                                              |
| mm long-fine focus                                | 2647 reflections with $I > 2\sigma(I)$                                    |
| Plane graphite monochromator                      | $R_{\rm int} = 0.078$                                                     |
| Detector resolution: 6.67 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ |
| ω scans                                           | $h = -10 \rightarrow 10$                                                  |
| Absorption correction: integration                | $k = -18 \rightarrow 18$                                                  |
| (X-RED32; Stoe & Cie, 2002)                       | $l = -34 \rightarrow 35$                                                  |
|                                                   |                                                                           |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier   |
|-------------------------------------------------|----------------------------------------------------|
| Least-squares matrix: full                      | map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.089$                 | Hydrogen site location: inferred from              |
| $wR(F^2) = 0.279$                               | neighbouring sites                                 |
| S = 1.07                                        | H-atom parameters constrained                      |
| 3735 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.1761P)^2 + 0.794P]$   |
| 238 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                     |
| 2 restraints                                    | $(\Delta/\sigma)_{\text{max}} < 0.001$             |
| Primary atom site location: structure-invariant | $\Delta\rho_{\text{max}} = 0.71 \text{ e Å}^{-3}$  |
| direct methods                                  | $\Delta\rho_{\text{min}} = -0.58 \text{ e Å}^{-3}$ |

# Special details

**Experimental.** Single crystals were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature. IR (CHCl<sub>3</sub>) 1600 cm<sup>-1</sup> (ArH), 1660 cm<sup>-1</sup> (C=O), 1740 cm<sup>-1</sup> (C=O). <sup>1</sup>HNMR (250 MHz, CDCl<sub>3</sub>)  $\delta$  (p.p.m.) = 0.83–0.86 (m, 3H, -*C*H<sub>3</sub>), 1.18–1.35 (m, 6H, -*C*H<sub>2</sub>-), 1.58–1.67 (m,2*H*, -*C*H<sub>2</sub>-), 2.81–2.88 (m,1*H*, *N*—*C*H<sub>2</sub><sup>*a*</sup>), 3.70 (s, 3H, -*OC*H<sub>3</sub>), 4.20–4.28 (m, 1H, *N*—*C*H<sub>2</sub><sup>*b*</sup>), 4.42 (s, 1H, -*OOC*-*C*H), 5.32 (s, 1H, *Pyr*-*C*H, 6.90–6.98 (m, 1H, *Ph*-H), 7.08–7.19 (m, 2H, *Ph*-H, *Pyr*-H), 7.25–7.30 (m, 2H, *Pyr*-H), 7.36–7.47 (m, 1H, *Ph*-H), 7.87 (dd, 1H, *J* = 2.0 and 10.0 Hz, *Ph*-H), 8.08 (dm, 1H, *J* = 4.0 Hz, *Pyr*-H).

