organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1914-o1915

1-[2-(4-Bromo­benz­yl­oxy)-2-phenyl­ethyl]-1H-1,2,4-triazole

aZonguldak Karaelmas University, Department of Chemistry, 67100, Zonguldak, Turkey, bSouthampton University, Department of Chemistry, Southampton, SO17 1BJ, England, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 22 August 2008; accepted 29 August 2008; online 13 September 2008)

In the mol­ecule of the title compound, C17H16BrN3O, the triazole ring is oriented at dihedral angles of 6.14 (9)° and 82.08 (9)°, respectively, with respect to the phenyl and bromo­benzene rings. The dihedral angle between the bromo­benzene and phenyl rings is 87.28 (7)°. The intra­molecular C—H⋯O hydrogen bond results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 0.13 (6)° with respect to the bromo­benzene ring. There is an inter­molecular C—H⋯π contact between a methyl­ene group and the bromo­benzene ring.

Related literature

For general backgroud, see: Paulvannan et al. (2001[Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677-9682.]); Godefroi et al. (1969[Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem. 12, 784-791.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heteroat. Chem. 44, 731-734.]); Wahbi et al. (1995[Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955-962.]). For related literature, see: Peeters et al. (1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Bull. Soc. Chim. Belg. 88, 265-272.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496-o1497.],c[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588-o1589.],d[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655-o1656.]); Özel Güven, Tahtacı et al. (2008[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16BrN3O

  • Mr = 358.24

  • Monoclinic, P 21 /n

  • a = 10.2070 (2) Å

  • b = 13.7948 (3) Å

  • c = 11.4007 (2) Å

  • β = 100.317 (1)°

  • V = 1579.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 120 (2) K

  • 0.38 × 0.30 × 0.20 mm

Data collection
  • Bruker–Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.400, Tmax = 0.590

  • 18914 measured reflections

  • 3617 independent reflections

  • 2901 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.05

  • 3617 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O 0.93 2.37 2.723 (3) 102
C11—H11ACg3i 0.97 2.84 3.687 (2) 147
Symmetry code: (i) -x+1, -y, -z. Cg3 is the centroid of the C12–C17 ring.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Similar structures possessing imidazole ring such as miconazole, econazole and sulconazole have been developed for clinical uses as antifungal agents (Godefroi et al., 1969) and also similar structures possessing benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). Antifungal activity of aromatic ethers possessing 1,2,4-triazole ring have been reported (Wahbi et al., 1995). The crystal structures of miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) and similar structures possessing benzimidazole ring (Özel Güven et al., 2008a,b,c,d) have been reported, previously, and now we report herein the crystal structure of the title 1,2,4-triazole ring substituted ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the phenyl and bromobenzene rings at dihedral angles of 6.14 (9)° and 82.08 (9)°, respectively. Atoms C3, C4 and C11 are 0.114 (2), -0.076 (2) and 0.015 (2) Å away from the ring planes of the corresponding triazole, phenyl and bromobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The bromobenzene ring is oriented with respect to the phenyl ring at a dihedral angle of 87.28 (7)°. The intramolecular C—H···O hydrogen bond results in the formation of a planar five-membered ring (O/H13/C11—C13), which is oriented with respect to bromobenzene ring at a dihedral angle of 0.13 (6)°. So, they are coplanar.

In the crystal structure, the molecules are elongated along [010], and stacked along the c axis. There is a C—H···π contact (Table 1) between the methylene group and the bromobenzene ring.

Related literature top

For general backgroud, see: Paulvannan et al. (2001); Godefroi et al. (1969); Özel Güven et al. (2007a,b); Wahbi et al. (1995). For related literature, see: Peeters et al. (1979); Freer et al. (1986); Özel Güven et al. (2008a,b,c,d); Özel Güven, Tahtacı et al. (2008). Cg3 is the centroid of the C12–C17 ring.

