supplementary materials


Acta Cryst. (2008). E64, o1888    [ doi:10.1107/S1600536808027852 ]

6,7-Dihydro-4-(4-methoxyphenyl)-3-methyl-6-oxo-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile

X.-Y. Zhang, X.-Y. Li, X. Wang, D.-F. Li and X.-S. Fan

Abstract top

In the title compound, C21H16N4O2, the dihedral angle between the methoxy-substituted benzene ring and the ring system formed by the pyridinone ring and the pyrazole ring is 57.4 (1)°, and that between the unsubstituted phenyl ring and the ring system is 135.6 (1)°. In the crystal structure, molecules are linked together via intermolecular N-H...O hydrogen bonds.

Comment top

Pyrazolo[3,4-b]pyridine derivatives have been found of interests for their biological and pharmacological activities, such as antiviral (Ludwig et al., 2004). Moreover, pyrazolo[3,4-b]pyridin-6-ones as a subunit of pyrazolo[3,4-b]pyridine acted as potential hypnotic drugs in many cases (Falcó et al., 2005). Due to their importance, many methods have been reported for the construction of pyrazolo[3,4-b]pyridine derivatives including pyrazolo[3,4-b]pyridin-6-ones (Quiroga et al., 1999; Falcó et al., 2005). Herein, we report the crystal structure of the title compound, one of pyrazolo[3,4-b]pyridin-6-one derivatives.

In the title compound there are four rings including two phenyl rings, one pyridinone ring and one pyrazole ring. The pyridinone ring and the pyrazole ring is almost co-planar and formed a ring system. The dihedral angle between this ring system and the methoxy-substituted phenyl ring is 57.4 (1)°, which is probably due to the repulsion of the cyano group on the pyridinone ring and the hydrogen atoms on the ortho-positions of the phenyl ring connected with the pyridinone ring, and the repulsion between these hydrogen atoms and the methyl group on the pyrazole ring. The dihedral angle between the non-substituted phenyl ring and the ring system is 135.6 (1)°.

In the crystal structure the molecules are connected via intermolecular N—H···O hydrogen bonding (Table 1).

Related literature top

For biological and pharmacological activities of pyrazolo[3,4-b]pyridine derivatives, see Falcó et al. (2005); Ludwig et al. (2004). For a related structure, see Quiroga et al. (1999).

Experimental top

To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) were added 4-methoxybenzaldehyde (1 mmol, II) and ethyl cyanoacetate (1 mmol). The mixture was stirred at 80 °C until the disappearance of II. Then, 5-amino-3-methyl-1-phenylpyrazole (1 mmol) and FeCl3.6H2O (0.2 mmol) was added and the mixture was continued to be stirred at the same temperature to complete the reaction (monitored by TLC). The reaction time was 10 h totally. Upon completion, the mixture was cooled to room temperature and 2 ml of 50% ethanol in water was added. The product was collected by suction and rinsed with water and cool ethanol in a yield of 90% as white solid. Single crystals of the title compound were obtained by slow evaporation of the solvent from an ethyl acetate-ethanol (1:1 v/v) solution.