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x          | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|--------------|--------------|-----------------------------|--|
| 01  | 0.6287 (3) | 1.0146 (2)   | 0.67997 (10) | 0.0918 (11)                 |  |
| 02  | 1.0639 (3) | 0.9186 (2)   | 0.56576 (14) | 0.1041 (13)                 |  |
| 03  | 0.8206 (3) | 0.89875 (15) | 0.55212 (11) | 0.0811 (10)                 |  |
| N1  | 0.8646 (3) | 1.03830 (17) | 0.65188 (9)  | 0.0595 (9)                  |  |
| N2  | 1.0890 (3) | 1.19495 (18) | 0.58718 (10) | 0.0654 (10)                 |  |
| C1  | 0.7102 (4) | 1.0356 (2)   | 0.64749 (13) | 0.0661 (11)                 |  |
| C2  | 0.6468 (4) | 1.05917 (18) | 0.60251 (12) | 0.0574 (10)                 |  |
| C3  | 0.4909 (4) | 1.0776 (2)   | 0.59856 (16) | 0.0749 (14)                 |  |
| C4  | 0.4295 (4) | 1.0982 (2)   | 0.55687 (17) | 0.0791 (14)                 |  |
| C5  | 0.5176 (4) | 1.1012 (2)   | 0.51854 (16) | 0.0760 (14)                 |  |
| C6  | 0.6711 (4) | 1.0827 (2)   | 0.52161 (13) | 0.0638 (11)                 |  |
| C7  | 0.7356 (3) | 1.06194 (18) | 0.56354 (11) | 0.0534 (9)                  |  |
| C8  | 0.9013 (3) | 1.04072 (19) | 0.56832 (11) | 0.0539 (9)                  |  |
| C9  | 0.9606 (3) | 1.07082 (18) | 0.61483 (11) | 0.0532 (9)                  |  |
| C10 | 0.9825 (3) | 1.16633 (19) | 0.61558 (11) | 0.0536 (9)                  |  |
| C11 | 0.9063 (4) | 1.2211 (2)   | 0.64487 (14) | 0.0703 (11)                 |  |
| C12 | 0.9425 (5) | 1.3067 (3)   | 0.64457 (16) | 0.0840 (16)                 |  |
| C13 | 1.0519 (6) | 1.3364 (3)   | 0.61556 (17) | 0.0883 (16)                 |  |
| C14 | 1.1231 (5) | 1.2765 (3)   | 0.58783 (16) | 0.0837 (14)                 |  |
| C15 | 0.9396 (4) | 0.9465 (2)   | 0.56223 (12) | 0.0612 (11)                 |  |
|     |            |              |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C16  | 0.8489 (6) | 0.8081 (3) | 0.54473 (19) | 0.101 (2)   |
|------|------------|------------|--------------|-------------|
| C17  | 0.9382 (5) | 1.0220 (3) | 0.69588 (14) | 0.0853 (16) |
| C18  | 1.0400 (6) | 0.9436 (4) | 0.6965 (2)   | 0.118 (3)   |
| C19  | 0.9589 (8) | 0.8632 (4) | 0.6907 (3)   | 0.131 (3)   |
| C20  | 1.0378 (9) | 0.7692 (6) | 0.6833 (3)   | 0.169 (4)   |
| C21  | 1.1265 (7) | 0.7497 (4) | 0.7199 (2)   | 0.1150*     |
| C22  | 1.2046 (6) | 0.6616 (4) | 0.7108 (2)   | 0.121 (3)   |
| Н3   | 0.42950    | 1.07570    | 0.62450      | 0.0900*     |
| H4   | 0.32670    | 1.11020    | 0.55470      | 0.0950*     |
| Н5   | 0.47510    | 1.11560    | 0.49040      | 0.0910*     |
| H6   | 0.73090    | 1.08430    | 0.49540      | 0.0770*     |
| H8   | 0.95590    | 1.07250    | 0.54460      | 0.0650*     |
| Н9   | 1.06070    | 1.04510    | 0.61890      | 0.0640*     |
| H11  | 0.83180    | 1.20040    | 0.66450      | 0.0840*     |
| H12  | 0.89240    | 1.34410    | 0.66410      | 0.1010*     |
| H13  | 1.07750    | 1.39390    | 0.61440      | 0.1060*     |
| H14  | 1.19990    | 1.29540    | 0.56850      | 0.1000*     |
| H16A | 0.75540    | 0.77980    | 0.53780      | 0.1520*     |
| H16B | 0.89210    | 0.78370    | 0.57200      | 0.1520*     |
| H16C | 0.91790    | 0.80100    | 0.51960      | 0.1520*     |
| H17A | 0.86080    | 1.01510    | 0.71920      | 0.1020*     |
| H17B | 0.99820    | 1.07150    | 0.70410      | 0.1020*     |
