metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sodium 2-mercaptoethanesulfonate monohydrate (coenzyme M sodium salt monohydrate)

Stefan Mayr,^a Detlef Günther,^b Bernhard Jaun^a and W. Bernd Schweizer^a*

^aLaboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, and ^bLaboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland

Correspondence e-mail: schweizer@org.chem.ethz.ch

Received 19 August 2008; accepted 2 October 2008

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.007 Å; R factor = 0.038; wR factor = 0.131; data-to-parameter ratio = 17.4.

The 2-thioethanesulfonate anion is the smallest known coenzyme in nature (HS–CoM) and plays a key role in methanogenesis by anaerobic archaea, as well as in the oxidation of alkenes by Gram-negative and Gram-positive eubacteria. The title compound, $Na^+ \cdot C_2H_5O_3S_2^- \cdot H_2O$, is the Na⁺ salt of HS–CoM crystallized as the monohydrate. Six O atoms form a distorted octahedral coordination geometry around the Na atom, at distances in the range 2.312 (4)–2.517 (3) Å. Two O atoms of the sulfonate group, one O atom of each of three other symmetry-related sulfonate groups plus the water O atom form the coordination environment of the Na⁺ ion. This arrangement forms Na–O–Na layers in the crystal structure, parallel to (100).

Related literature

For related literature about HS–CoM, see: Allen *et al.* (1999); Bruchhausen *et al.* (1993); Günther & Hattendorf (2005); Graham *et al.* (2002); Latkoczy & Günther (2002); Mackay *et al.* (1999); Schramm *et al.* (1955); Thauer (1998). For the structure of the unhydrated Na HS–CoM salt, see: Bambagiotti-Alberti *et al.* (2007).

Experimental

Crystal data

Na⁺·C₂H₅O₃S₂⁻·H₂O $M_r = 182.19$ Orthorhombic, *Pna*2₁ a = 23.4301 (8) Å b = 5.0324 (2) Å c = 6.1254 (2) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 1647 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.131$	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.95	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
1534 reflections	Absolute structure: Flack (1983),
88 parameters	627 Friedel pairs
1 restraint	Flack parameter: 0.13 (18)

Table 1 Selected bond lengths (Å).

Na9-O5 ⁱ	2.312 (4)	Na9-O6 ⁱⁱⁱ	2.416 (2)
Na9-O8 ⁱⁱ	2.322 (4)	Na9-O5	2.456 (3)
Na9-O7	2.404 (3)	Na9-O8	2.517 (3)

V = 722.24 (4) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.20 \times 0.01 \text{ mm}$

1534 independent reflections

1263 reflections with $I > 2\sigma(I)$

 $\mu = 0.74 \text{ mm}^-$

T = 223 K

 $R_{\rm int} = 0.065$

Z = 4

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x, y - 1, z.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek 2003); software used to prepare material for publication: *maXus* (Mackay *et al.*, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2190).

References

- Allen, J. R., Clark, D. D., Krum, J. G. & Ensign, S. A. (1999). Proc. Natl Acad. Sci. USA, 96, 8432–8437.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bambagiotti-Alberti, M., Bruni, B., Di Vaira, M. & Giannellini, V. (2007). Acta Cryst. E63, 01796.
- Bruchhausen, F. V., Dannhardt, G. & Ebelet, S. (1993). Editors. *Hagers Handbuch der Pharmazeutischen Praxis*, Vol. 8, p. 890. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Graham, D. E., Xu, H. & White, R. H. (2002). J. Biol. Chem. 277, 13421–13429. Günther, D. & Hattendorf, B. (2005). TrAC Trends Anal. Chem. 24, 255–265.
- Latkoczy, C. & Günther, D. (2002). J. Anal. At. Spectrom. 17, 1264–1270.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). *maXus.* Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.
- Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Schramm, C. H., Lemaire, H. & Karlson, R. H. (1955). J. Am. Chem. Soc. 77, 6231–6233.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13. Thauer, R. K. (1998). Microbiology, **144**, 2377–2406.

supporting information

Acta Cryst. (2008). E64, m1476-m1477 [doi:10.1107/S1600536808031814]

Sodium 2-mercaptoethanesulfonate monohydrate (coenzyme M sodium salt monohydrate)

