Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(Ammoniomethyl)pyridinium dichloride

Meher El Glaoui, ${ }^{\text {a }}$ Riadh Kefi, ${ }^{\text {a }}$ Olfa Amri, ${ }^{a}$ Erwann Jeanneau ${ }^{\text {b }}$ and Cherif Ben Nasr ${ }^{\text {a* }}$

${ }^{\text {a }}$ Laboratoire de Chimie des matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia, and ${ }^{\mathbf{b}}$ Universtié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 10 October 2008; accepted 21 October 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.030 ;$ data-to-parameter ratio $=17.7$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-}$, contains a network of 4(ammoniomethyl)pyridinium cations and chloride anions which are interconnected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The crystal packing is also influenced by intermolecular $\pi-\pi$ stacking interactions between identical antiparallel organic cations with a face-to-face distance of $c a 3.52 \AA$.

Related literature

For common applications of this type of complex, see: Schmidtchen \& Berger, (1997); Pajewski et al. (2004); Sessler et al. (2003); Ilioudis et al. (2000). For structure cohesion, see: Bernstein et al., (1995); Jin et al., 2005. For discussion of the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle, see: Krygowski et al. (2005). For bond-length data, see: Oueslati et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-}$
$M_{r}=181.06$
Triclinic, $P \overline{1}$
$a=7.257$ (2) \AA
$b=7.339$ (3) \AA
$c=8.752$ (1) \AA
$\alpha=79.14$ (3) ${ }^{\circ}$
$\beta=70.94$ (4) ${ }^{\circ}$
$\gamma=70.19(3)^{\circ}$
$V=412.9(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.16 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: none
3311 measured reflections
1995 independent reflections
1670 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
2 standard reflections every 400 reflections intensity decay: 4%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
91 parameters
$w R\left(F^{2}\right)=0.030$
H -atom parameters constrained
$S=1.06$
1609 reflections
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\mathrm{H}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.83	2.36	$3.084(2)$	146
$\mathrm{~N} 2-\mathrm{H} 8 \cdots \mathrm{Cl} 1$	0.89	2.28	$3.160(3)$	171
$\mathrm{~N} 2-\mathrm{H} 9 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.90	2.23	$3.126(2)$	173
$\mathrm{~N} 2-\mathrm{H} 10 \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.89	2.37	$3.190(2)$	152
Symmetry codes:	(i)	$-x+1,-y+2,-z+1 ;$	(ii)	$-x+2,-y+1,-z+1 ;$

$x, y, z+1$.

Data collection: CAD-4 EXPRESS (Straver, 1992); cell refinement: CAD-4 EXPRESS; data reduction: RC93 (Watkin et al., 1994); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2217).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R.-E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Ilioudis, C.-A., Hancock, K.-S.-B., Georganopoulou, D.-G. \& Steed, J.-W. (2000). New J. Chem. 24, 787-798.

Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. \& Shen, L. (2005). Acta Cryst. C61, m43-m45.
Krygowski, T.-M., Szatylowicz, H. \& Zachara, J.-E. (2005). J. Org. Chem. 70, 8859-8865.
Oueslati, A. \& Ben Nasr, C. (2006). Anal. Sci. X-Ray Struct. Online, 22, 225226.

Pajewski, R., Ferdani, R., Schlesinger, P.-H. \& Gokel, G.-W. (2004). Chem. Commun. pp. 160-161.
Schmidtchen, F.-P. \& Berger, M. (1997). Chem. Rev. 97, 1609-1646.
Sessler, J.-L., Camiolo, S. \& Gale, P.-A. (2003). Coord. Chem. Rev. 240, 17-55.
Straver, L. H. (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Watkin, D. J., Prout, C. K. \& Lilley, P. M. de Q. (1994). RC93. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D.-J., Prout, C.-K. \& Pearce, L.-J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2008). E64, o2204 [doi:10.1107/S1600536808034405]