| H18A | 1.11430    | 0.94890    | 0.67220      | 0.1420*     |
| H18B | 1.09430    | 0.94210    | 0.72540      | 0.1420*     |
| H19A | 0.89210    | 0.87150    | 0.66470      | 0.1570*     |
| H19B | 0.89410    | 0.85770    | 0.71740      | 0.1570*     |
| H20A | 0.95990    | 0.72610    | 0.67980      | 0.2030*     |
| H20B | 1.09850    | 0.76970    | 0.65560      | 0.2030*     |
| H21A | 1.06560    | 0.74660    | 0.74750      | 0.1380*     |
| H21B | 1.20260    | 0.79350    | 0.72410      | 0.1380*     |
| H22A | 1.25770    | 0.64370    | 0.73780      | 0.1810*     |
| H22B | 1.27470    | 0.66710    | 0.68580      | 0.1810*     |
| H22C | 1.12910    | 0.61990    | 0.70310      | 0.1810*     |
|      |            |            |              |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-----------------|-------------|--------------|--------------|--------------|
| 01 | 0.0917 (19) | 0.100 (2)       | 0.0837 (19) | -0.0117 (16) | 0.0350 (16)  | 0.0091 (15)  |
| O2 | 0.0659 (16) | 0.0784 (19)     | 0.168 (3)   | 0.0230 (14)  | 0.0148 (18)  | -0.0227 (19) |
| O3 | 0.0846 (17) | 0.0428 (12)     | 0.116 (2)   | 0.0089 (11)  | -0.0072 (15) | -0.0134 (13) |
| N1 | 0.0660 (16) | 0.0560 (14)     | 0.0564 (15) | -0.0008 (12) | 0.0121 (13)  | 0.0018 (11)  |
| N2 | 0.0578 (15) | 0.0609 (16)     | 0.0776 (19) | -0.0082 (12) | 0.0063 (14)  | 0.0064 (14)  |
| C1 | 0.072 (2)   | 0.0522 (17)     | 0.074 (2)   | -0.0050 (15) | 0.0258 (18)  | -0.0059 (15) |
| C2 | 0.0563 (17) | 0.0419 (15)     | 0.074 (2)   | 0.0001 (12)  | 0.0123 (16)  | -0.0089 (13) |
| C3 | 0.0576 (19) | 0.063 (2)       | 0.104 (3)   | 0.0012 (16)  | 0.023 (2)    | -0.0148 (19) |
| C4 | 0.0562 (19) | 0.060(2)        | 0.121 (3)   | 0.0047 (16)  | -0.005 (2)   | -0.016 (2)   |
| C5 | 0.066 (2)   | 0.065 (2)       | 0.097 (3)   | 0.0047 (17)  | -0.013 (2)   | -0.0094 (19) |
| C6 | 0.0626 (19) | 0.0539 (17)     | 0.075 (2)   | 0.0047 (14)  | 0.0025 (16)  | -0.0060 (15) |
|    |             |                 |             |              |              |              |

| C7  | 0.0533 (16) | 0.0406 (13) | 0.0662 (19) | 0.0012 (12) | 0.0055 (14)  | -0.0086 (12) |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| C8  | 0.0525 (16) | 0.0470 (15) | 0.0622 (18) | 0.0033 (12) | 0.0157 (14)  | -0.0038 (13) |
| C9  | 0.0506 (15) | 0.0482 (15) | 0.0608 (17) | 0.0027 (12) | 0.0096 (14)  | -0.0010 (13) |
| C10 | 0.0471 (15) | 0.0548 (16) | 0.0588 (17) | 0.0004 (13) | -0.0032 (13) | 0.0013 (13)  |
| C11 | 0.072 (2)   | 0.0538 (18) | 0.085 (2)   | 0.0046 (16) | 0.0101 (18)  | -0.0083 (16) |
| C12 | 0.091 (3)   | 0.061 (2)   | 0.100 (3)   | 0.008 (2)   | 0.000 (2)    | -0.016 (2)   |
| C13 | 0.101 (3)   | 0.053 (2)   | 0.111 (3)   | -0.010 (2)  | -0.020 (3)   | 0.000(2)     |
| C14 | 0.081 (2)   | 0.069 (2)   | 0.101 (3)   | -0.020 (2)  | 0.001 (2)    | 0.013 (2)    |
| C15 | 0.065 (2)   | 0.0516 (17) | 0.067 (2)   | 0.0106 (15) | 0.0176 (16)  | -0.0061 (14) |
| C16 | 0.123 (4)   | 0.047 (2)   | 0.133 (4)   | 0.011 (2)   | -0.006 (3)   | -0.021 (2)   |
| C17 | 0.099 (3)   | 0.092 (3)   | 0.065 (2)   | -0.014 (2)  | 0.007 (2)    | 0.005 (2)    |
| C18 | 0.116 (4)   | 0.134 (5)   | 0.104 (4)   | 0.021 (4)   | -0.004 (3)   | 0.048 (3)    |
| C19 | 0.154 (6)   | 0.099 (4)   | 0.140 (5)   | 0.034 (4)   | 0.026 (4)    | 0.021 (4)    |
| C20 | 0.146 (6)   | 0.212 (9)   | 0.148 (6)   | -0.029 (6)  | 0.012 (5)    | -0.072 (6)   |