Stefan Mayr, Detlef Günther, Bernhard Jaun and W. Bernd Schweizer

S1. Comment

The title compound includes 2-thioethanesulfonate ion, the smallest known coenzyme in nature, coenzyme M, which plays a key role in methanogenesis by anaerobic archaea (Thauer, 1998) and in the oxidation of alkenes by gram-negative and gram-positive eubacteria (Allen *et al.*, 1999). Furthermore its sodium salt (mesna) is medically used as mucolytics and to prevent urotoxic side effects of certain anticancer drugs (Bruchhausen *et al.*, 1993). Whereas the biosynthesis of coenzyme M starts by sulfitation of phosphoenolpyruvate (Graham *et al.*, 2002), the chemical synthesis begins from sodium 2-bromoethanesulfonate and thiourea in ammoniacal solution (Bruchhausen *et al.*, 1993). Since 2-thioethane-sulfonic acid represents a highly viscous oil decomposing under release of hydrogen sulfide at room temperature, it is usually stored and sold as stable sodium or ammonium salt (Schramm *et al.*, 1955). The title compound is the monohydrate of the sodium salt.

Six O atoms show a distorted octahedral coordination geometry around the Na atom at distances in the range of 2.312 (4)–2.517 (3) Å (Fig. 1). Two O atoms of a SO₃ group and one O of three other SO₃ groups plus the water O atom form the coordination sphere of the Na⁺ ion. This forms Na–O–Na layers parallel to (100) in the crystal (Fig. 2).

The crystal structure of the unhydrated form (Bambagiotti-Alberti *et al.*, 2007; CSD refcode *UDUVUL*) shows a similar six-fold coordination of the Na atom where the water O atom is replaced by an O-atom of a SO₃ group. The conformation of the S atoms is *antiperiplanar* in our compound and *gauche* in the unhydrated form.

S2. Experimental

When adding pure ethanol to a concentrated solution of 2-thioethanesulfonic acid in water, we noticed a precipitating white crystalline mass never described before in the literature. Micro elementary analysis based on the empirical formula $(C_2H_8O_4S_2)$ of the hydrated acid (HS–CoM⁺H₃O⁺) showed significantly low values for C and H. At the same time ¹H and ¹³C NMR analysis of the precipitate in D₂O ruled out any organic impurities. Investigations into the crystals by laser ablation inductively coupled plasma sector field mass spectrometry (LA-ICP-SF MS), however, clearly revealed the presence of sodium in hyperstoichiometric amounts: molar ratio (Na-23)/(S-32) = 1.34 (RSD: 8,5%, n = 9) (Günther & Hattendorf, 2005; Latkoczy & Günther, 2002). The white precipitate consisted of two different types of crystals, needles and thin plates. The needles were used for structure analysis by X-ray diffraction.

S3. Refinement

H-positions for the methylene CH_2 groups have been calculated with fixed distance of 1.08 Å. H atoms for the water molecule and the thiol group have been taken from a difference map and were included in the refinement in their asfound positions.

Figure 1

The molecular structure of sodium 2-thioethanesulfonate hydrate with 50% probability displacement ellipsoids. H atoms are omitted for clarity. The complete coordination of the Na atom is shown. Symmetry codes: (a) x, -1+y, z; (b) x, 1+y, z; (c) 1/2-x, -1/2+y, -1/2+z; (d) 1/2-x, -1/2+y, 1/2+z; (e) 1/2-x, 1/2+y, -1/2+z; (f) 1/2-x, 1/2+y, 1/2+z.

Figure 2

Crystal structure viewed down the diagonal of the *a*–*b* axis, showing the layer structure of Na—O clusters.

sodium 2-mercaptoethanesulfonate monohydrate

Crystal	data
---------	------

Na ⁺ ·C ₂ H ₅ O ₃ S ₂ ⁻ ·H ₂ O $M_r = 182.19$ Orthorhombic, <i>Pna</i> 2 ₁ Hall symbol: P 2c -2n a = 23.4301 (8) Å b = 5.0324 (2) Å c = 6.1254 (2) Å V = 722.24 (4) Å ³ Z = 4 F(000) = 376.0	$D_x = 1.676 \text{ Mg m}^{-3}$ Melting point: 473 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5975 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 0.74 \text{ mm}^{-1}$ T = 223 K Plate, colourless $0.26 \times 0.20 \times 0.01 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube CCD scans 1647 measured reflections 1534 independent reflections	1263 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -29 \rightarrow 30$ $k = -6 \rightarrow 6$ $l = -7 \rightarrow 7$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
S = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
1534 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
88 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
0 constraints	Absolute structure: Flack (1983), 627 Friedel
Primary atom site location: structure-invariant	pairs
direct methods	Absolute structure parameter: 0.13 (18)

