organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 3-oxo-2-oxa-5-aza­bi­cyclo­[2.2.1]heptane-5-carboxyl­ate

aCNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, F-67000 Strasbourg, France, and bLaboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B), UMR No. 7036, Nancy Université, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre lès Nancy Cedex, France
*Correspondence e-mail: claude.didierjean@lcm3b.uhp-nancy.fr

(Received 2 July 2008; accepted 23 September 2008; online 30 September 2008)

The title compound, C10H15NO4, also known as N-tert-butyl­oxycarbonyl-allohydr­oxy-L-proline lactone, is quite similar to N-acetyl-allohydr­oxy-L-proline lactone [Lenstra, Petit & Geise (1979[Lenstra, A. T. H., Petit, G. H. & Geise, H. J. (1979). Cryst. Struct. Commun. 8, 1023-1029.]). Cryst. Struct. Commun. 8, 1023–1029], whereby both carbonyl groups point roughly in the same direction because of the trans conformation of the peptide bond.

Related literature

For general background, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Didier et al. (2004[Didier, C., Crichter, D. J., Walshe, N. D., Kojima, Y., Yamauchi, Y. & Barrett, A. G. M. (2004). J. Org. Chem. 69, 7875-7879.]); Lenstra et al. (1979[Lenstra, A. T. H., Petit, G. H. & Geise, H. J. (1979). Cryst. Struct. Commun. 8, 1023-1029.]); Papaioannou et al. (1989[Papaioannou, D., Stavropoulos, G., Nastopoulos, V., Voliotis, S. & Leban, I. (1989). Acta Cryst. C45, 1651-1652.]). For related synthesis, see: Gómez-Vidal & Silverman (2001[Gómez-Vidal, J. A. & Silverman, R. B. (2001). Org. Lett. 3, 2481-2484.]). For related literature, see: Flack & Schwarzenbach (1988[Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO4

  • Mr = 213.23

  • Monoclinic, P 21

  • a = 6.0710 (7) Å

  • b = 9.3703 (11) Å

  • c = 9.3002 (10) Å

  • β = 100.013 (5)°

  • V = 521.00 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 5951 measured reflections

  • 1143 independent reflections

  • 1054 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.102

  • S = 1.20

  • 1143 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-tert-Butyloxycarbonyl-allohydroxy-L-proline lactone is prepared in one step under Mitsunobu conditions starting from corresponding trans-4-hydroxyproline. As previously described (Gómez-Vidal & Silverman, 2001), this lactone is a useful derivative that can be readily transformed to N-Boc-cis-4-hydroxyl-L-prolinemethyl ester by quantitative trans-esterification with methanol in the presence of sodium azide. Further transformation of the hydroxyl group to an azido group in the presence of diphenylphosphorylazide (DPPA) under Mistunobu conditions affords N-Boc-trans-4-azido-L-proline methyl ester, a useful building block for the preparation of 4-aminoproline containing molecules.

A search of the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002) for allohydroxy-L-proline lacton gave rise to 3 hits: (1S,4S)-N-acetyl-3-oxo-5-aza-2-oxabicyclo[2.2.1]heptane (Lenstra et al., 1979); N-triphenylmethyl-2-oxa-5-azabicyclo[2.2.1]heptan-3-one (Papaioannou et al., 1989); tert-butyl 7-chloro-6-methyl-2,3-dihydro-2-oxo-6H-3,10b-methano-1,4- dioxazino[3,2-c](2,1)benzoxazine-4(4aH)-carboxylate (Didier et al., 2004). In the four structures the pyrrolidine ring (N1/C6/C7/C8/C9 numbering in the title compound) adopts the same envelope conformation with C8 out of the mean plane defined by N1, C6, C7 and C9. Three structures consists of an amide bond: the title compound, the N-acetyl-allohydroxy-L-proline lacton and the tert-butyl- 7-chloro-6-methyl-2,3-dihydro-2-oxo-6H-3,10b-methano-1,4- dioxazino(3,2-c)(2,1)benzoxazine-4(4aH)-carboxylate. The two first structures exhibit a quite similar structure with a nearly planar trans- amide bond. In the last one, the peptide bond is cis- and the nitrogen atom of the pyrrolidine ring exhibits an observable pyramidalization. Indeed, the sum of bond angles around the nitrogen atom is of 347.9° whereas of 357.9° and 357.4° in the two first structures.

