

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis[tris(2,2'-bi-1H-benzimidazole)nickel(II)] bis(phosphate) sulfate

Chun-Sheng Ling and Lin Yan*

Institute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China

Correspondence e-mail: yanlin_online@163.com

Received 28 September 2008; accepted 8 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.038; wR factor = 0.098; data-toparameter ratio = 14.4.

The title compound, $[Ni(C_{14}H_{10}N_4)_3]_4(PO_4)_2(SO_4)$, consists of $[Ni(C_{14}H_{10}N_4)_3]^{2+}$ complex cations (.3. symmetry) and disordered anions ($\overline{4}$ symmetry) with occupancy factors of twothirds for PO_4^{3-} and one-third for SO_4^{2-} . The Ni²⁺ centre is chelated by three bidentate 2.2'-bi-1H-benzimidazole molecules in a distorted octahedral coordination. N-H···O hydrogen bonds consolidate the building units into a framework structure.

Related literature

For the potential applications of metal-organic coordination compounds in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007); Maspoch et al. (2007).

Mo $K\alpha$ radiation $\mu = 0.59 \text{ mm}^{-1}$

 $0.32 \times 0.27 \times 0.23$ mm

20222 measured reflections

2551 independent reflections

1782 reflections with $I > 2\sigma(I)$

T = 296 (2) K

 $R_{\rm int} = 0.066$

Z = 4

Experimental

Crystal data

[Ni(C₁₄H₁₀N₄)₃]₄(PO₄)₂(SO₄) $M_r = 3331.96$ Cubic, I43d a = 24.964 (7) Å V = 15558 (8) Å³

