organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-phenyl-5-trifluoromethyl-1,3-thiazole-4-carboxylate

Hai-Zhen Jiang,^a Wen Wan,^a Min Shao^b and Jian Hao^{a,c}*

^aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China, ^bInstrument Analysis & Research Center, Shanghai University, Shanghai 200444, People's Republic of China, and ^cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China Correspondence e-mail: jhao@staff.shu.edu.cn

Received 17 September 2008; accepted 22 September 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.142; data-to-parameter ratio = 13.0.

In the title compound, $C_{13}H_{10}F_3NO_2S$, the dihedral angle between the thiazole and phenyl rings is 5.15 (1)°. No intermolecular hydrogen bonding is observed in the crystal structure.

Related literature

For general backgroud, see: Sasse *et al.* (2002); Campeau *et al.* (2008); Zificsak & Hlasta (2004); Rynbrandt *et al.* (1981). For a related structure, see: Kennedy *et al.* (2004).

Experimental

Crystal data $C_{13}H_{10}F_{3}NO_{2}S$ $M_{r} = 301.28$

Monoclinic, $P2_1/c$ a = 8.930 (3) Å b = 21.232 (6) Å c = 7.574 (2) Å $\beta = 110.861 (4)^{\circ}$ $V = 1342.0 (7) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.922, \ T_{\rm max} = 0.973$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 182 parameters $wR(F^2) = 0.142$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.22$ e Å $^{-3}$ 2367 reflections $\Delta \rho_{min} = -0.19$ e Å $^{-3}$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Mo $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.10$ mm

6891 measured reflections 2367 independent reflections

1417 reflections with $I > 2\sigma(I)$

 $\mu = 0.28 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.050$

The authors are grateful for financial support from the Natural Science Foundation of China (No. 20772079) and the Science Foundation of Shanghai Municipal Commission of Sciences and Technology (07JC14020, 07ZR14040), and for structural analysis by the Instrumental Analysis & Research Center of Shanghai University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2454).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276–3277.
- Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.
- Rynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem. 24, 1507–1510.
- Sasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot. 55, 543–545.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991-9016.

supporting information

Acta Cryst. (2008). E64, o2004 [doi:10.1107/S1600536808030389]

Ethyl 2-phenyl-5-trifluoromethyl-1,3-thiazole-4-carboxylate

Hai-Zhen Jiang, Wen Wan, Min Shao and Jian Hao

S1. Comment

1,3-Thiazole derivatives have attracted considerable attention because of various biological activities (Sasse *et al.*, 2002) and have broad applications in the materials science (Campeau *et al.*, 2008). Thiazole can be used as a core for developing pharmaceutically important molecules (Zificsak & Hlasta, 2004). Trifluoromethyl substituted thiazole may be the most promising skeleton in medicinal chemistry (Rynbrandt *et al.*, 1981). The title compound, multiple substitute 1,3-thiazol with trifluoromethyl group at 5-position, has been obtained unexpectedly in the laboratory during trying to prepare 3-chloro-2-dibenzylamino-4,4,4-trifluoro-butyric acid ethyl ester by a reaction of 2-dibenzylamino-4,4,4-trifluoro-3-hydroxy-butyric acid ethyl ester with thionyl chloride. We present here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths in the thiazole moiety agree with those found in methyl 2amino-5-isopropyl-1,3-thiazole-4-carboxylate (Kennedy *et al.*, 2004). The thiazole ring makes a dihedral angle of 5.15 (1)° with phenyl ring, showing the approximately coplanar molecular structure except for trifluoromethyl and ethoxy group. No intermolecular hydrogen bonding is observed in the crystal structure.

S2. Experimental

A solution of 2-dibenzylamino-4, 4, 4-trifluoro-3-hydroxy-butyric acid ethyl ester (0.2 mmol) in 10 ml thionyl chloride was refluxed for a period of half an hour till the complete consumption of raw material. Excess thionyl chloride was evaporated, the residue was diluted with anhydrous ethanol (4 ml), then concentrated by rotary evaporator. The crude product was re-crystallized from ethanol (95%) and colorless needle-type crystals of (I) were obtained.

S3. Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with C—H = 0.93 - 0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for others.

Figure 1

View of the title compound (I), shown the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.

Ethyl 2-phenyl-5-trifluoromethyl-1,3-thiazole-4-carboxylate

Crystal data

 $C_{13}H_{10}F_3NO_2S$ $M_r = 301.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.930(3) Å b = 21.232 (6) Å c = 7.574 (2) Å $\beta = 110.861 \ (4)^{\circ}$ V = 1342.0 (7) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	6891 measured reflections
diffractometer	2367 independent reflection
Radiation source: fine-focus sealed tube	1417 reflections with $I > 2\sigma$
Graphite monochromator	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -25 \rightarrow 19$
$T_{\min} = 0.922, \ T_{\max} = 0.973$	$l = -8 \longrightarrow 8$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.142$ S = 1.012367 reflections 182 parameters 0 restraints Primary atom site location: structure-invariant direct methods

F(000) = 616 $D_{\rm x} = 1.491 {\rm Mg} {\rm m}^{-3}$ Melting point: 320 K Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1005 reflections $\theta = 2.5 - 19.0^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 296 KNeedle, colorless $0.30 \times 0.10 \times 0.10 \text{ mm}$

ıs (I)-8→8

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0642P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. IR (KBr, cm⁻¹): 3061, 2980, 1737, 1633, 1513, 1461, 1290, 1210, 766, 689. ¹H NMR (CDCl₃, 500 MHz). δ /p.p.m.: 7.46–8.00 (m, 5H), 4.49 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz). δ /p.p.m.: 168.87, 160.27, 146.48, 131.77, 131.63, 129.24, 164.15 (q, ²J_{C—F} = 36.5 Hz, CF₃C–), 123.33 (q, ¹J_{C—F} = 269.3 Hz, -CF₃), 62.41, 13.98. ¹⁹F NMR (CDCl₃, 470 MHz, CFCl₃). δ /p.p.m.: -52.44 (*s*).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.22302 (11)	0.67958 (4)	0.44789 (13)	0.0585 (3)
C1	0.1690 (4)	0.75511 (15)	0.3693 (5)	0.0504 (8)
C2	0.2697 (4)	0.80979 (15)	0.4545 (5)	0.0523 (8)
C3	0.4186 (4)	0.80233 (17)	0.5954 (5)	0.0615 (10)
Н3	0.4559	0.7622	0.6376	0.074*
C4	0.5115 (4)	0.85408 (19)	0.6732 (5)	0.0681 (10)
H4	0.6116	0.8488	0.7671	0.082*
C5	0.4564 (5)	0.91329 (18)	0.6123 (6)	0.0720 (11)
Н5	0.5192	0.9483	0.6646	0.086*
C6	0.3083 (5)	0.92108 (18)	0.4743 (6)	0.0741 (11)
H6	0.2708	0.9614	0.4343	0.089*
C7	0.2154 (4)	0.86972 (16)	0.3947 (5)	0.0642 (10)
H7	0.1156	0.8753	0.3004	0.077*
C8	-0.0328 (4)	0.70143 (16)	0.1739 (5)	0.0514 (8)
С9	0.0515 (4)	0.65213 (16)	0.2791 (5)	0.0517 (8)
C10	0.0138 (5)	0.58379 (17)	0.2771 (6)	0.0674 (10)
C11	-0.1837 (4)	0.69976 (18)	0.0062 (5)	0.0577 (9)
C12	-0.3482 (5)	0.63721 (19)	-0.2455 (6)	0.0857 (13)
H12A	-0.3442	0.6683	-0.3375	0.103*
H12B	-0.4455	0.6438	-0.2188	0.103*
C13	-0.3463 (7)	0.5732 (2)	-0.3197 (7)	0.133 (2)
H13A	-0.2565	0.5689	-0.3603	0.200*
H13B	-0.4438	0.5660	-0.4249	0.200*
H13C	-0.3375	0.5429	-0.2224	0.200*
F1	-0.1303 (3)	0.57367 (10)	0.2825 (4)	0.0973 (8)
F2	0.0198 (3)	0.55287 (10)	0.1294 (4)	0.0932 (8)
F3	0.1174 (3)	0.55518 (10)	0.4280 (4)	0.1071 (9)
N1	0.0337 (3)	0.75955 (12)	0.2277 (4)	0.0522 (7)
01	-0.2677 (3)	0.74436 (12)	-0.0528 (4)	0.0791 (8)
O2	-0.2081 (3)	0.64335 (11)	-0.0726 (3)	0.0693 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0601 (6)	0.0546 (6)	0.0597 (6)	0.0055 (4)	0.0201 (5)	0.0032 (4)
C1	0.053 (2)	0.054 (2)	0.053 (2)	0.0023 (16)	0.0291 (19)	0.0011 (16)
C2	0.058 (2)	0.055 (2)	0.049 (2)	0.0007 (17)	0.0249 (18)	-0.0021 (17)
C3	0.060(2)	0.057 (2)	0.069 (3)	0.0017 (18)	0.024 (2)	0.0034 (18)
C4	0.058 (2)	0.075 (3)	0.066 (3)	-0.007 (2)	0.016 (2)	-0.003 (2)
C5	0.074 (3)	0.058 (3)	0.086 (3)	-0.010 (2)	0.030(2)	-0.010 (2)
C6	0.073 (3)	0.057 (2)	0.089 (3)	0.004 (2)	0.024 (2)	-0.005 (2)
C7	0.063 (2)	0.054 (2)	0.070 (3)	0.0019 (18)	0.015 (2)	-0.0032 (18)
C8	0.053 (2)	0.049 (2)	0.057 (2)	0.0039 (16)	0.0256 (19)	-0.0011 (17)
C9	0.0499 (19)	0.054 (2)	0.057 (2)	0.0036 (16)	0.0259 (17)	-0.0019 (17)
C10	0.070 (3)	0.054 (2)	0.076 (3)	0.0024 (19)	0.022 (2)	0.003 (2)
C11	0.056 (2)	0.056 (2)	0.063 (2)	0.0018 (18)	0.023 (2)	0.0041 (19)
C12	0.084 (3)	0.079 (3)	0.073 (3)	-0.004 (2)	0.003 (2)	-0.001 (2)
C13	0.172 (5)	0.076 (4)	0.103 (4)	0.002 (3)	-0.012 (4)	-0.012 (3)
F1	0.0903 (17)	0.0681 (15)	0.149 (2)	-0.0148 (12)	0.0613 (17)	0.0074 (14)
F2	0.118 (2)	0.0605 (14)	0.109 (2)	0.0018 (12)	0.0492 (16)	-0.0211 (13)
F3	0.123 (2)	0.0591 (15)	0.108 (2)	0.0033 (13)	0.0028 (17)	0.0185 (13)
N1	0.0500 (18)	0.0519 (18)	0.0575 (18)	0.0012 (13)	0.0227 (16)	0.0024 (13)
01	0.0707 (18)	0.0663 (18)	0.083 (2)	0.0126 (14)	0.0060 (15)	0.0000 (14)
O2	0.0701 (16)	0.0554 (16)	0.0701 (18)	-0.0010 (12)	0.0100 (14)	-0.0024 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C9	1.710 (3)	С8—С9	1.367 (4)
S1—C1	1.719 (3)	C8—C11	1.487 (5)
C1—N1	1.302 (4)	C9—C10	1.489 (5)
C1—C2	1.470 (5)	C10—F2	1.315 (4)
С2—С7	1.380 (4)	C10—F1	1.319 (4)
C2—C3	1.386 (5)	C10—F3	1.334 (4)
C3—C4	1.376 (5)	C11—O1	1.192 (4)
С3—Н3	0.9300	C11—O2	1.321 (4)
C4—C5	1.369 (5)	C12—O2	1.459 (4)
C4—H4	0.9300	C12—C13	1.474 (5)
C5—C6	1.373 (5)	C12—H12A	0.9700
С5—Н5	0.9300	C12—H12B	0.9700
С6—С7	1.373 (5)	C13—H13A	0.9600
С6—Н6	0.9300	C13—H13B	0.9600
С7—Н7	0.9300	C13—H13C	0.9600
C8—N1	1.367 (4)		
C9—S1—C1	89.59 (17)	C8—C9—S1	109.6 (3)
N1-C1-C2	123.2 (3)	C10-C9-S1	118.6 (3)
N1-C1-S1	114.6 (2)	F2—C10—F1	106.3 (3)
C2	122.2 (3)	F2—C10—F3	106.0 (3)
С7—С2—С3	119.1 (3)	F1—C10—F3	106.6 (3)

C7—C2—C1	119.7 (3)	F2C10C9	114.7 (3)
C3—C2—C1	121.1 (3)	F1-C10-C9	112.2 (3)
C4—C3—C2	120.3 (3)	F3—C10—C9	110.5 (3)
С4—С3—Н3	119.8	O1—C11—O2	124.8 (4)
С2—С3—Н3	119.8	O1—C11—C8	124.0 (3)
C5—C4—C3	120.0 (4)	O2—C11—C8	111.2 (3)
С5—С4—Н4	120.0	O2—C12—C13	107.6 (4)
C3—C4—H4	120.0	O2—C12—H12A	110.2
C4—C5—C6	120.0 (4)	C13—C12—H12A	110.2
С4—С5—Н5	120.0	O2—C12—H12B	110.2
С6—С5—Н5	120.0	C13—C12—H12B	110.2
C5—C6—C7	120.4 (4)	H12A—C12—H12B	108.5
С5—С6—Н6	119.8	С12—С13—Н13А	109.5
С7—С6—Н6	119.8	С12—С13—Н13В	109.5
C6—C7—C2	120.1 (4)	H13A—C13—H13B	109.5
С6—С7—Н7	119.9	С12—С13—Н13С	109.5
С2—С7—Н7	119.9	H13A—C13—H13C	109.5
N1—C8—C9	115.3 (3)	H13B—C13—H13C	109.5
N1-C8-C11	116.2 (3)	C1—N1—C8	110.9 (3)
C9—C8—C11	128.5 (3)	C11—O2—C12	115.9 (3)
C8—C9—C10	131.6 (3)		