| C22 | 0.106 (4)   | 0.139 (5)   | 0.117 (4)   | 0.042 (3)   | 0.010 (3)    | 0.034 (4)    |
|     |             |             |             |             |              |              |

Geometric parameters (Å, °)

| 1.234 (5)  | C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.566 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.187 (4)  | С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.324 (4)  | C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.459 (5)  | С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.372 (4)  | С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.465 (4)  | C8—H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.461 (5)  | С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.332 (4)  | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.313 (5)  | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.473 (5)  | C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.413 (5)  | C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.382 (5)  | C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.370 (6)  | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.363 (6)  | C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.391 (5)  | C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.387 (5)  | C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.509 (4)  | C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.528 (4)  | C18—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.525 (4)  | C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.510 (4)  | C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.386 (5)  | C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.379 (6)  | C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.366 (7)  | C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.390 (7)  | C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.523 (8)  | C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.460 (9)  | C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.644 (11) | C22—H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.359 (10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.294 (4)  | H5…O3 <sup>v</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | $\begin{array}{c} 1.234 \ (5) \\ 1.187 \ (4) \\ 1.324 \ (4) \\ 1.324 \ (4) \\ 1.459 \ (5) \\ 1.372 \ (4) \\ 1.465 \ (4) \\ 1.461 \ (5) \\ 1.372 \ (4) \\ 1.461 \ (5) \\ 1.332 \ (4) \\ 1.313 \ (5) \\ 1.473 \ (5) \\ 1.473 \ (5) \\ 1.473 \ (5) \\ 1.382 \ (5) \\ 1.370 \ (6) \\ 1.363 \ (6) \\ 1.391 \ (5) \\ 1.387 \ (5) \\ 1.509 \ (4) \\ 1.528 \ (4) \\ 1.528 \ (4) \\ 1.525 \ (4) \\ 1.510 \ (4) \\ 1.386 \ (5) \\ 1.379 \ (6) \\ 1.366 \ (7) \\ 1.390 \ (7) \\ 1.523 \ (8) \\ 1.460 \ (9) \\ 1.644 \ (11) \\ 1.359 \ (10) \end{array}$ | 1.234 (5) $C21-C22$ $1.187 (4)$ $C3-H3$ $1.324 (4)$ $C4-H4$ $1.459 (5)$ $C5-H5$ $1.372 (4)$ $C6-H6$ $1.465 (4)$ $C8-H8$ $1.461 (5)$ $C9-H9$ $1.332 (4)$ $C11-H11$ $1.313 (5)$ $C12-H12$ $1.473 (5)$ $C13-H13$ $1.413 (5)$ $C14-H14$ $1.382 (5)$ $C16-H16A$ $1.370 (6)$ $C16-H16B$ $1.363 (6)$ $C16-H16B$ $1.363 (6)$ $C17-H17A$ $1.387 (5)$ $C17-H17A$ $1.387 (5)$ $C17-H17B$ $1.509 (4)$ $C18-H18B$ $1.528 (4)$ $C19-H19A$ $1.528 (4)$ $C19-H19A$ $1.510 (4)$ $C19-H19B$ $1.386 (5)$ $C20-H20A$ $1.379 (6)$ $C20-H20B$ $1.366 (7)$ $C21-H21A$ $1.390 (7)$ $C21-H21B$ $1.523 (8)$ $C22-H22B$ $1.644 (11)$ $C22-H22C$ $1.359 (10)$ $3.294 (4)$ |