Fractional	atomic	coordinates	and is	otronic	ore	auivalent	isotropic	· dis	nlacement	narameters	(Å	2
1 rucnonui	uionnic	coorainaics	unu is	onopic	01 01	jaivaichi	isonopic	- aw	pracement	purumeters	(11	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S3	-0.00830 (4)	0.7465 (2)	0.8298 (4)	0.0483 (4)	
H3	-0.0154	0.8542	0.6813	0.058*	
S4	0.17410 (3)	0.75424 (11)	0.66676 (19)	0.0185 (2)	
Na9	0.26442 (4)	0.3309 (2)	0.6658 (4)	0.0238 (3)	
05	0.19813 (10)	0.6264 (6)	0.4720 (5)	0.0239 (7)	
O6	0.18238 (8)	1.0402 (4)	0.6710 (8)	0.0286 (5)	
O7	0.33586 (10)	0.6737 (5)	0.6717 (8)	0.0338 (5)	
H1	0.3259	0.8098	0.7595	0.023 (11)*	
H2	0.3374	0.7465	0.5332	0.047 (16)*	
08	0.19475 (10)	0.6245 (6)	0.8649 (5)	0.0257 (7)	
C1	0.06798 (17)	0.8051 (9)	0.8424 (9)	0.0464 (11)	
H1A	0.0756	1.0166	0.8509	0.056*	
H1B	0.0846	0.7169	0.9900	0.056*	
C2	0.09943 (14)	0.6946 (6)	0.6517 (10)	0.0279 (8)	
H2A	0.0829	0.7827	0.5039	0.033*	
H2B	0.0920	0.4830	0.6431	0.033*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S3	0.0235 (5)	0.0688 (8)	0.0526 (8)	-0.0031 (4)	0.0074 (6)	0.0024 (6)
S4	0.0182 (4)	0.0178 (4)	0.0194 (4)	-0.00146 (19)	0.0008 (4)	0.0002 (7)
Na9	0.0267 (6)	0.0228 (6)	0.0219 (6)	0.0034 (4)	-0.0009 (9)	-0.0004 (10)
O5	0.0302 (16)	0.0223 (15)	0.0191 (18)	-0.0013 (11)	0.0050 (14)	-0.0031 (12)
O6	0.0325 (10)	0.0188 (10)	0.0344 (12)	-0.0029 (8)	0.0011 (17)	-0.003 (2)
07	0.0398 (13)	0.0345 (11)	0.0271 (13)	0.0012 (10)	0.004 (2)	-0.005 (2)
08	0.0301 (16)	0.0271 (17)	0.0197 (18)	0.0020 (12)	-0.0011 (13)	-0.0027 (14)
C1	0.0228 (17)	0.063 (3)	0.053 (3)	-0.0050 (17)	0.010(2)	-0.013 (3)
C2	0.0182 (14)	0.0364 (16)	0.029 (2)	-0.0033 (12)	-0.001 (2)	-0.008 (2)

Geometric parameters (Å, °)

S3—C1	1.813 (4)	Na9—Na9 ⁱ	4.0207 (5)
S3—H3	1.0714	Na9—Na9 ⁱⁱ	4.0207 (5)
S4—O6	1.4522 (19)	Na9—Na9 ^v	4.0207 (5)
S4—O8	1.460 (4)	O5—Na9 ^v	2.312 (4)
S4—O5	1.468 (3)	O6—Na9 ^{vi}	2.416 (2)
S4—C2	1.778 (3)	O7—H1	0.9012
S4—Na9	3.0028 (13)	O7—H2	0.9247
Na9—O5 ⁱ	2.312 (4)	O8—Na9 ^{iv}	2.322 (4)
Na9—O8 ⁱⁱ	2.322 (4)	C1—C2	1.489 (6)
Na9—07	2.404 (3)	C1—H1A	1.0800
Na9—O6 ⁱⁱⁱ	2.416 (2)	C1—H1B	1.0800
Na9—O5	2.456 (3)	C2—H2A	1.0800
Na9—08	2.517 (3)	C2—H2B	1.0800
Na9—Na9 ^{iv}	4.0207 (5)		
С1—S3—H3	96.1	O8—Na9—Na9 ⁱ	83.64 (8)
O6—S4—O8	112.6 (2)	S4—Na9—Na9 ⁱ	108.91 (6)
O6—S4—O5	113.4 (2)	Na9 ^{iv} —Na9—Na9 ⁱ	77.477 (11)
O8—S4—O5	110.64 (11)	O5 ⁱ —Na9—Na9 ⁱⁱ	113.78 (8)
O6—S4—C2	107.43 (13)	O8 ⁱⁱ —Na9—Na9 ⁱⁱ	35.38 (7)
O8—S4—C2	107.1 (2)	O7—Na9—Na9 ⁱⁱ	125.28 (13)
O5—S4—C2	105.2 (2)	O6 ⁱⁱⁱ —Na9—Na9 ⁱⁱ	59.83 (11)
O6—S4—Na9	127.52 (9)	O5—Na9—Na9 ⁱⁱ	84.52 (8)
O8—S4—Na9	56.70 (12)	O8—Na9—Na9 ⁱⁱ	128.86 (8)
O5—S4—Na9	54.35 (12)	S4—Na9—Na9 ⁱⁱ	109.09 (5)
C2—S4—Na9	125.01 (11)	Na9 ^{iv} —Na9—Na9 ⁱⁱ	160.65 (6)
O5 ⁱ —Na9—O8 ⁱⁱ	106.77 (8)	Na9 ⁱ —Na9—Na9 ⁱⁱ	99.226 (14)
O5 ⁱ —Na9—O7	92.45 (14)	O5 ⁱ —Na9—Na9 ^v	163.76 (8)
O8 ⁱⁱ —Na9—O7	92.65 (14)	O8 ⁱⁱ —Na9—Na9 ^v	75.20 (9)
O5 ⁱ —Na9—O6 ⁱⁱⁱ	91.25 (13)	O7—Na9—Na9 ^v	71.31 (12)
O8 ⁱⁱ —Na9—O6 ⁱⁱⁱ	93.87 (12)	O6 ⁱⁱⁱ —Na9—Na9 ^v	104.78 (10)
O7—Na9—O6 ⁱⁱⁱ	171.25 (9)	O5—Na9—Na9 ^v	31.43 (7)
O5 ⁱ —Na9—O5	154.34 (14)	O8—Na9—Na9 ^v	83.84 (8)
O8 ⁱⁱ —Na9—O5	98.49 (14)	S4—Na9—Na9 ^v	55.88 (5)
O7—Na9—O5	90.75 (11)	Na9 ^{iv} —Na9—Na9 ^v	99.226 (14)
O6 ⁱⁱⁱ —Na9—O5	82.52 (10)	Na9 ⁱ —Na9—Na9 ^v	160.65 (6)
O5 ⁱ —Na9—O8	96.56 (14)	Na9 ⁱⁱ —Na9—Na9 ^v	77.476 (11)
08 ⁱⁱ —Na9—O8	156.12 (14)	S4—O5—Na9 ^v	127.60 (18)
O7—Na9—O8	91.32 (12)	S4—O5—Na9	96.60 (16)
O6 ⁱⁱⁱ —Na9—O8	80.38 (10)	Na9 ^v —O5—Na9	114.93 (10)
O5—Na9—O8	57.90 (7)	S4—O6—Na9 ^{vi}	134.91 (12)
O5 ⁱ —Na9—S4	125.55 (10)	Na9—O7—H1	112.0
O8 ⁱⁱ —Na9—S4	127.54 (10)	Na9—O7—H2	107.3
O7—Na9—S4	88.94 (7)	H1—O7—H2	104.9
O6 ⁱⁱⁱ —Na9—S4	82.46 (6)	S4—O8—Na9 ^{iv}	126.59 (19)
O5—Na9—S4	29.05 (8)	S4—O8—Na9	94.29 (16)

O8—Na9—S4	29.01 (8)	Na9 ^{iv} —O8—Na9	112.33 (10)
O5 ⁱ —Na9—Na9 ^{iv}	74.00 (8)	C2—C1—S3	113.2 (3)
O8 ⁱⁱ —Na9—Na9 ^{iv}	162.52 (8)	C2—C1—H1A	108.9
O7—Na9—Na9 ^{iv}	69.91 (11)	S3—C1—H1A	108.9
O6 ⁱⁱⁱ —Na9—Na9 ^{iv}	103.59 (10)	C2—C1—H1B	108.9
O5—Na9—Na9 ^{iv}	83.28 (8)	S3—C1—H1B	108.9
O8—Na9—Na9 ^{iv}	32.29 (7)	H1A—C1—H1B	107.8
S4—Na9—Na9 ^{iv}	55.67 (5)	C1—C2—S4	112.5 (3)
$O5^i - Na9 - Na9^i$	33.64 (7)	C1—C2—H2A	109.1
$O8^{ii}$ —Na9—Na9 ⁱ	113.20 (9)	S4—C2—H2A	109.1
07—Na9—Na9 ⁱ	123.68 (13)	C1—C2—H2B	109.1
$O6^{iii}$ Na9 Na9 ⁱ	58.49 (11)	S4—C2—H2B	109.1
05—Na9—Na9 ⁱ	129 85 (9)	$H^2A - C^2 - H^2B$	107.8
	129.00 (9)		107.0
O6—S4—Na9—O5 ⁱ	91.9 (3)	O8—Na9—O5—S4	4.61 (8)
O8—S4—Na9—O5 ⁱ	-2.37 (19)	Na9 ^{iv} —Na9—O5—S4	-16.81 (12)
O5—S4—Na9—O5 ⁱ	-174.30 (19)	Na9 ⁱ —Na9—O5—S4	50.69 (17)
C2—S4—Na9—O5 ⁱ	-90.6 (3)	Na9 ⁱⁱ —Na9—O5—S4	148.14 (13)
O6—S4—Na9—O8 ⁱⁱ	-92.9 (3)	Na9 ^v —Na9—O5—S4	-137.0(2)
O8—S4—Na9—O8 ⁱⁱ	172.8 (2)	O5 ⁱ —Na9—O5—Na9 ^v	147.7 (2)
O5—S4—Na9—O8 ⁱⁱ	0.92 (18)	08 ⁱⁱ —Na9—O5—Na9 ^v	-42.28 (14)
C2—S4—Na9—O8 ⁱⁱ	84.6 (3)	O7—Na9—O5—Na9 ^v	50.50 (18)
O6—S4—Na9—O7	-0.3 (3)	O6 ⁱⁱⁱⁱ —Na9—O5—Na9 ^v	-135.11 (15)
O8—S4—Na9—O7	-94.6 (2)	O8—Na9—O5—Na9 ^v	141.6 (2)
O5—S4—Na9—O7	93.4 (2)	S4—Na9—O5—Na9 ^v	137.0 (2)
C2—S4—Na9—O7	177.2 (2)	Na9 ^{iv} —Na9—O5—Na9 ^v	120.17 (13)
O6—S4—Na9—O6 ⁱⁱⁱ	178.0 (4)	Na9 ⁱ —Na9—O5—Na9 ^v	-172.34 (6)
O8—S4—Na9—O6 ⁱⁱⁱ	83.75 (18)	Na9 ⁱⁱ —Na9—O5—Na9 ^v	-74.88 (13)
O5—S4—Na9—O6 ⁱⁱⁱ	-88.17 (17)	O8—S4—O6—Na9 ^{vi}	67.2 (4)
C2—S4—Na9—O6 ⁱⁱⁱ	-4.5 (3)	O5—S4—O6—Na9 ^{vi}	-59.3 (4)
O6—S4—Na9—O5	-93.8 (3)	C2—S4—O6—Na9 ^{vi}	-175.1 (4)
O8—S4—Na9—O5	171.92 (14)	Na9—S4—O6—Na9 ^{vi}	2.7 (5)
C2—S4—Na9—O5	83.7 (3)	O6—S4—O8—Na9 ^{iv}	1.0 (3)
O6—S4—Na9—O8	94.3 (3)	O5—S4—O8—Na9 ^{iv}	129.03 (19)
O5—S4—Na9—O8	-171.92 (14)	C2—S4—O8—Na9 ^{iv}	-116.9 (2)
C2—S4—Na9—O8	-88.2 (3)	Na9—S4—O8—Na9 ^{iv}	122.0 (2)
O6—S4—Na9—Na9 ^{iv}	65.9 (3)	O6—S4—O8—Na9	-121.06 (16)
O8—S4—Na9—Na9 ^{iv}	-28.43 (14)	O5—S4—O8—Na9	7.01 (12)
O5—S4—Na9—Na9 ^{iv}	159.65 (14)	C2—S4—O8—Na9	121.08 (15)
C2—S4—Na9—Na9 ^{iv}	-116.6 (2)	O5 ⁱ —Na9—O8—S4	178.06 (16)
O6—S4—Na9—Na9 ⁱ	125.1 (3)	O8 ⁱⁱ —Na9—O8—S4	-14.1 (4)
O8—S4—Na9—Na9 ⁱ	30.82 (14)	O7—Na9—O8—S4	85.44 (17)
O5—S4—Na9—Na9 ⁱ	-141.11 (14)	O6 ⁱⁱⁱⁱ —Na9—O8—S4	-91.78 (16)
C2—S4—Na9—Na9 ⁱ	-57.4 (2)	O5—Na9—O8—S4	-4.62 (8)
O6—S4—Na9—Na9 ⁱⁱ	-127.6 (3)	Na9 ^{iv} —Na9—O8—S4	132.6 (2)
O8—S4—Na9—Na9 ⁱⁱ	138.14 (14)	Na9 ⁱ —Na9—O8—S4	-150.81 (13)
O5—S4—Na9—Na9 ⁱⁱ	-33.78 (14)	Na9 ⁱⁱ —Na9—O8—S4	-54.07 (17)
C2—S4—Na9—Na9 ⁱⁱ	49.9 (2)	Na9 ^v —Na9—O8—S4	14.40 (12)
	and the second		

O6—S4—Na9—Na9 ^v	-68.3 (3)	O5 ⁱ —Na9—O8—Na9 ^{iv}	45.45 (13)
O8—S4—Na9—Na9 ^v	-162.63 (14)	O8 ⁱⁱ —Na9—O8—Na9 ^{iv}	-146.7 (2)
O5—S4—Na9—Na9 ^v	25.45 (14)	O7—Na9—O8—Na9 ^{iv}	-47.17 (17)
C2—S4—Na9—Na9 ^v	109.2 (2)	O6 ⁱⁱⁱ —Na9—O8—Na9 ^{iv}	135.61 (15)
O6—S4—O5—Na9 ^v	-8.3 (3)	O5—Na9—O8—Na9 ^{iv}	-137.2 (2)
O8—S4—O5—Na9 ^v	-135.9 (2)	S4—Na9—O8—Na9 ^{iv}	-132.6 (2)
C2—S4—O5—Na9 ^v	108.8 (2)	Na9 ⁱ —Na9—O8—Na9 ^{iv}	76.58 (13)
Na9—S4—O5—Na9 ^v	-128.7 (2)	Na9 ⁱⁱ —Na9—O8—Na9 ^{iv}	173.32 (6)
O6—S4—O5—Na9	120.40 (17)	Na9 ^v —Na9—O8—Na9 ^{iv}	-118.21 (13)
O8—S4—O5—Na9	-7.21 (12)	S3—C1—C2—S4	179.9 (2)
C2—S4—O5—Na9	-122.50 (16)	O6—S4—C2—C1	-60.6 (4)
O5 ⁱ —Na9—O5—S4	10.8 (4)	O8—S4—C2—C1	60.6 (4)
O8 ⁱⁱ —Na9—O5—S4	-179.26 (15)	O5—S4—C2—C1	178.3 (3)
O7—Na9—O5—S4	-86.47 (18)	Na9—S4—C2—C1	121.5 (3)
O6 ⁱⁱⁱ —Na9—O5—S4	87.92 (15)		

Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) -x+1/2, y-1/2, z-1/2; (iii) x, y-1, z; (iv) -x+1/2, y+1/2, z+1/2; (v) -x+1/2, y+1/2, z-1/2; (vi) x, y+1, z.