4-(Ammoniomethyl)pyridinium dichloride

Meher El Glaoui, Riadh Kefi, Olfa Amri, Erwann Jeanneau and Cherif Ben Nasr

S1. Comment

The coordination chemistry of anions was the starting point for the development of new compounds having many practical and potential applications in various fields, such as supramolecular chemistry (Schmidtchen and Berger, 1997) and biochemical processes (Pajewski et al., 2004). Moreover, halide anions have been successfully used to assemble double-helical motifs of various molecules containing aromatic groups, with π-stacking interactions within the helices (Sessler et al., 2003). These anions can be useful for such applications because of the high flexibility of their coordination (Ilioudis et al., 2000). Here, a new member of this family, the title compound $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)$, is presented, which has been obtained during our studies of the preparation of new organic hydrochloride compounds. As shown in Fig. 1, to ensure charge balance the organic species is doubly protonated at N 1 and N 2 . Thus, the structure consists essentially of an 4-(ammoniomethyl)pyridinium cations and two Cl^{-}anions, associated in a hydrogen-bonded network. The Cl^{-}anions and the antiparallel pair of organic cations associate each other via hydrogen-bonding interactions to construct a convoluted hydrogen-bonded chain network which runs along the [111] direction at $\mathrm{b}=1 / 2$ (Fig. 3). This chain is made up by a fourmembered donor-acceptor ring, involving two Cl atoms, fused along the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (Fig. 2). These intermolecular hydrogen bonds generate edge-fussed $\left[R_{2}{ }^{4}(8)\right.$ and $\left.R_{2}{ }^{4}(20)\right]$ motifs (Bernstein et al., 1995). When viewed in perspective, the molecules chains have a marked zigzag structure and somewhat resembles a helix. As can be seen in Fig.2, the neighbouring pyridinyl rings run parallel in opposite directions and stack each other by turns in a face-to-face mode. The nearest centroid-centroid distance is $3.52 \AA$, less than $3.8 \AA$, a usually acceptad maximum value for $\pi-\pi$ interactions (Jin et al., 2005). An examination of the organic moiety geometrical features shows that the atoms building the pyridinyl ring have a good coplanarity and they form a conjugated plane with average deviation of $0.005 \AA$). The mean value of $\mathrm{C}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}$ bond lengths are 1.381 (2) and 1.332 (2) \AA) which are between that of a single bond and a double bond and agree with those in the literature (Oueslati et al., 2006). However, it is worth noticing that the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles of pyridine are very sensitive to protonation (Krygowski et al., 2005). A pyridinium cation always possesses an expanded angle of $\mathrm{C}-\mathrm{N} — \mathrm{C}$ in comparison with the parent pyridine. The $\mathrm{C} 1 — \mathrm{~N} 1 — \mathrm{C} 5$ angle [122.3 (2) ${ }^{\circ}$] is consistent with the type of pyridinium cation. In fact, the protonation of the nitrogen atom N1 decreases its electronegativity; hence the corresponding $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles becomes larger.

S2. Experimental

An aqueous $1 M \mathrm{HCl}$ solution and 4-(amminomethyl)pyridine in a $2: 1$ molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

S3. Refinement

The refinement was carried out with $\mathrm{I} \sigma(\mathrm{I})>3$ and a $\sin \theta / \lambda>0.01$ to get rid of the reflections in the vicinity of the beamstop. The refinement was thus carried out using 1609 reflections (out of the 1995 independent ones). The R value reported
corresponds to the recomputed value with a 2σ cutoff (SHELX like).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98, \mathrm{~N}-\mathrm{H}$ in the range $0.86-0.89$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and $U_{\text {iso }}\left(\mathrm{H}\right.$) (in the range $1.2-1.5$ times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints.

Cl1

Figure 1

A view of (I), showing 40% probability displacement ellipsoids and arbitrary spheres for the H atoms.

Figure 2

Crystal structure of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ viewed along b axis showing that the molecules crystallize in a ring motif.

Figure 3

Perspective view of (I) showing four chains across the unit cell at $b=1 / 2$ in the [111] direction

4-(Ammoniomethyl)pyridinium dichloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-}$
$M_{r}=181.06$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.257$ (2) \AA
$b=7.339$ (3) \AA
$c=8.752$ (1) \AA
$\alpha=79.14(3)^{\circ}$
$\beta=70.94$ (4) ${ }^{\circ}$
$\gamma=70.19(3)^{\circ}$
$V=412.9$ (2) \AA^{3}

Data collection

Enraf-Nonius CAD-4
diffractometer
Graphite monochromator $\omega / 2 \theta$ scans
3311 measured reflections 1995 independent reflections 1670 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.030$
$Z=2$
$F(000)=188$
$D_{\mathrm{x}}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9-11^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.16 \times 0.15 \times 0.12 \mathrm{~mm}$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-5 \rightarrow 11$
2 standard reflections every 400 reflections intensity decay: 4%
$S=1.06$
1609 reflections
91 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& {[w e i g h t]=1.0 /\left[\mathrm{A}_{0} * \mathrm{~T}_{0}(\mathrm{x})+\mathrm{A}_{1} * \mathrm{~T}_{1}(\mathrm{x}) \cdots+\right.} \\
& \left.\left.\mathrm{A}_{\mathrm{n}-1}\right] \mathrm{~T}_{\mathrm{n}-1}(\mathrm{x})\right] \\
& \text { where } \mathrm{A}_{\mathrm{i}} \text { are the Chebychev coefficients listed } \\
& \text { belo } w \text { and } \mathrm{x}=F / F \max \mathrm{~W}=[\text { weight }] * \\
& {\left[1-\left(\operatorname{delta} F / 6^{*} \text { sigma } F\right)^{2}\right]^{2} \mathrm{~A}_{\mathrm{i}} \text { are: } 0.8230 .257} \\
& 0.531 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C11	$0.36975(6)$	$0.70916(5)$	$0.85091(4)$	0.0357
C12	$0.85118(6)$	$0.60355(5)$	$0.28807(4)$	0.0385
H1	0.6965	1.2683	0.3992	0.0408^{*}
H2	0.7426	0.9613	0.4009	0.0420^{*}
H3	0.7984	0.7600	0.6294	0.035^{*}
H4	0.7325	1.2354	0.8318	0.0427^{*}
H5	0.6824	1.4162	0.5939	0.0458^{*}
H6	0.7155	0.9365	1.0028	0.0427^{*}
H7	0.9427	0.8393	0.9126	0.0426^{*}
H8	0.6516	0.6757	0.9274	0.0509^{*}
H9	0.8719	0.5860	0.8743	0.0510^{*}
H10	0.7711	0.6183	1.0429	0.0511^{*}
N1	$0.71013(19)$	$1.20012(18)$	$0.48454(13)$	0.0347
N2	$0.76974(19)$	$0.66782(17)$	$0.94222(14)$	0.0340
C1	$0.7421(2)$	$1.0097(2)$	$0.49055(16)$	0.0330
C2	$0.7738(2)$	$0.8922(2)$	$0.62759(16)$	0.0309
C3	$0.76881(19)$	$0.97525(19)$	$0.76000(15)$	0.0263
C4	$0.7352(2)$	$1.1743(2)$	$0.74770(16)$	0.0350
C5	$0.7057(3)$	$1.2852(2)$	$0.60805(18)$	0.0401
C6	$0.8048(2)$	$0.8595(2)$	$0.91467(16)$	0.0334

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0459(2)$	$0.04261(19)$	$0.02508(16)$	$-0.01833(15)$	$-0.01593(13)$	$0.00223(12)$
C12	$0.0537(2)$	$0.03529(18)$	$0.02893(17)$	$-0.01461(15)$	$-0.01409(14)$	$-0.00186(13)$
N 1	$0.0390(6)$	$0.0379(6)$	$0.0203(5)$	$-0.0065(5)$	$-0.0087(4)$	$0.0048(4)$
N 2	$0.0397(6)$	$0.0337(6)$	$0.0276(5)$	$-0.0107(5)$	$-0.0136(5)$	$0.0062(4)$
C1	$0.0371(7)$	$0.0430(8)$	$0.0218(6)$	$-0.0148(6)$	$-0.0090(5)$	$-0.0036(5)$
C2	$0.0393(7)$	$0.0304(6)$	$0.0266(6)$	$-0.0136(5)$	$-0.0116(5)$	$-0.0011(5)$
C3	$0.0265(6)$	$0.0314(6)$	$0.0214(5)$	$-0.0101(5)$	$-0.0071(4)$	$0.0003(5)$
C4	$0.0487(8)$	$0.0343(7)$	$0.0220(6)$	$-0.0146(6)$	$-0.0070(6)$	$-0.0037(5)$
C5	$0.0564(9)$	$0.0271(7)$	$0.0287(7)$	$-0.0076(6)$	$-0.0074(6)$	$-0.0010(5)$
C6	$0.0420(7)$	$0.0359(7)$	$0.0262(6)$	$-0.0129(6)$	$-0.0162(5)$	$0.0024(5)$

Geometric parameters (A, ${ }^{\circ}$)

H3-C2	0.923	H9-N2	0.899
H2-C1	0.919	N1-C1	1.331 (2)
H5-C5	0.909	N1-C5	1.333 (2)
H8-N2	0.890	N2-C6	1.4750 (19)
H7-C6	0.955	C6-C3	1.5065 (18)
H6-C6	0.961	C1-C2	1.3750 (19)
H1-N1	0.831	C3-C2	1.3929 (18)
H4-C4	0.923	C3-C4	1.386 (2)
H10-N2	0.890	C5-C4	1.371 (2)
H1-N1-C1	118.7	$\mathrm{H} 2-\mathrm{C} 1-\mathrm{N} 1$	117.8
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{C} 5$	118.6	H2-C1-C2	122.2
C1-N1-C5	122.62 (12)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	120.03 (13)
H9-N2-H8	109.1	C6-C3-C2	123.50 (12)
H9-N2-H10	107.4	C6-C3-C4	117.95 (12)
H8-N2-H10	109.7	C2-C3-C4	118.52 (12)
H9-N2-C6	109.8	H5-C5-N1	116.9
$\mathrm{H} 8-\mathrm{N} 2-\mathrm{C} 6$	111.9	H5-C5-C4	123.6
H10-N2-C6	108.9	N1-C5-C4	119.51 (14)
N2-C6-H6	109.7	C3-C2-C1	119.26 (13)
N2-C6-H7	108.0	C3-C2-H3	121.6
H6-C6-H7	108.4	C1-C2-H3	119.2
N2-C6-C3	114.31 (11)	C3-C4-H4	121.5
H6-C6-C3	107.3	C3-C4-C5	120.05 (13)
H7-C6-C3	108.9	H4-C4-C5	118.4

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	0.83	2.36	$3.084(2)$	146
$\mathrm{~N} 2-\mathrm{H} 8 \cdots \mathrm{Cl1}$	0.89	2.28	$3.160(3)$	171
$\mathrm{~N} 2-\mathrm{H} 9 \cdots \mathrm{Cl2} 2$	0.90	2.23	$3.126(2)$	173
$\mathrm{~N} 2-\mathrm{H} 10 \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.89	2.37	$3.190(2)$	152

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+2,-y+1,-z+1$; (iii) $x, y, z+1$.