| O3…C2                   | 3.292 (4) | Н6…Н8                      | 2.4600 |
|-------------------------|-----------|----------------------------|--------|
| O1…H17A                 | 2.3500    | H6…O2 <sup>iv</sup>        | 2.5400 |
| O1…H3                   | 2.5800    | H8…N2                      | 2.5700 |
| O1…H22C <sup>i</sup>    | 2.8900    | H8…H6                      | 2.4600 |
| O1…H12 <sup>ii</sup>    | 2.7200    | Н9…О2                      | 2.5200 |
| O2…H16B                 | 2.6100    | H9…C18                     | 2.7700 |
| O2…H9                   | 2.5200    | H9…H17B                    | 2.5800 |
| O2…H14 <sup>iii</sup>   | 2.8500    | H9…H18A                    | 2.2200 |
| O2…H16C                 | 2.6200    | H11…N1                     | 2.5800 |
| O2…H6 <sup>iv</sup>     | 2.5400    | H11…C1                     | 2.8400 |
| O3…H5 <sup>v</sup>      | 2.9000    | H11…C17                    | 3.0900 |
| N1…H11                  | 2.5800    | H12…O1 <sup>i</sup>        | 2.7200 |
| N1…H19A                 | 2.6500    | H12…H19A <sup>i</sup>      | 2.5500 |
| N2…H4 <sup>vi</sup>     | 2.6600    | H13…C3 <sup>i</sup>        | 2.9800 |
| N2…H8                   | 2.5700    | H14…O2 <sup>vii</sup>      | 2.8500 |
| C1…C11                  | 3.386 (5) | H16B…O2                    | 2.6100 |
| C1…C15                  | 3.498 (5) | H16C…O2                    | 2.6200 |
| C2…C10                  | 3.431 (4) | H17A…O1                    | 2.3500 |
| C2…O3                   | 3.292 (4) | H17A…H19B                  | 2.4800 |
| C5…C16 <sup>i</sup>     | 3.534 (6) | H17A…H22A <sup>ix</sup>    | 2.5900 |
| C5…C5 <sup>v</sup>      | 3.366 (5) | H17B…C10                   | 2.9800 |
| C5…C6 <sup>v</sup>      | 3.530 (5) | H17B…C11                   | 3.0200 |
| C6…O3                   | 3.294 (4) | H17B…H9                    | 2.5800 |
| C6…C5 <sup>v</sup>      | 3.530 (5) | H17B····C22 <sup>vii</sup> | 2.9900 |
| C10···C2                | 3.431 (4) | H17B···H22B <sup>vii</sup> | 2.5600 |
| C11C17                  | 3.468 (6) | H18A…C9                    | 2.8800 |
| C11C1                   | 3.386 (5) | H18A…H9                    | 2.2200 |
| C15…C1                  | 3.498 (5) | H18B…C21                   | 3.0300 |
| C16…C5 <sup>ii</sup>    | 3.534 (6) | H18B…H21B                  | 2.5200 |
| C17…C11                 | 3.468 (6) | H19A…N1                    | 2.6500 |
| C1…H19A                 | 3.0700    | H19A…C1                    | 3.0700 |
| C1…H11                  | 2.8400    | H19A…H12 <sup>ii</sup>     | 2.5500 |
| C3…H13 <sup>ii</sup>    | 2.9800    | H19B…H17A                  | 2.4800 |
| C9…H18A                 | 2.8800    | H19B…H21A                  | 2.4700 |
| C10…H22B <sup>vii</sup> | 2.9700    | H20A…H22C                  | 2.3400 |
| C10…H17B                | 2.9800    | H20B…H22B                  | 2.4100 |
| C11…H17B                | 3.0200    | H21A…H19B                  | 2.4700 |
| C17…H11                 | 3.0900    | H21B…C18                   | 2.8700 |
| С18…Н9                  | 2.7700    | H21B…H18B                  | 2.5200 |
| C18…H21B                | 2.8700    | H22A…H17A <sup>x</sup>     | 2.5900 |
| C21…H18B                | 3.0300    | H22B…H20B                  | 2.4100 |
| C22…H3 <sup>ii</sup>    | 3.0900    | H22B…C10 <sup>iii</sup>    | 2.9700 |
| C22…H17B <sup>iii</sup> | 2.9900    | H22B···H17B <sup>iii</sup> | 2.5600 |
| Н3…О1                   | 2.5800    | H22C…H20A                  | 2.3400 |
| H3…C22 <sup>i</sup>     | 3.0900    | H22C…O1 <sup>ii</sup>      | 2.8900 |
| H3····H22C <sup>i</sup> | 2.4500    | H22C···H3 <sup>ii</sup>    | 2.4500 |
| H4…N2 <sup>viii</sup>   | 2.6600    |                            |        |

| C15—O3—C16                                   | 116.6 (3)                               | С15—С8—Н8                        | 108.00 |
|----------------------------------------------|-----------------------------------------|----------------------------------|--------|
| C1—N1—C9                                     | 121.2 (3)                               | N1—C9—H9                         | 107.00 |
| C1—N1—C17                                    | 121.3 (3)                               | С8—С9—Н9                         | 107.00 |
| C9—N1—C17                                    | 116.8 (3)                               | С10—С9—Н9                        | 107.00 |
| C10—N2—C14                                   | 118.8 (3)                               | C10—C11—H11                      | 120.00 |
| O1—C1—N1                                     | 121.2 (3)                               | C12—C11—H11                      | 120.00 |
| 01—C1—C2                                     | 121.8 (3)                               | C11—C12—H12                      | 120.00 |
| N1—C1—C2                                     | 117.0 (3)                               | C13—C12—H12                      | 120.00 |
| C1—C2—C3                                     | 119.7 (3)                               | C12—C13—H13                      | 122.00 |
| C1—C2—C7                                     | 121.6 (3)                               | C14—C13—H13                      | 122.00 |
| C3—C2—C7                                     | 118.7 (3)                               | N2—C14—H14                       | 118.00 |
| C2—C3—C4                                     | 120.5 (4)                               | C13—C14—H14                      | 118.00 |
| C3—C4—C5                                     | 120.6 (3)                               | O3—C16—H16A                      | 109.00 |
| C4—C5—C6                                     | 119.9 (4)                               | O3—C16—H16B                      | 109.00 |
| C5—C6—C7                                     | 120.4 (3)                               | O3—C16—H16C                      | 110.00 |
| C2—C7—C6                                     | 119.9 (3)                               | H16A—C16—H16B                    | 109.00 |
| C2—C7—C8                                     | 118.0 (3)                               | H16A—C16—H16C                    | 109.00 |
| C6—C7—C8                                     | 122.2 (3)                               | H16B—C16—H16C                    | 109.00 |
| С7—С8—С9                                     | 110.3 (2)                               | N1—C17—H17A                      | 109.00 |
| C7—C8—C15                                    | 114.7 (2)                               | N1—C17—H17B                      | 109.00 |
| C9—C8—C15                                    | 109.0 (2)                               | C18—C17—H17A                     | 109.00 |
| N1                                           | 110.4 (2)                               | C18—C17—H17B                     | 109.00 |