Related literature top

For related literature, see: Allen (2002); Didier et al. (2004); Flack & Schwarzenbach (1988); Gómez-Vidal & Silverman (2001); Lenstra et al. (1979); Papaioannou et al. (1989).

Experimental top

The title compound was prepared in 80% from N-Boc-trans-4-hydroxyproline following the a described procedure (Gómez-Vidal & Silverman, 2001) and was crystallized by slow evaporation of a cyclohexane/ethyl acetate (3:2, v/v) solution.

Refinement top

Because of the lack of any significant anomalous dispersion effects, the absolute configurations of the title compound could not be determined from the diffraction experiments but was known from the method of synthesis. The origin was fixed by floating-origin restraints (Flack & Schwarzenbach, 1988). All H atoms were located in difference Fourier maps. The C-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.93–0.96 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for methine and methylene C—H and at 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing the atom-numbering scheme. All non-H atoms are represented by 50% probability displacement ellipsoids.
tert-Butyl 3-oxo-2-oxa-5-azabicyclo[2.2.1]heptane-5-carboxylate top
Crystal data top
C10H15NO4F(000) = 228
Mr = 213.23Dx = 1.359 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 11845 reflections
a = 6.0710 (7) Åθ = 0.4–26.4°
b = 9.3703 (11) ŵ = 0.11 mm1
c = 9.3002 (10) ÅT = 100 K
β = 100.013 (5)°Prism, colourless
V = 521.00 (10) Å30.3 × 0.2 × 0.2 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
1054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 26.6°, θmin = 3.1°
ω and ϕ scansh = 77
5951 measured reflectionsk = 1111
1143 independent reflectionsl = 1111
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0035P)2 + 0.6362P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.23 e Å3
1143 reflectionsΔρmin = 0.22 e Å3
139 parameters
Crystal data top
C10H15NO4V = 521.00 (10) Å3
Mr = 213.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0710 (7) ŵ = 0.11 mm1
b = 9.3703 (11) ÅT = 100 K
c = 9.3002 (10) Å0.3 × 0.2 × 0.2 mm
β = 100.013 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1054 reflections with I > 2σ(I)
5951 measured reflectionsRint = 0.066
1143 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.20Δρmax = 0.23 e Å3
1143 reflectionsΔρmin = 0.22 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3991 (4)0.3322 (3)0.3133 (3)0.0243 (6)
O20.0303 (4)0.2997 (3)0.2103 (3)0.0280 (7)
O30.3864 (4)0.0967 (3)0.1079 (3)0.0262 (7)
O40.0299 (5)0.1077 (3)0.1467 (3)0.0319 (7)
N10.3137 (5)0.1896 (4)0.1226 (4)0.0230 (7)