Experimental top

The title compound was synthesized by the reaction of 1-phenyl-2-(1H-1,2,4 -triazol-1-yl)ethanol (Özel Güven, Tahtacı et al., 2008) with NaH and appropriate benzyl halide. To the solution of alcohol (300 mg, 1.586 mmol) in DMF (4 ml) was added NaH (63 mg, 1.586 mmol) in small fractions. The appropriate benzyl halide (396 mg, 1.586 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from ethyl acetate (yield; 368 mg, 65%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-[2-(4-Bromobenzyloxy)-2-phenylethyl]-1H-1,2,4-triazole top
Crystal data top
C17H16BrN3OF(000) = 728
Mr = 358.24Dx = 1.507 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3224 reflections
a = 10.2070 (2) Åθ = 2.9–27.5°
b = 13.7948 (3) ŵ = 2.61 mm1
c = 11.4007 (2) ÅT = 120 K
β = 100.317 (1)°Block, colorless
V = 1579.31 (5) Å30.38 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
3617 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1717
Tmin = 0.400, Tmax = 0.590l = 1414
18914 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0282P)2 + 1.0904P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C17H16BrN3OV = 1579.31 (5) Å3
Mr = 358.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2070 (2) ŵ = 2.61 mm1
b = 13.7948 (3) ÅT = 120 K
c = 11.4007 (2) Å0.38 × 0.30 × 0.20 mm
β = 100.317 (1)°
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
3617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2901 reflections with I > 2σ(I)
Tmin = 0.400, Tmax = 0.590Rint = 0.051
18914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3617 reflectionsΔρmin = 0.53 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.01308 (3)0.204749 (18)0.24099 (2)0.03377 (10)
O0.23831 (15)0.48903 (11)0.72395 (13)0.0219 (3)
N10.43625 (18)0.62535 (13)0.70844 (15)0.0209 (4)
N20.4116 (2)0.71851 (14)0.67091 (18)0.0262 (4)
N30.4832 (2)0.62873 (15)0.52812 (17)0.0264 (4)
C10.4421 (2)0.71587 (17)0.5630 (2)0.0260 (5)
H10.43570.77030.51410.031*
C20.4777 (2)0.57391 (17)0.62277 (19)0.0250 (5)
H20.49980.50850.62870.030*
C30.4052 (2)0.59254 (17)0.82170 (18)0.0230 (5)
H3A0.42490.64410.88000.028*
H3B0.46150.53770.85000.028*
C40.2599 (2)0.56308 (16)0.81142 (18)0.0209 (5)
H40.20280.61870.78390.025*
C50.2348 (2)0.53134 (16)0.93291 (18)0.0203 (5)
C60.2718 (2)0.43995 (17)0.9773 (2)0.0264 (5)
H60.30900.39590.93080.032*
C70.2536 (2)0.41385 (19)1.0911 (2)0.0292 (5)
H70.27800.35231.12020.035*
C80.1994 (3)0.47886 (19)1.1609 (2)0.0306 (6)
H80.18760.46141.23710.037*
C90.1627 (3)0.57037 (19)1.1170 (2)0.0323 (6)
H90.12690.61471.16400.039*
C100.1791 (2)0.59612 (18)1.0031 (2)0.0263 (5)
H100.15270.65720.97340.032*
C110.1027 (2)0.45894 (17)0.69514 (19)0.0220 (5)
H11A0.04520.51530.68060.026*
H11B0.07880.42300.76130.026*
C120.0843 (2)0.39583 (16)0.58547 (18)0.0199 (5)
C130.1877 (2)0.37627 (17)0.52494 (19)0.0224 (5)
H130.27180.40210.55250.027*
C140.1669 (2)0.31831 (17)0.42329 (19)0.0240 (5)