| N1C9C10                                      | 114.1 (2)                               | H17A—C17—H17B                    | 108.00 |
| C8—C9—C10                                    | 111.3 (3)                               | C17—C18—H18A                     | 109.00 |
| N2-C10-C9                                    | 114.6 (3)                               | C17—C18—H18B                     | 109.00 |
| N2-C10-C11                                   | 121.2 (3)                               | C19—C18—H18A                     | 109.00 |
| C9—C10—C11                                   | 124.1 (3)                               | C19—C18—H18B                     | 109.00 |
| C10-C11-C12                                  | 119.1 (3)                               | H18A—C18—H18B                    | 108.00 |
| C11—C12—C13                                  | 120.0 (4)                               | C18—C19—H19A                     | 106.00 |
| C12—C13—C14                                  | 116.8 (4)                               | C18—C19—H19B                     | 106.00 |
| N2-C14-C13                                   | 124.2 (4)                               | C20—C19—H19A                     | 106.00 |
| 02—C15—O3                                    | 123.1 (3)                               | C20—C19—H19B                     | 106.00 |
| 02                                           | 123.5 (3)                               | H19A—C19—H19B                    | 106.00 |
| 03-C15-C8                                    | 113.4 (3)                               | C19—C20—H20A                     | 110.00 |
| N1-C17-C18                                   | 114.5 (4)                               | C19—C20—H20B                     | 110.00 |
| C17—C18—C19                                  | 113.9 (5)                               | C21—C20—H20A                     | 110.00 |
| C18—C19—C20                                  | 125.5 (6)                               | C21—C20—H20B                     | 110.00 |
| C19-C20-C21                                  | 110.1 (7)                               | H20A—C20—H20B                    | 108.00 |
| $C_{20}$ $C_{21}$ $C_{22}$ $C_{21}$ $C_{22}$ | 108.6 (6)                               | C20-C21-H21A                     | 110.00 |
| C2-C3-H3                                     | 120.00                                  | C20-C21-H21B                     | 110.00 |
| C4—C3—H3                                     | 120.00                                  | $C_{22} = C_{21} = H_{21A}$      | 110.00 |
| C3-C4-H4                                     | 120.00                                  | C22—C21—H21B                     | 110.00 |
| C5—C4—H4                                     | 120.00                                  | H21A— $C21$ — $H21B$             | 108.00 |
| C4—C5—H5                                     | 120.00                                  | C21—C22—H22A                     | 110.00 |
| С6—С5—Н5                                     | 120.00                                  | C21 - C22 - H22R                 | 109.00 |
| С5—С6—Н6                                     | 120.00                                  | $C_{21} = C_{22} = H_{22}C_{22}$ | 109.00 |
| С7—С6—Н6                                     | 120.00                                  | H22A-C22-H22R                    | 109.00 |