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2001)
  T_{\min} = 0.834, T_{\max} = 0.876
```

Refinement

D-

N4-N2-

$R[F^2 > 2\sigma(F^2)] = 0.038$	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.098$	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
S = 1.01	Absolute structure: Flack (1983),
2551 reflections	1182 Friedel pairs
177 parameters	Flack parameter: -0.02 (2)
H-atom parameters constrained	•

Table 1 Hydrogen-bond geometry (Å, °).

-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-\mathrm{H4}B\cdots\mathrm{O1}^{\mathrm{i}}$ $-\mathrm{H2}B\cdots\mathrm{O1}^{\mathrm{ii}}$	0.86	1.96	2.766 (4)	156
	0.86	1.82	2.675 (4)	170

Symmetry codes: (i) $x - \frac{1}{4}, -z + \frac{5}{4}, -y + \frac{3}{4}$; (ii) x, y, z - 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2642).

References

- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.
- Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1399 [doi:10.1107/S1600536808032571]

Tetrakis[tris(2,2'-bi-1H-benzimidazole)nickel(II)] bis(phosphate) sulfate

Chun-Sheng Ling and Lin Yan

S1. Comment

More attentions have been paid to metal-organic coordination compounds (MOCCs) because of their potential applications in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism (Kitagawa & Matsuda 2007, Maspoch *et al.* 2007). In the field of coordination chemistry, the N,*N*-bidentate ligands, such as 2,2'-bi-pyridine, 1,10-phenanthroline and their derivatives act as versatile ligands owing to the stable coordination configuration in the bidentate N-donors chelating manner. Herein, we report the title compound (I).

The title compound (I) consists of four $[Ni(C_{14}H_{10}N_4)_3]^{2+}$ complex cations, one $[SO_4]^{2-}$ and two $[PO_4]^{3-}$ anions. In the mlecular structure, the Ni²⁺ centre is coordinated by six N atoms from three bidentate 1H,1'*H*-2,2'-bi-1*H*-benzimidazole molecules (Fig.1). The 1H,1'*H*-2,2'-bi-1*H*-benzimidazole ligand was prepared *in situ* and coordinated to the Ni²⁺ cations in hydrothermal reaction. Additionally, the $[SO_4]^{2-}$ and $[PO_4]^{3-}$ anions statistically distribute in one position with 1/3 probability for S and 2/3 probability for P atoms. The environment of the Ni²⁺ caion is in a distorted octahedral geometry with the Ni—N distances ranging from 2.088 (3) to 2.122 (3) Å (Table 1).

In addition, the $[Ni(C_{14}H_{10}N_4)_3]^{2+}$ complex cations, $[SO_4]^{2-}$ and $[PO_4]^{3-}$ anions in the complexes are linked together *via* many N—H···O hydrogen bonds resulting in a three-dimensional structural frameworks (Fig.2 and Table 2).

S2. Experimental

All reagents were commercially available and of analytical grade. The mixture of $NiSO_4.6H_2O$, H_3PO_4 , oxalic acid, and 1,2-diaminobenzene in the mole ratio of 1: 1.5: 6: 6 was dissolved in 25 ml H_2O , which was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 393 K for five days. After cooling the autoclave to room temperature, green block crystals of (I) were obtained.

S3. Refinement

H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(N \text{ and } C)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Figure 2

Three-dimensional structure of (I). Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted.

Tetrakis[tris(2,2'-bi-1H-benzimidazole)nickel(II)] bis(phosphate) sulfate

ystal data
ystal data

$[Ni(C_{14}H_{10}N_4)_3]_4(PO_4)_2(SO_4)$
$M_r = 3331.96$
Cubic, $I\overline{4}3d$
Hall symbol: I -4bd 2c 3
a = 24.964 (7) Å
$V = 15558 (8) \text{ Å}^3$
Z = 4
F(000) = 6872

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans $D_x = 1.423 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3375 reflections $\theta = 2.3-19.2^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 296 KBlock, green $0.32 \times 0.27 \times 0.23 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{min} = 0.834$, $T_{max} = 0.876$ 20222 measured reflections 2551 independent reflections

1782 reflections with $I > 2\sigma(I)$	$h = -30 \rightarrow 11$
$R_{\rm int} = 0.066$	$k = -30 \longrightarrow 29$
$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 2.0^\circ$	$l = -21 \rightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2]$
<i>S</i> = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
2551 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
177 parameters	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1182 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.02 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.564621 (16)	0.435379 (16)	-0.064621 (16)	0.0428 (2)	
P1	0.7500	0.6250	1.0000	0.0427 (4)	0.67
S 1	0.7500	0.6250	1.0000	0.0427 (4)	0.33
N1	0.64773 (10)	0.44469 (11)	-0.06574 (11)	0.0443 (6)	
N2	0.71668 (10)	0.50117 (12)	-0.06248 (11)	0.0498 (7)	
H2B	0.7340	0.5309	-0.0604	0.060*	
N3	0.56297 (10)	0.42828 (11)	0.02009 (10)	0.0444 (6)	
N4	0.55652 (11)	0.37290 (12)	0.08942 (11)	0.0502 (7)	
H4B	0.5538	0.3435	0.1072	0.060*	
C1	0.69498 (13)	0.41559 (13)	-0.06917 (13)	0.0462 (8)	
C2	0.70405 (15)	0.36114 (16)	-0.07434 (15)	0.0594 (9)	
H2	0.6758	0.3370	-0.0763	0.071*	
C3	0.75637 (17)	0.34409 (18)	-0.07642 (16)	0.0744 (13)	
H3	0.7638	0.3077	-0.0797	0.089*	
C4	0.79858 (16)	0.3808 (2)	-0.07359 (16)	0.0707 (12)	
H4	0.8335	0.3679	-0.0750	0.085*	
C5	0.79104 (13)	0.43383 (18)	-0.06895 (15)	0.0627 (10)	
H5	0.8197	0.4576	-0.0670	0.075*	
C6	0.73810 (12)	0.45147 (14)	-0.06724 (14)	0.0473 (8)	
C7	0.66286 (13)	0.49523 (14)	-0.06164 (13)	0.0443 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C8	0.56226 (15)	0.45873 (13)	0.06673 (14)	0.0487 (9)
С9	0.56566 (17)	0.51278 (15)	0.07424 (15)	0.0645 (11)
Н9	0.5681	0.5363	0.0455	0.077*
C10	0.5653 (2)	0.53090 (18)	0.12671 (19)	0.0848 (13)
H10	0.5672	0.5675	0.1333	0.102*
C11	0.5623 (2)	0.49628 (19)	0.16920 (17)	0.0863 (14)
H11	0.5627	0.5102	0.2037	0.104*
C12	0.55859 (18)	0.44183 (18)	0.16272 (14)	0.0698 (11)
H12	0.5562	0.4186	0.1917	0.084*
C13	0.55865 (13)	0.42369 (14)	0.11042 (13)	0.0489 (8)
C14	0.55946 (13)	0.37792 (14)	0.03571 (13)	0.0443 (8)
01	0.77314 (11)	0.59036 (9)	0.95604 (10)	0.0629 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.0428 (2)	0.0428 (2)	0.0428 (2)	-0.00140 (19)	-0.00140 (19)	0.00140 (19)
P1	0.0469 (6)	0.0341 (9)	0.0469 (6)	0.000	0.000	0.000
S1	0.0469 (6)	0.0341 (9)	0.0469 (6)	0.000	0.000	0.000
N1	0.0386 (14)	0.0485 (17)	0.0458 (16)	0.0000 (13)	-0.0006 (13)	0.0019 (15)
N2	0.0447 (17)	0.0543 (18)	0.0503 (17)	-0.0083 (14)	-0.0009 (14)	-0.0019 (15)
N3	0.0432 (16)	0.0445 (16)	0.0456 (15)	0.0006 (15)	-0.0046 (13)	-0.0007 (13)
N4	0.0552 (19)	0.0518 (18)	0.0436 (17)	-0.0046 (14)	-0.0034 (14)	0.0093 (14)
C1	0.049 (2)	0.0486 (19)	0.0411 (18)	0.0030 (16)	-0.0031 (17)	-0.0036 (15)
C2	0.054 (2)	0.060(2)	0.065 (2)	0.0073 (18)	-0.0023 (19)	-0.0042 (19)
C3	0.064 (3)	0.076 (3)	0.084 (3)	0.024 (2)	-0.003 (2)	-0.009 (2)
C4	0.045 (2)	0.097 (4)	0.070 (3)	0.021 (2)	-0.002 (2)	-0.014 (2)
C5	0.0439 (19)	0.083 (3)	0.061 (3)	0.000 (2)	-0.0050 (18)	-0.016 (3)
C6	0.0417 (19)	0.064 (2)	0.0366 (18)	0.0018 (16)	-0.0048 (16)	-0.0077 (17)
C7	0.044 (2)	0.048 (2)	0.0410 (19)	-0.0065 (15)	-0.0027 (15)	-0.0012 (16)
C8	0.049 (2)	0.052 (2)	0.0449 (19)	0.0051 (16)	-0.0042 (18)	-0.0057 (16)
C9	0.092 (3)	0.050(2)	0.051 (2)	-0.002 (2)	-0.009 (2)	-0.0036 (17)
C10	0.124 (4)	0.065 (3)	0.066 (3)	0.006 (3)	-0.010 (3)	-0.013 (2)
C11	0.133 (4)	0.077 (3)	0.049 (3)	0.001 (3)	-0.013 (3)	-0.017 (2)
C12	0.093 (3)	0.074 (3)	0.042 (2)	-0.006 (3)	-0.005 (2)	0.001 (2)
C13	0.050 (2)	0.055 (2)	0.0423 (19)	-0.0009 (18)	-0.0050 (16)	-0.0006 (16)
C14	0.0315 (18)	0.053 (2)	0.049 (2)	-0.0032 (16)	-0.0021 (15)	0.0045 (17)
01	0.0818 (18)	0.0455 (15)	0.0616 (17)	-0.0077 (13)	0.0150 (14)	-0.0033 (12)

Geometric parameters (Å, °)

Ni1—N1	2.088 (3)	C1—C6	1.401 (5)	
Ni1—N1 ⁱ	2.088 (3)	C2—C3	1.375 (5)	
Ni1—N1 ⁱⁱ	2.088 (3)	С2—Н2	0.9300	
Ni1—N3 ⁱⁱ	2.122 (3)	C3—C4	1.398 (6)	
Ni1—N3	2.122 (3)	С3—Н3	0.9300	
Ni1—N3 ⁱ	2.122 (3)	C4—C5	1.342 (6)	
P1—O1 ⁱⁱⁱ	1.512 (3)	C4—H4	0.9300	

P1—O1 ^{iv}	1.512 (3)	С5—С6	1.394 (4)
P1—O1	1.512 (3)	С5—Н5	0.9300
$P1 \rightarrow O1^{v}$	1 512 (3)	C7—C14 ⁱⁱ	1 435 (5)
N1	1.321(4)	C8 - C9	1 365 (5)
NI CI	1.321(4)	C_{0}^{8}	1.303(5)
NI-CI	1.300 (4)		1.401 (3)
N2—C/	1.352 (4)	C9—C10	1.386 (6)
N2—C6	1.356 (4)	С9—Н9	0.9300
N2—H2B	0.8600	C10—C11	1.370 (6)
N3—C14	1.319 (4)	C10—H10	0.9300
N3—C8	1.391 (4)	C11—C12	1.372 (6)
N4—C14	1.349 (4)	C11—H11	0.9300
N4—C13	1.373 (4)	C12—C13	1.382 (5)
N4—H4B	0.8600	C12—H12	0.9300
C1—C2	1.384 (5)	C14—C7 ⁱ	1.435 (5)
			11100 (0)
N1—Ni1—N1 ⁱ	95.67 (10)	C1—C2—H2	121.2
N1—Ni1—N1 ⁱⁱ	95.67 (10)	C2—C3—C4	120.7 (4)
N1 ⁱ —Ni1—N1 ⁱⁱ	95.67 (10)	С2—С3—Н3	119.6
N1—Ni1—N3 ⁱⁱ	78 84 (10)	C4—C3—H3	119.6
$N1^{i}$ $Ni1$ $N3^{ii}$	170 67 (9)	$C_{5} - C_{4} - C_{3}$	123.0(4)
	97 40 (9)	$C_5 - C_4 - H_4$	118.5
N1 Ni1 N3	92.40(9)	$C_3 C_4 H_4$	118.5
	92.40(9)	C_{3}	116.5
$\frac{1}{1} - \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$	78.84 (10)	C4 = C5 = C0	110.0 (4)
NI^{μ} NII NI	1/0.67 (9)	С4—С5—Н5	121.7
N3"—N11—N3	93.75 (9)	С6—С5—Н5	121.7
$N1$ — $N1$ $N1$ $N3^{1}$	170.67 (9)	N2—C6—C5	131.7 (3)
$N1^{i}$ — $Ni1$ — $N3^{i}$	92.40 (9)	N2—C6—C1	106.6 (3)
N1 ⁱⁱ —Ni1—N3 ⁱ	78.84 (10)	C5—C6—C1	121.7 (3)