C10.3539 (7)0.4316 (4)0.4288 (4)0.0249 (9)
C20.2354 (7)0.5650 (4)0.3607 (5)0.0306 (10)
H2A0.31940.60520.28930.046*
H2B0.22650.63560.43720.046*
H2C0.08420.540.31170.046*
C30.2204 (8)0.3563 (5)0.5297 (5)0.0315 (10)
H3A0.0750.32740.47440.047*
H3B0.19770.42120.60850.047*
H3C0.30240.27170.57150.047*
C40.5884 (6)0.4670 (4)0.5062 (5)0.0266 (9)
H4A0.65740.38160.55560.04*
H4B0.58130.54230.57840.04*
H4C0.6780.50010.43470.04*
C50.2283 (6)0.2759 (4)0.2159 (4)0.0227 (8)
C60.5472 (7)0.1381 (4)0.1373 (5)0.0250 (9)
H6A0.60910.11010.2390.03*
H6B0.6460.210.10320.03*
C70.5098 (7)0.0093 (4)0.0356 (4)0.0265 (9)
H70.6480.02810.0040.032*
C80.3299 (7)0.0625 (5)0.0887 (4)0.0259 (9)
H8A0.37620.14780.13880.031*
H8B0.2730.01270.16030.031*
C90.1701 (6)0.0969 (4)0.0167 (4)0.0233 (9)
H90.02040.13610.02750.028*
C100.1710 (7)0.0459 (4)0.0960 (4)0.0256 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (14)0.0180 (14)0.0299 (14)0.0012 (12)0.0044 (12)0.0053 (12)
O20.0234 (14)0.0253 (16)0.0352 (16)0.0018 (13)0.0050 (12)0.0054 (13)
O30.0253 (15)0.0189 (14)0.0349 (16)0.0018 (13)0.0067 (12)0.0007 (13)
O40.0344 (17)0.0263 (16)0.0359 (16)0.0089 (14)0.0091 (13)0.0022 (14)
N10.0215 (17)0.0192 (17)0.0275 (18)0.0024 (14)0.0017 (14)0.0023 (15)
C10.027 (2)0.018 (2)0.031 (2)0.0018 (17)0.0092 (17)0.0050 (17)
C20.034 (2)0.018 (2)0.039 (2)0.0029 (18)0.0049 (19)0.0017 (19)
C30.037 (2)0.023 (2)0.035 (2)0.0045 (18)0.0101 (19)0.0047 (19)
C40.026 (2)0.020 (2)0.034 (2)0.0009 (17)0.0064 (17)0.0039 (18)
C50.023 (2)0.0157 (19)0.029 (2)0.0012 (16)0.0028 (16)0.0015 (16)
C60.024 (2)0.021 (2)0.030 (2)0.0009 (17)0.0057 (16)0.0024 (17)
C70.028 (2)0.022 (2)0.030 (2)0.0006 (18)0.0099 (19)0.0045 (18)
C80.031 (2)0.019 (2)0.028 (2)0.0005 (17)0.0056 (17)0.0007 (18)
C90.0238 (19)0.0187 (19)0.027 (2)0.0022 (17)0.0049 (17)0.0039 (16)
C100.031 (2)0.020 (2)0.025 (2)0.0038 (18)0.0024 (17)0.0047 (17)
Geometric parameters (Å, º) top
O1—C51.359 (5)C3—H3B0.98
O1—C11.484 (5)C3—H3C0.98
O2—C51.215 (5)C4—H4A0.98
O3—C101.377 (5)C4—H4B0.98
O3—C71.475 (5)C4—H4C0.98
O4—C101.196 (5)C6—C71.526 (6)
N1—C51.353 (5)C6—H6A0.99
N1—C91.478 (5)C6—H6B0.99
N1—C61.481 (5)C7—C81.529 (6)
C1—C41.516 (5)C7—H71
C1—C31.516 (6)C8—C91.528 (6)
C1—C21.524 (6)C8—H8A0.99
C2—H2A0.98C8—H8B0.99
C2—H2B0.98C9—C101.528 (6)
C2—H2C0.98C9—H91
C3—H3A0.98
C5—O1—C1120.7 (3)O2—C5—O1126.3 (4)
C10—O3—C7106.3 (3)N1—C5—O1109.0 (3)
C5—N1—C9122.1 (3)N1—C6—C799.4 (3)
C5—N1—C6127.1 (3)N1—C6—H6A111.9
C9—N1—C6108.3 (3)C7—C6—H6A111.9
O1—C1—C4101.8 (3)N1—C6—H6B111.9
O1—C1—C3110.0 (3)C7—C6—H6B111.9
C4—C1—C3111.5 (4)H6A—C6—H6B109.6
O1—C1—C2110.3 (3)O3—C7—C6106.4 (3)
C4—C1—C2110.7 (3)O3—C7—C8102.2 (3)