| C7—C8—H8                                     | 108.00                                  | H22A - C22 - H22C                | 109.00 |
|                                              | • • • • • • • • • • • • • • • • • • • • |                                  |        |

# supporting information

| С9—С8—Н8                    | 107.00     | H22B—C22—H22C   | 109.00     |
|-----------------------------|------------|-----------------|------------|
| C16                         | -0.7 (6)   | C5-C6-C7-C8     | 179 5 (3)  |
| $C_{16} = 0.3 = 0.15 = 0.2$ | 178.6 (3)  | C5—C6—C7—C2     | 0.3 (5)    |
| C9—N1—C1—O1                 | -174.2 (3) | C6-C7-C8-C15    | -89.5 (4)  |
| C17—N1—C1—C2                | 175.6 (3)  | C2—C7—C8—C9     | -33.9(4)   |
| C9—N1—C17—C18               | -72.9 (4)  | C6—C7—C8—C9     | 146.9 (3)  |
| C17—N1—C9—C10               | -84.3 (3)  | C2C7C8C15       | 89.7 (3)   |
| C17—N1—C1—O1                | -4.1 (5)   | C7—C8—C9—N1     | 52.2 (3)   |
| C9—N1—C1—C2                 | 5.6 (4)    | C9—C8—C15—O2    | -54.3 (5)  |
| C1—N1—C17—C18               | 116.7 (4)  | C9—C8—C15—O3    | 126.4 (3)  |
| C1—N1—C9—C10                | 86.2 (3)   | C15—C8—C9—C10   | 157.7 (2)  |
| C1—N1—C9—C8                 | -40.0 (4)  | C7—C8—C15—O2    | -178.5 (4) |
| C17—N1—C9—C8                | 149.5 (3)  | C7—C8—C15—O3    | 2.2 (4)    |
| C14—N2—C10—C11              | 1.1 (5)    | C7—C8—C9—C10    | -75.5 (3)  |
| C14—N2—C10—C9               | -175.4 (3) | C15—C8—C9—N1    | -74.6 (3)  |
| C10—N2—C14—C13              | -1.9 (6)   | N1-C9-C10-C11   | -7.2 (4)   |
| N1—C1—C2—C7                 | 16.6 (4)   | C8—C9—C10—N2    | -65.2 (3)  |
| O1—C1—C2—C3                 | 14.9 (5)   | C8—C9—C10—C11   | 118.5 (3)  |
| N1—C1—C2—C3                 | -164.9 (3) | N1-C9-C10-N2    | 169.1 (3)  |
| O1—C1—C2—C7                 | -163.6 (3) | N2-C10-C11-C12  | -0.3 (5)   |
| C3—C2—C7—C8                 | -179.1 (3) | C9—C10—C11—C12  | 175.9 (3)  |
| C3—C2—C7—C6                 | 0.1 (4)    | C10-C11-C12-C13 | 0.2 (6)    |
| C1—C2—C7—C6                 | 178.7 (3)  | C11—C12—C13—C14 | -0.8 (7)   |
| C1—C2—C7—C8                 | -0.5 (4)   | C12—C13—C14—N2  | 1.8 (7)    |
| C7—C2—C3—C4                 | -0.3 (5)   | N1—C17—C18—C19  | -66.1 (6)  |
| C1—C2—C3—C4                 | -178.9 (3) | C17—C18—C19—C20 | 171.8 (6)  |
| C2—C3—C4—C5                 | 0.1 (5)    | C18—C19—C20—C21 | 60.3 (10)  |
| C3—C4—C5—C6                 | 0.4 (5)    | C19—C20—C21—C22 | -177.8 (5) |
| C4—C5—C6—C7                 | -0.6 (5)   |                 |            |

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) -*x*+3/2, *y*-1/2, *z*; (iii) -*x*+5/2, *y*-1/2, *z*; (iv) -*x*+2, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+2, -*z*+1; (vi) *x*+1, *y*, *z*; (vii) -*x*+5/2, *y*+1/2, *z*; (viii) *x*-1, *y*, *z*; (ix) -*x*+2, *y*+1/2, -*z*+3/2; (x) -*x*+2, *y*-1/2, -*z*+3/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                | <i>D</i> —Н | H···A | D····A    | D—H…A |
|------------------------|-------------|-------|-----------|-------|
| C6—H6…O2 <sup>iv</sup> | 0.93        | 2.54  | 3.460 (5) | 169   |
| C8—H8…N2               | 0.98        | 2.57  | 2.983 (4) | 105   |
| С9—Н9…О2               | 0.98        | 2.52  | 2.928 (4) | 105   |
| C11—H11…N1             | 0.93        | 2.58  | 2.896 (4) | 100   |
| C17—H17A…O1            | 0.97        | 2.35  | 2.778 (5) | 106   |

Symmetry code: (iv) -x+2, -y+2, -z+1.