N3 ⁱⁱ —Ni1—N3 ⁱ	93.75 (9)	N1—C7—N2	112.8 (3)
N3—Ni1—N3 ⁱ	93.75 (9)	N1—C7—C14 ⁱⁱ	118.2 (3)
$O1^{iii}$ — $P1$ — $O1^{iv}$	110.22 (17)	N2—C7—C14 ⁱⁱ	128.9 (3)
O1 ⁱⁱⁱ —P1—O1	109.10 (9)	C9—C8—N3	130.9 (3)
O1 ^{iv} —P1—O1	109.10 (9)	C9—C8—C13	121.0 (3)
$O1^{iii}$ $P1 - O1^{v}$	109.10 (9)	N3—C8—C13	108.1 (3)
$O1^{iv} - P1 - O1^{v}$	109 10 (9)	C8-C9-C10	1169(4)
$01 - P1 - 01^{\vee}$	110.22(17)	С8—С9—Н9	121.6
C7-N1-C1	105.22(17)	C10-C9-H9	121.6
C7 N1 Ni1	103.2(3) 112.0(2)	$C_{10} = C_{10} = C_{10}$	121.0 121.7(4)
$C_{1} N_{1} N_{1}$	112.9(2)	$C_{11} = C_{10} = C_{2}$	121.7 (4)
CI = NI = NI	141.9(2)		119.1
C/-N2-C6	107.0 (3)	C9-C10-H10	119.1
C/—N2—H2B	126.5	C10-C11-C12	122.5 (4)
C6—N2—H2B	126.5	C10—C11—H11	118.7
C14—N3—C8	105.8 (3)	C12—C11—H11	118.7
C14—N3—Ni1	112.0 (2)	C11—C12—C13	115.8 (4)
C8—N3—Ni1	142.1 (2)	C11—C12—H12	122.1
C14—N4—C13	107.0 (3)	C13—C12—H12	122.1
C14—N4—H4B	126.5	N4—C13—C12	131.5 (3)
C13—N4—H4B	126.5	N4—C13—C8	106.4 (3)

C2-C1-N1	131.2 (3)	C12—C13—C8	122.1 (3)
C2—C1—C6	120.4 (3)	N3—C14—N4	112.7 (3)
N1—C1—C6	108.4 (3)	N3-C14-C7 ⁱ	117.7 (3)
C3—C2—C1	117.6 (4)	$N4-C14-C7^{i}$	129.5 (3)
С3—С2—Н2	121.2		
N1 ⁱ —Ni1—N1—C7	-168.5 (2)	C2-C1-C6-N2	179.6 (3)
N1 ⁱⁱ —Ni1—N1—C7	95.2 (3)	N1-C1-C6-N2	0.3 (4)
N3 ⁱⁱ —Ni1—N1—C7	3.9 (2)	C2-C1-C6-C5	-1.8 (5)
N3—Ni1—N1—C7	-89.5 (3)	N1-C1-C6-C5	178.9 (3)
N3 ⁱ —Ni1—N1—C7	41.7 (7)	C1—N1—C7—N2	0.4 (4)
N1 ⁱ —Ni1—N1—C1	11.1 (4)	Ni1—N1—C7—N2	-179.9 (2)
N1 ⁱⁱ —Ni1—N1—C1	-85.2 (3)	C1—N1—C7—C14 ⁱⁱ	177.6 (3)
N3 ⁱⁱ —Ni1—N1—C1	-176.5 (4)	Ni1—N1—C7—C14 ⁱⁱ	-2.6 (4)
N3—Ni1—N1—C1	90.1 (4)	C6—N2—C7—N1	-0.2 (4)
N3 ⁱ —Ni1—N1—C1	-138.6 (6)	C6—N2—C7—C14 ⁱⁱ	-177.1 (3)
N1—Ni1—N3—C14	-100.0(2)	C14—N3—C8—C9	178.8 (4)
N1 ⁱ —Ni1—N3—C14	-4.7 (2)	Ni1—N3—C8—C9	-4.5 (7)
N1 ⁱⁱ —Ni1—N3—C14	49.9 (7)	C14—N3—C8—C13	0.5 (4)
N3 ⁱⁱ —Ni1—N3—C14	-178.9 (2)	Ni1—N3—C8—C13	177.2 (3)
N3 ⁱ —Ni1—N3—C14	87.1 (3)	N3-C8-C9-C10	-178.2 (4)
N1—Ni1—N3—C8	83.5 (4)	C13—C8—C9—C10	0.0 (6)
N1 ⁱ —Ni1—N3—C8	178.8 (4)	C8—C9—C10—C11	0.7 (7)
N1 ⁱⁱ —Ni1—N3—C8	-126.7 (6)	C9-C10-C11-C12	-1.0(8)
N3 ⁱⁱ —Ni1—N3—C8	4.5 (4)	C10-C11-C12-C13	0.6 (8)
N3 ⁱ —Ni1—N3—C8	-89.5 (3)	C14—N4—C13—C12	-178.1 (4)
C7—N1—C1—C2	-179.6 (4)	C14—N4—C13—C8	0.8 (4)
Ni1—N1—C1—C2	0.7 (7)	C11—C12—C13—N4	178.7 (4)
C7—N1—C1—C6	-0.4(4)	C11—C12—C13—C8	0.0 (6)
Ni1—N1—C1—C6	180.0 (3)	C9—C8—C13—N4	-179.3 (3)
N1—C1—C2—C3	-179.6 (3)	N3-C8-C13-N4	-0.8 (4)
C6—C1—C2—C3	1.2 (5)	C9—C8—C13—C12	-0.3 (6)
C1—C2—C3—C4	-0.3 (6)	N3-C8-C13-C12	178.2 (4)
C2—C3—C4—C5	-0.2 (6)	C8—N3—C14—N4	0.0 (4)
C3—C4—C5—C6	-0.3 (6)	Ni1—N3—C14—N4	-177.9 (2)
C7—N2—C6—C5	-178.5 (4)	C8—N3—C14—C7 ⁱ	-177.4 (3)
C7—N2—C6—C1	0.0 (4)	Ni1-N3-C14-C7 ⁱ	4.8 (3)
C4—C5—C6—N2	179.5 (4)	C13—N4—C14—N3	-0.5 (4)
C4—C5—C6—C1	1.3 (6)	C13—N4—C14—C7 ⁱ	176.5 (3)

Symmetry codes: (i) -z+1/2, -x+1, y-1/2; (ii) -y+1, z+1/2, -x+1/2; (iii) -z+7/4, -y+5/4, x+1/4; (iv) z-1/4, -y+5/4, -x+7/4; (v) -x+3/2, y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N4—H4 <i>B</i> ···O1 ^{vi}	0.86	1.96	2.766 (4)	156
N2—H2B···O1 ^{vii}	0.86	1.82	2.675 (4)	170

Symmetry codes: (vi) x-1/4, -z+5/4, -y+3/4; (vii) x, y, z-1.