Refinement top

H-atoms were included in calculated positions and treated as riding atoms with N—H = 0.86 Å and C—H = 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(N,C) for others.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal Structure of the title compound with view along the a axis. Intermolecular N—H···O hydrogen bonding is shown as dashed lines.
6,7-Dihydro-4-(4-methoxyphenyl)-3-methyl-6-oxo-1-phenyl-1H- pyrazolo[3,4-b]pyridine-5-carbonitrile top
Crystal data top
C21H16N4O2Z = 2
Mr = 356.38F(000) = 372
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0621 (11) ÅCell parameters from 1698 reflections
b = 11.0272 (17) Åθ = 3.2–26.3°
c = 12.1743 (19) ŵ = 0.09 mm1
α = 68.467 (2)°T = 295 K
β = 78.949 (2)°Block, colourless
γ = 87.471 (2)°0.43 × 0.30 × 0.11 mm
V = 865.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
graphiteθmax = 25.5°, θmin = 2.9°
φ and ω scansh = 88
6198 measured reflectionsk = 1313
3136 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1601P]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H16N4O2γ = 87.471 (2)°
Mr = 356.38V = 865.2 (2) Å3
Triclinic, P1Z = 2
a = 7.0621 (11) ÅMo Kα radiation
b = 11.0272 (17) ŵ = 0.09 mm1
c = 12.1743 (19) ÅT = 295 K
α = 68.467 (2)°0.43 × 0.30 × 0.11 mm
β = 78.949 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 reflections with I > 2σ(I)
6198 measured reflectionsRint = 0.019
3136 independent reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.21 e Å3
3136 reflectionsAbsolute structure: ?
246 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2756 (2)0.56351 (17)0.91520 (16)0.0390 (4)
C20.4579 (2)0.63083 (17)0.84855 (16)0.0396 (4)
C30.5717 (2)0.60459 (16)0.75386 (16)0.0380 (4)
C40.5056 (2)0.50171 (17)0.72613 (16)0.0390 (4)
C50.3325 (2)0.43515 (16)0.79290 (15)0.0382 (4)
C60.5776 (3)0.43251 (18)0.64820 (17)0.0450 (5)
C70.5055 (3)0.7343 (2)0.88358 (19)0.0534 (5)
C80.7609 (3)0.4528 (2)0.55762 (19)0.0583 (6)
H8A0.77380.38320.52730.087*
H8B0.86860.45370.59500.087*
H8C0.75800.53450.49240.087*
C90.1563 (3)0.23971 (18)0.79607 (16)0.0457 (5)
C100.0341 (3)0.2728 (2)0.81733 (18)0.0549 (5)
H100.06650.35850.80650.066*
C110.1762 (3)0.1761 (3)0.8550 (2)0.0736 (7)
H110.30520.19660.87130.088*
C120.1284 (5)0.0504 (3)0.8685 (2)0.0857 (9)
H120.22500.01370.89230.103*
C130.0630 (5)0.0186 (2)0.8470 (2)0.0813 (8)
H130.09470.06700.85670.098*
C140.2069 (3)0.1128 (2)0.81120 (19)0.0623 (6)
H140.33600.09150.79750.075*
C150.7532 (2)0.68056 (16)0.68722 (16)0.0386 (4)
C160.8942 (3)0.69110 (18)0.74930 (17)0.0455 (5)
H160.87410.64980.83250.055*
C171.0627 (3)0.76181 (18)0.68909 (17)0.0490 (5)
H171.15530.76780.73200.059*
C181.0963 (2)0.82417 (17)0.56554 (17)0.0437 (5)
C190.9568 (3)0.81699 (17)0.50216 (17)0.0452 (5)
H190.97680.86000.41920.054*
C200.7868 (3)0.74526 (17)0.56307 (16)0.0429 (4)
H200.69360.74040.52010.051*
C211.3193 (3)0.9516 (2)0.39001 (19)0.0655 (6)
H21A1.32230.88770.35340.098*
H21B1.44400.99400.36860.098*
H21C1.22481.01510.36230.098*
N10.22050 (19)0.46471 (13)0.88333 (13)0.0391 (4)
H10.11440.42130.92090.047*
N20.3060 (2)0.33757 (15)0.75584 (14)0.0446 (4)
N30.4599 (2)0.33551 (16)0.66572 (14)0.0510 (4)
N40.5383 (3)0.8162 (2)0.9136 (2)0.0929 (8)
O10.17078 (18)0.59323 (13)0.99468 (12)0.0513 (4)
O21.27013 (19)0.88929 (14)0.51707 (13)0.0605 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (9)0.0395 (10)0.0403 (10)0.0069 (8)0.0009 (8)0.0136 (8)
C20.0333 (9)0.0393 (10)0.0432 (10)0.0072 (8)0.0002 (8)0.0141 (8)
C30.0308 (9)0.0356 (9)0.0413 (10)0.0025 (7)0.0011 (8)0.0091 (8)
C40.0307 (9)0.0399 (10)0.0413 (10)0.0024 (7)0.0026 (7)0.0131 (8)
C50.0343 (9)0.0380 (10)0.0401 (10)0.0019 (7)0.0001 (8)0.0148 (8)
C60.0369 (10)0.0442 (11)0.0488 (11)0.0016 (8)0.0053 (8)0.0173 (9)
C70.0392 (11)0.0556 (13)0.0624 (13)0.0165 (9)0.0130 (9)0.0272 (11)
C80.0484 (12)0.0595 (13)0.0603 (13)0.0036 (10)0.0143 (10)0.0260 (11)
C90.0490 (11)0.0476 (11)0.0413 (11)0.0137 (9)0.0009 (9)0.0200 (9)
C100.0488 (12)0.0673 (14)0.0520 (12)0.0157 (10)0.0024 (9)0.0273 (11)
C110.0568 (14)0.108 (2)0.0591 (14)0.0353 (14)0.0017 (11)0.0365 (15)
C120.105 (2)0.095 (2)0.0552 (15)0.0659 (18)0.0019 (14)0.0253 (14)
C130.117 (2)0.0580 (15)0.0675 (16)0.0362 (15)0.0015 (15)0.0248 (13)
C140.0752 (15)0.0500 (13)0.0617 (14)0.0137 (11)0.0039 (11)0.0269 (11)
C150.0301 (9)0.0368 (10)0.0430 (10)0.0029 (7)0.0023 (8)0.0117 (8)
C160.0358 (10)0.0496 (11)0.0407 (10)0.0060 (8)0.0007 (8)0.0070 (9)
C170.0346 (10)0.0534 (12)0.0508 (12)0.0058 (9)0.0056 (9)0.0101 (10)
C180.0339 (10)0.0387 (10)0.0512 (12)0.0066 (8)0.0069 (8)0.0144 (9)
C190.0470 (11)0.0420 (10)0.0377 (10)0.0051 (8)0.0063 (8)0.0105 (8)
C200.0390 (10)0.0443 (10)0.0434 (11)0.0039 (8)0.0023 (8)0.0158 (9)
C210.0598 (14)0.0550 (13)0.0643 (15)0.0165 (10)0.0248 (11)0.0179 (11)
N10.0316 (8)0.0390 (8)0.0424 (8)0.0108 (6)0.0065 (6)0.0151 (7)
N20.0395 (8)0.0440 (9)0.0488 (9)0.0099 (7)0.0068 (7)0.0215 (7)
N30.0469 (9)0.0504 (10)0.0520 (10)0.0053 (8)0.0107 (8)0.0238 (8)
N40.0738 (14)0.0961 (17)0.1204 (19)0.0448 (12)0.0337 (13)0.0735 (16)
O10.0405 (7)0.0616 (9)0.0534 (8)0.0166 (6)0.0137 (6)0.0320 (7)
O20.0430 (8)0.0640 (9)0.0589 (9)0.0189 (7)0.0111 (7)0.0125 (7)
Geometric parameters (Å, °) top
C1—O11.236 (2)C11—H110.9300
C1—N11.377 (2)C12—C131.381 (4)
C1—C21.452 (2)C12—H120.9300
C2—C31.388 (2)C13—C141.376 (3)
C2—C71.429 (3)C13—H130.9300
C3—C41.417 (2)C14—H140.9300
C3—C151.484 (2)C15—C201.391 (2)
C4—C51.398 (2)C15—C161.392 (2)
C4—C61.433 (2)C16—C171.375 (2)
C5—N21.343 (2)C16—H160.9300
C5—N11.361 (2)C17—C181.382 (3)
C6—N31.313 (2)C17—H170.9300
C6—C81.496 (2)C18—O21.364 (2)
C7—N41.139 (2)C18—C191.384 (3)
C8—H8A0.9600C19—C201.389 (2)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—H200.9300
C9—C101.379 (3)C21—O21.421 (2)
C9—C141.383 (3)C21—H21A0.9600
C9—N21.427 (2)C21—H21B0.9600
C10—C111.383 (3)C21—H21C0.9600
C10—H100.9300N1—H10.8600
C11—C121.369 (4)N2—N31.394 (2)
O1—C1—N1120.55 (15)C14—C13—H13119.8
O1—C1—C2123.12 (16)C12—C13—H13119.8
N1—C1—C2116.32 (15)C13—C14—C9118.8 (2)
C3—C2—C7122.01 (15)C13—C14—H14120.6
C3—C2—C1124.02 (16)C9—C14—H14120.6
C7—C2—C1113.84 (15)C20—C15—C16118.08 (16)
C2—C3—C4116.42 (15)C20—C15—C3121.91 (16)
C2—C3—C15120.98 (16)C16—C15—C3119.99 (16)
C4—C3—C15122.60 (15)C17—C16—C15120.78 (17)
C5—C4—C3119.12 (16)C17—C16—H16119.6
C5—C4—C6103.83 (15)C15—C16—H16119.6
C3—C4—C6136.83 (16)C16—C17—C18120.81 (18)
N2—C5—N1127.97 (15)C16—C17—H17119.6
N2—C5—C4108.43 (15)C18—C17—H17119.6
N1—C5—C4123.53 (16)O2—C18—C17114.81 (17)
N3—C6—C4111.18 (15)O2—C18—C19125.76 (17)
N3—C6—C8118.63 (17)C17—C18—C19119.43 (16)
C4—C6—C8130.17 (17)C18—C19—C20119.69 (17)
N4—C7—C2178.0 (2)C18—C19—H19120.2
C6—C8—H8A109.5C20—C19—H19120.2
C6—C8—H8B109.5C19—C20—C15121.20 (18)
H8A—C8—H8B109.5C19—C20—H20119.4
C6—C8—H8C109.5C15—C20—H20119.4
H8A—C8—H8C109.5O2—C21—H21A109.5
H8B—C8—H8C109.5O2—C21—H21B109.5
C10—C9—C14121.36 (18)H21A—C21—H21B109.5
C10—C9—N2120.09 (18)O2—C21—H21C109.5
C14—C9—N2118.54 (18)H21A—C21—H21C109.5
C9—C10—C11118.8 (2)H21B—C21—H21C109.5
C9—C10—H10120.6C5—N1—C1120.54 (14)
C11—C10—H10120.6C5—N1—H1119.7
C12—C11—C10120.4 (2)C1—N1—H1119.7
C12—C11—H11119.8C5—N2—N3110.21 (14)
C10—C11—H11119.8C5—N2—C9130.98 (15)
C11—C12—C13120.2 (2)N3—N2—C9118.76 (14)
C11—C12—H12119.9C6—N3—N2106.35 (15)
C13—C12—H12119.9C18—O2—C21118.36 (16)
C14—C13—C12120.4 (3)
O1—C1—C2—C3175.69 (18)C4—C3—C15—C2056.1 (2)
N1—C1—C2—C32.7 (3)C2—C3—C15—C1654.0 (2)
O1—C1—C2—C70.3 (3)C4—C3—C15—C16125.4 (2)
N1—C1—C2—C7178.62 (16)C20—C15—C16—C171.0 (3)
C7—C2—C3—C4178.28 (17)C3—C15—C16—C17179.57 (17)
C1—C2—C3—C42.6 (3)C15—C16—C17—C180.0 (3)
C7—C2—C3—C152.3 (3)C16—C17—C18—O2179.12 (17)
C1—C2—C3—C15177.93 (17)C16—C17—C18—C191.1 (3)
C2—C3—C4—C50.8 (2)O2—C18—C19—C20179.00 (17)
C15—C3—C4—C5179.76 (16)C17—C18—C19—C201.3 (3)
C2—C3—C4—C6172.7 (2)C18—C19—C20—C150.3 (3)
C15—C3—C4—C66.7 (3)C16—C15—C20—C190.8 (3)
C3—C4—C5—N2176.16 (16)C3—C15—C20—C19179.38 (16)
C6—C4—C5—N20.7 (2)N2—C5—N1—C1175.58 (17)
C3—C4—C5—N10.9 (3)C4—C5—N1—C10.9 (3)
C6—C4—C5—N1176.38 (16)O1—C1—N1—C5177.60 (16)
C5—C4—C6—N30.4 (2)C2—C1—N1—C50.8 (2)
C3—C4—C6—N3174.6 (2)N1—C5—N2—N3176.14 (17)
C5—C4—C6—C8177.7 (2)C4—C5—N2—N30.8 (2)
C3—C4—C6—C83.5 (4)N1—C5—N2—C91.4 (3)
C3—C2—C7—N4171 (8)C4—C5—N2—C9178.32 (18)
C1—C2—C7—N45(8)C10—C9—N2—C544.7 (3)
C14—C9—C10—C110.3 (3)C14—C9—N2—C5136.3 (2)
N2—C9—C10—C11179.32 (18)C10—C9—N2—N3137.97 (19)
C9—C10—C11—C121.3 (3)C14—C9—N2—N341.1 (3)
C10—C11—C12—C131.4 (4)C4—C6—N3—N20.0 (2)
C11—C12—C13—C140.3 (4)C8—C6—N3—N2178.40 (17)
C12—C13—C14—C90.7 (4)C5—N2—N3—C60.5 (2)
C10—C9—C14—C130.7 (3)C9—N2—N3—C6178.39 (17)
N2—C9—C14—C13178.32 (19)C17—C18—O2—C21177.44 (17)
C2—C3—C15—C20124.5 (2)C19—C18—O2—C212.8 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.8523 (18)153.
Symmetry codes: (i) −x, −y+1, −z+2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.8523 (18)153.
Symmetry codes: (i) −x, −y+1, −z+2.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006).

references
References top

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Falcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem. 40, 1179–1187.

Ludwig, S., Planz, O., Sedlacek, H. H. & Pleschka, S. (2004). PCT Int. Appl. WO 2 004 085 682.

Quiroga, J., Alvarado, M., Insuasty, B., Moreno, R., Ravina, E., Estevez, I. & de Almedia, R. H. (1999). J. Heterocycl. Chem. 36, 1311–1316.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.