H140.23670.30500.38330.029*
C150.0416 (2)0.28084 (16)0.38240 (19)0.0242 (5)
C160.0634 (2)0.30004 (17)0.4409 (2)0.0247 (5)
H160.14750.27480.41250.030*
C170.0413 (2)0.35727 (17)0.54222 (19)0.0225 (5)
H170.11140.37020.58200.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04619 (18)0.02724 (15)0.02419 (14)0.00004 (12)0.00363 (11)0.00854 (10)
O0.0210 (8)0.0264 (8)0.0189 (7)0.0031 (7)0.0056 (6)0.0072 (6)
N10.0236 (10)0.0210 (10)0.0190 (9)0.0032 (8)0.0061 (8)0.0008 (8)
N20.0307 (11)0.0202 (10)0.0295 (10)0.0027 (8)0.0105 (9)0.0003 (8)
N30.0287 (11)0.0280 (11)0.0247 (10)0.0014 (9)0.0107 (8)0.0027 (8)
C10.0263 (12)0.0263 (13)0.0274 (12)0.0006 (10)0.0102 (10)0.0078 (10)
C20.0322 (13)0.0219 (12)0.0222 (11)0.0022 (10)0.0082 (10)0.0008 (9)
C30.0273 (12)0.0274 (12)0.0143 (10)0.0054 (10)0.0040 (9)0.0010 (9)
C40.0250 (12)0.0220 (11)0.0165 (10)0.0026 (9)0.0059 (9)0.0032 (9)
C50.0196 (11)0.0245 (12)0.0166 (10)0.0050 (9)0.0026 (9)0.0037 (9)
C60.0304 (13)0.0241 (12)0.0247 (11)0.0010 (10)0.0047 (10)0.0028 (10)
C70.0306 (13)0.0290 (13)0.0261 (12)0.0018 (11)0.0002 (10)0.0080 (10)
C80.0322 (14)0.0404 (15)0.0207 (11)0.0049 (12)0.0084 (10)0.0043 (11)
C90.0379 (15)0.0354 (14)0.0270 (12)0.0019 (12)0.0150 (11)0.0017 (11)
C100.0315 (13)0.0244 (12)0.0247 (11)0.0008 (10)0.0097 (10)0.0010 (10)
C110.0217 (11)0.0250 (12)0.0197 (11)0.0049 (9)0.0047 (9)0.0017 (9)
C120.0251 (12)0.0189 (11)0.0156 (10)0.0004 (9)0.0033 (9)0.0027 (8)
C130.0232 (12)0.0238 (12)0.0196 (10)0.0020 (9)0.0018 (9)0.0013 (9)
C140.0276 (12)0.0247 (12)0.0201 (11)0.0017 (10)0.0053 (10)0.0003 (9)
C150.0345 (13)0.0185 (11)0.0176 (10)0.0005 (10)0.0009 (10)0.0012 (9)
C160.0244 (12)0.0233 (12)0.0236 (11)0.0056 (10)0.0034 (9)0.0044 (10)
C170.0217 (12)0.0233 (12)0.0229 (11)0.0000 (9)0.0048 (9)0.0042 (9)
Geometric parameters (Å, º) top
Br—C151.902 (2)C1—H10.9300
O—C41.417 (3)C2—H20.9300
O—C111.426 (3)C3—C41.523 (3)
N1—C21.336 (3)C3—H3A0.9700
N1—N21.363 (3)C3—H3B0.9700
N1—C31.456 (3)C4—C51.517 (3)
N2—C11.323 (3)C4—H40.9800
N3—C21.327 (3)C5—C101.387 (3)
C12—C131.387 (3)C6—C51.386 (3)
C12—C111.507 (3)C6—C71.390 (3)
C13—C141.393 (3)C6—H60.9300
C13—H130.9300C7—H70.9300
C14—H140.9300C8—C71.379 (4)
C15—C141.381 (3)C8—C91.385 (4)
C15—C161.385 (3)C8—H80.9300
C16—C171.384 (3)C9—H90.9300
C16—H160.9300C10—C91.385 (3)
C17—C121.394 (3)C10—H100.9300
C17—H170.9300C11—H11A0.9700
C1—N31.356 (3)C11—H11B0.9700
C4—O—C11113.20 (16)C7—C8—C9119.6 (2)
C2—N1—N2109.63 (18)C7—C8—H8120.2
C2—N1—C3129.13 (19)C9—C8—H8120.2
N2—N1—C3120.95 (18)C8—C9—C10120.2 (2)
C1—N2—N1101.85 (19)C8—C9—H9119.9
C2—N3—C1101.93 (19)C10—C9—H9119.9
N2—C1—N3115.7 (2)C9—C10—C5120.4 (2)
N2—C1—H1122.2C9—C10—H10119.8
N3—C1—H1122.2C5—C10—H10119.8
N3—C2—N1110.9 (2)O—C11—C12109.32 (18)
N3—C2—H2124.5O—C11—H11A109.8
N1—C2—H2124.5C12—C11—H11A109.8
N1—C3—C4112.24 (18)O—C11—H11B109.8
N1—C3—H3A109.2C12—C11—H11B109.8
C4—C3—H3A109.2H11A—C11—H11B108.3
N1—C3—H3B109.2C13—C12—C17118.9 (2)
C4—C3—H3B109.2C13—C12—C11122.1 (2)
H3A—C3—H3B107.9C17—C12—C11118.9 (2)
O—C4—C5113.84 (18)C12—C13—C14120.6 (2)
O—C4—C3105.84 (17)C12—C13—H13119.7
C5—C4—C3109.14 (18)C14—C13—H13119.7
O—C4—H4109.3C15—C14—C13119.3 (2)
C5—C4—H4109.3C15—C14—H14120.3
C3—C4—H4109.3C13—C14—H14120.3
C6—C5—C10119.3 (2)C14—C15—C16121.0 (2)
C6—C5—C4121.1 (2)C14—C15—Br118.98 (18)
C10—C5—C4119.6 (2)C16—C15—Br119.97 (18)
C5—C6—C7120.2 (2)C17—C16—C15119.1 (2)
C5—C6—H6119.9C17—C16—H16120.4
C7—C6—H6119.9C15—C16—H16120.4
C8—C7—C6120.3 (2)C16—C17—C12121.0 (2)
C8—C7—H7119.8C16—C17—H17119.5
C6—C7—H7119.8C12—C17—H17119.5
C11—O—C4—C565.5 (2)C4—C5—C10—C9176.2 (2)
C11—O—C4—C3174.60 (17)C7—C6—C5—C100.2 (3)
C4—O—C11—C12168.62 (17)C7—C6—C5—C4177.1 (2)
C2—N1—N2—C10.5 (2)C5—C6—C7—C80.5 (4)
C3—N1—N2—C1174.8 (2)C9—C8—C7—C60.3 (4)
N2—N1—C2—N30.4 (3)C7—C8—C9—C100.6 (4)
C3—N1—C2—N3174.1 (2)C5—C10—C9—C81.3 (4)
N2—N1—C3—C483.5 (2)C13—C12—C11—O1.9 (3)
C2—N1—C3—C489.6 (3)C17—C12—C11—O179.24 (19)
N1—N2—C1—N30.4 (3)C11—C12—C13—C14179.4 (2)
C1—N3—C2—N10.1 (3)C17—C12—C13—C140.6 (3)
N2—C1—N3—C20.2 (3)C12—C13—C14—C150.5 (3)
N1—C3—C4—O58.0 (2)Br—C15—C14—C13178.28 (17)
N1—C3—C4—C5179.15 (18)C16—C15—C14—C130.0 (3)
O—C4—C5—C638.9 (3)Br—C15—C16—C17178.62 (17)
O—C4—C5—C10143.9 (2)C14—C15—C16—C170.4 (3)
C3—C4—C5—C679.1 (3)C15—C16—C17—C120.2 (3)
C3—C4—C5—C1098.1 (2)C16—C17—C12—C11179.1 (2)
C6—C5—C10—C91.1 (4)C16—C17—C12—C130.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O0.932.372.723 (3)102
C11—H11A···Cg3i0.972.843.687 (2)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H16BrN3O
Mr358.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.2070 (2), 13.7948 (3), 11.4007 (2)
β (°) 100.317 (1)
V3)1579.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.38 × 0.30 × 0.20
Data collection
DiffractometerBruker–Nonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.400, 0.590
No. of measured, independent and
observed [I > 2σ(I)] reflections
18914, 3617, 2901
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.05
No. of reflections3617
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.53

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O0.932.372.723 (3)102.00
C11—H11A···Cg3i0.972.843.687 (2)146.63
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (grant No. 2004–13-02–16).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGodefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem. 12, 784–791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heteroat. Chem. 44, 731–734.  Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.  Web of Science CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Bull. Soc. Chim. Belg. 88, 265–272.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955–962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1914-o1915
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds