Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 A new monoclinic polymorph of transdichloridodipyridinepalladium(II)

Hon Man Lee* and Chuang-Yi Liao

National Changhua University of Education, Department of Chemistry, Changhua 50058, Taiwan

Correspondence e-mail: leehm@cc.ncue.edu.tw

Received 1 October 2008; accepted 15 October 2008

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.056$; data-to-parameter ratio $=20.6$.

In the structure of the title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ atom is located on an inversion centre and the pyridine rings are coplanar. There is intermolecular $\pi-\pi$ stacking between the pyridyl rings, with a centroid-to-centroid separation of 3.916 (1) \AA. The structure is a new polymorph of two previously determined structures [Viossat, Dung \& Robert (1993). Acta Cryst. C49, 84-85; Liao \& Lee (2006). Acta Cryst. E62, m680-m681].

Related literature

For the other two polymorphs of the title compound, see: Viossat et al. (1993); Liao \& Lee (2006).

Experimental

Crystal data
$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=335.50$
Monoclinic, $P 2_{1} / n$
$a=3.9159$ (2) A
$b=8.7921$ (4) \AA
$c=16.2974$ (8) \AA
$\beta=90.442$ (3) ${ }^{\circ}$

Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.452, T_{\text {max }}=0.867$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 70$ parameters
$w R\left(F^{2}\right)=0.056$
$S=1.10$
1445 reflections

$$
\begin{aligned}
& V=561.09(5) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.10 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& 0.45 \times 0.10 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

5861 measured reflections 1445 independent reflections 1314 reflections with $I>2 \sigma$ $R_{\text {int }}=0.028$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the National Science Council of Taiwan for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2308).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Liao, C.-Y. \& Lee, H. M. (2006). Acta Cryst. E62, m680-m681.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Viossat, B., Dung, N.-H. \& Robert, F. (1993). Acta Cryst. C49, 84-85.

supporting information

A new monoclinic polymorph of trans-dichloridodipyridinepalladium(II)

Hon Man Lee and Chuang-Yi Liao

S1. Comment

Two polymorphic forms of the title compound have already been determined (Viossat et al., 1993; Liao \& Lee, 2006). The polymorphic form determined by us previously has a plate-like crystal habit (Liao \& Lee, 2006). Herein, we present a new polymorphic form of the title compound. This new form has a rod-like habit. The $\mathrm{Pd}^{\mathrm{II}}$ atom, situated at a centre of inversion, has a square-planer coordination geometry with two trans pyridine ligands and two trans chloride ligands (Fig. 1). Similar to the polymorph determined by us previously (Liao \& Lee, 2006), in this new polymorphic form the two pyridine rings are co-planar. The co-planariity in these two forms is in sharp contrast to that in the other polymorph in which the the two pyridine planes make an angle of $160.0(5)^{\circ}$ (Viossat et al., 1993).
The crystal packing is distinctly different in the three polymorphs. A view of the packing arrangement for the new polymorphic form is shown in Fig. 2. Intermolecular $\pi-\pi$ stacking exists between the pyridyl rings, with centroidcentroid separation $3.916 \AA$.

S2. Experimental

The title compound is commercially available. Crystals were grown by slow diffusion of diethyl ether into a dimethylformamide solution containing the compound. The polymorphic form has a rod-like crystal habit.

S3. Refinement

All H atoms could be identified in the difference Fourier map, but were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
Molecular structure of the title compound, showing 50% displacement ellipsoids for non- H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by $-x, 1-y,-z$.

Figure 2
Packing diagram of the title compound viewed along the a axis.

trans-dichloridodipyridinepalladium(II)

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$

$M_{r}=335.50$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=3.9159$ (2) A
$b=8.7921$ (4) \AA
$c=16.2974(8) \AA$
$\beta=90.442(3)^{\circ}$
$V=561.09(5) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.452, T_{\text {max }}=0.867$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.056$
$F(000)=328$
$D_{\mathrm{x}}=1.986 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4043 reflections
$\theta=2.5-34.2^{\circ}$
$\mu=2.10 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Rod, colourless
$0.45 \times 0.10 \times 0.07 \mathrm{~mm}$

5861 measured reflections
1445 independent reflections
1314 reflections with $I>2 \sigma$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=28.7^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-5 \rightarrow 5$
$k=-11 \rightarrow 8$
$l=-22 \rightarrow 19$
$S=1.10$
1445 reflections
70 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0105 P)^{2}+1.3011 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.91$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.03 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.1177(6)$	$0.6747(3)$	$0.15154(15)$	$0.0203(5)$
H1	0.2253	0.5833	0.1690	0.024^{*}
C2	$0.1019(7)$	$0.7956(3)$	$0.20522(16)$	$0.0249(5)$
H2	0.1976	0.7878	0.2588	0.030^{*}
C3	$-0.0560(7)$	$0.9288(3)$	$0.17976(17)$	$0.0251(5)$
H3	-0.0737	1.0130	0.2160	0.030^{*}
C4	$-0.1875(7)$	$0.9376(3)$	$0.10081(18)$	$0.0238(5)$
H4	-0.2913	1.0288	0.0817	0.029^{*}
C5	$-0.1655(6)$	$0.8117(3)$	$0.05015(15)$	$0.0194(5)$
H5	-0.2595	0.8169	-0.0037	0.023^{*}
C11	$0.24377(16)$	$0.64576(7)$	$-0.10193(4)$	$0.01983(13)$
N1	$-0.0149(5)$	$0.6822(2)$	$0.07511(12)$	$0.0159(4)$
Pd1	0.0000	0.5000	0.0000	$0.01359(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0236(11)$	$0.0198(12)$	$0.0174(11)$	$0.0000(9)$	$-0.0019(9)$	$-0.0002(9)$
C2	$0.0263(12)$	$0.0314(14)$	$0.0171(12)$	$-0.0021(11)$	$-0.0009(10)$	$-0.0051(10)$
C3	$0.0272(13)$	$0.0227(13)$	$0.0256(13)$	$-0.0032(11)$	$0.0024(10)$	$-0.0096(10)$
C4	$0.0252(12)$	$0.0163(12)$	$0.0298(14)$	$0.0018(10)$	$0.0006(10)$	$-0.0020(10)$
C5	$0.0232(11)$	$0.0170(11)$	$0.0180(11)$	$-0.0001(9)$	$-0.0011(9)$	$0.0003(9)$
C11	$0.0255(3)$	$0.0174(3)$	$0.0167(3)$	$-0.0023(2)$	$0.0026(2)$	$0.0009(2)$
N1	$0.0199(9)$	$0.0140(9)$	$0.0138(9)$	$-0.0011(7)$	$0.0000(7)$	$-0.0012(7)$
Pd1	$0.01822(13)$	$0.01113(12)$	$0.01142(12)$	$0.00025(9)$	$-0.00070(8)$	$-0.00068(8)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 1$	$1.347(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.950
$\mathrm{C} 1-\mathrm{C} 2$	$1.379(4)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.344(3)$

C1-H1	0.950	C5-H5	0.950
C2-C3	1.386 (4)	Cl1-Pd1	2.3104 (6)
C2-H2	0.950	N1—Pd1	2.017 (2)
C3-C4	1.385 (4)	Pd1-N1 ${ }^{\text {i }}$	2.017 (2)
C3-H3	0.950	$\mathrm{Pd} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.3104 (6)
C4-C5	1.384 (4)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	122.0 (2)	N1-C5-C4	121.8 (2)
N1-C1-H1	119.0	N1-C5-H5	119.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.0	C4-C5-H5	119.1
C1-C2-C3	118.9 (2)	C5-N1-C1	119.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5	C5-N1-Pd1	120.25 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pd} 1$	120.64 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.2 (2)	N1-PPd1-N1	180.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	89.43 (6)
C2-C3-H3	120.4	N1—Pd1-Cl1	90.57 (6)
C5-C4-C3	119.0 (2)	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\text {i }}$	90.57 (6)
C5-C4-H4	120.5	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl}^{1}{ }^{\text {i }}$	89.42 (6)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.5	$\mathrm{Cl1}-\mathrm{Pd} 1-\mathrm{Cl1}^{\text {i }}$	180.0

Symmetry code: (i) $-x,-y+1,-z$.