C3—C1—C2112.0 (3)C6—C7—C8102.7 (3)
C1—C2—H2A109.5O3—C7—H7114.7
C1—C2—H2B109.5C6—C7—H7114.7
H2A—C2—H2B109.5C8—C7—H7114.7
C1—C2—H2C109.5C9—C8—C791.9 (3)
H2A—C2—H2C109.5C9—C8—H8A113.3
H2B—C2—H2C109.5C7—C8—H8A113.3
C1—C3—H3A109.5C9—C8—H8B113.3
C1—C3—H3B109.5C7—C8—H8B113.3
H3A—C3—H3B109.5H8A—C8—H8B110.6
C1—C3—H3C109.5N1—C9—C10103.9 (3)
H3A—C3—H3C109.5N1—C9—C8100.6 (3)
H3B—C3—H3C109.5C10—C9—C8100.1 (3)
C1—C4—H4A109.5N1—C9—H9116.5
C1—C4—H4B109.5C10—C9—H9116.5
H4A—C4—H4B109.5C8—C9—H9116.5
C1—C4—H4C109.5O4—C10—O3122.4 (4)
H4A—C4—H4C109.5O4—C10—C9132.2 (4)
H4B—C4—H4C109.5O3—C10—C9105.4 (3)
O2—C5—N1124.7 (4)
C5—O1—C1—C4178.9 (3)O3—C7—C8—C953.1 (3)
C5—O1—C1—C362.7 (5)C6—C7—C8—C957.1 (3)
C5—O1—C1—C261.3 (4)C5—N1—C9—C1093.9 (4)
C9—N1—C5—O29.6 (6)C6—N1—C9—C1069.1 (4)
C6—N1—C5—O2169.3 (4)C5—N1—C9—C8162.7 (3)
C9—N1—C5—O1171.3 (3)C6—N1—C9—C834.2 (4)
C6—N1—C5—O111.6 (5)C7—C8—C9—N153.9 (3)
C1—O1—C5—O20.9 (6)C7—C8—C9—C1052.5 (3)
C1—O1—C5—N1179.9 (3)C7—O3—C10—O4178.8 (4)
C5—N1—C6—C7159.9 (4)C7—O3—C10—C91.3 (4)
C9—N1—C6—C72.1 (4)N1—C9—C10—O4109.5 (5)
C10—O3—C7—C673.2 (4)C8—C9—C10—O4146.8 (4)
C10—O3—C7—C834.2 (4)N1—C9—C10—O367.7 (3)
N1—C6—C7—O369.0 (4)C8—C9—C10—O336.1 (4)
N1—C6—C7—C838.0 (4)

Experimental details

Crystal data
Chemical formulaC10H15NO4
Mr213.23
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.0710 (7), 9.3703 (11), 9.3002 (10)
β (°) 100.013 (5)
V3)521.00 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5951, 1143, 1054
Rint0.066
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.102, 1.20
No. of reflections1143
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: COLLECT (Bruker, 2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

Additional correspondence author, email: g.guichard@ibmc.u-strasbg.fr

Acknowledgements

The authors thank the Service Commun de Diffraction X (Nancy Université) for providing access to crystallographic experimental facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDidier, C., Crichter, D. J., Walshe, N. D., Kojima, Y., Yamauchi, Y. & Barrett, A. G. M. (2004). J. Org. Chem. 69, 7875–7879.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499–506.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGómez-Vidal, J. A. & Silverman, R. B. (2001). Org. Lett. 3, 2481–2484.  Web of Science CrossRef PubMed Google Scholar
First citationLenstra, A. T. H., Petit, G. H. & Geise, H. J. (1979). Cryst. Struct. Commun. 8, 1023–1029.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPapaioannou, D., Stavropoulos, G., Nastopoulos, V., Voliotis, S. & Leban, I. (1989). Acta Cryst. C45, 1651–1652.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds