organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The cocrystal 2-hydr­­oxy-4-methyl-N-propanoylbenzohydrazide–2-hydr­­oxy-N-(2-hydr­­oxy-4-methyl­benzo­yl)-6-methyl­benzohydrazide (2/1)

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China, and bZhejiang Textile and Fashion College, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 16 September 2008; accepted 15 October 2008; online 18 October 2008)

The asymmetric unit of the title compound, 2C11H14N2O3·C16H16N2O4, contains one mol­ecule of 2-hydr­oxy-4-methyl-N-propanoylbenzohydrazide and one-half of a mol­ecule of 2-hydr­oxy-N-(2-hydr­oxy-4-methyl­benzo­yl)-6-methyl­benzohydrazide. The latter is located on a centre of inversion. Intra­molecular N—H⋯O inter­actions stabilize the conformations of both mol­ecules. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related literature, see: John et al. (2007[John, R. P., Moon, D. Y. & Lah, M. S. (2007). Supramol. Chem. 19, 295-308.]); Majumder et al. (2006[Majumder, A., Goswami, S., Batten, S. R., El Fallah, M. S., Ribas, J. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 2375-2382.]).

[Scheme 1]

Experimental

Crystal data
  • 2C11H14N2O3·C16H16N2O4

  • Mr = 744.79

  • Triclinic, [P \overline 1]

  • a = 6.5778 (10) Å

  • b = 10.7618 (17) Å

  • c = 13.936 (2) Å

  • α = 109.522 (3)°

  • β = 93.608 (1)°

  • γ = 104.448 (4)°

  • V = 888.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.54 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.964, Tmax = 0.975

  • 5076 measured reflections

  • 4125 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 0.90

  • 4125 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1 0.86 1.93 2.620 (2) 136
O1—H1E⋯O4 0.82 1.87 2.682 (2) 169
N2—H2A⋯O2i 0.86 2.03 2.866 (2) 165
N3—H3B⋯O5 0.84 (2) 1.94 (3) 2.613 (3) 136 (2)
N3—H3B⋯O4ii 0.84 (2) 2.37 (3) 2.655 (3) 101 (2)
O5—H5B⋯O3ii 0.89 (3) 1.80 (3) 2.685 (2) 175 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Acylsalicylhydrazides are an interesting class of compounds because of their unique properties. They have been used extensively as ligands in coordination chemistry. N-acylsalicylhydrazide compounds show photoluminescence in the solid state by proton transfer from O atom to the imine N atom (Majumder et al., 2006). The nuclearity and the shape of the metallamacrocycles could be modulated by controlling the steric interactions caused by N-acyl tails of the ligands (John et al., 2007).

A view of the title structure is illustrated in Fig. 1. The asymmetric unit contains one molecule of 2-hydroxy-4-methyl-N-propanoylbenzohydrazide and half a molecule of 2-hydroxy-N-(2-hydroxy-4-methylbenzoyl)-6-methylbenzohydrazide.

The molecular conformation is characterized by N—H···O hydrogen bonds and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: John et al. (2007); Majumder et al. (2006). [Please provide details of recrystallisation solvent to complete the sentence "The filtrate was evaporated using a rotary evaporator and recrystallized from" in the Experimental section]

Experimental top

Propionic anhydride (0.26 g, 2.00 mmol) and 2-hydroxy-4-methylbenzohydrazide (0.31 g, 1.80 mmol) were stirred with an external ice-water bath in DMF (20 ml) for 6 h. The filtrate was evaporated on a rotary evaporator. After recrystallization, the title compound were obtained.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values were set to 1.2Ueq(C, N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -x + 2, -y + 1, -z].
[Figure 2] Fig. 2. Packing diagram of the title compound.
2-hydroxy-4-methyl-N-propanoylbenzohydrazide– 2-hydroxy-N-(2-hydroxy-4-methylbenzoyl)-6-methylbenzohydrazide (2/1) top
Crystal data top
2C11H14N2O3·C16H16N2O4Z = 1
Mr = 744.79F(000) = 394
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Melting point = 488–496 K
a = 6.5778 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7618 (17) ÅCell parameters from 6530 reflections
c = 13.936 (2) Åθ = 1.0–27.6°
α = 109.522 (3)°µ = 0.10 mm1
β = 93.608 (1)°T = 296 K
γ = 104.448 (4)°Block, colourless
V = 888.8 (2) Å30.54 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII
diffractometer
4125 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 27.6°, θmin = 1.0°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.964, Tmax = 0.975l = 1818
5076 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.5716P]
where P = (Fo2 + 2Fc2)/3
4125 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
2C11H14N2O3·C16H16N2O4γ = 104.448 (4)°
Mr = 744.79V = 888.8 (2) Å3
Triclinic, P1Z = 1
a = 6.5778 (10) ÅMo Kα radiation
b = 10.7618 (17) ŵ = 0.10 mm1
c = 13.936 (2) ÅT = 296 K
α = 109.522 (3)°0.54 × 0.30 × 0.25 mm
β = 93.608 (1)°
Data collection top
Bruker APEXII
diffractometer
4125 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1865 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.975Rint = 0.022
5076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.20 e Å3
4125 reflectionsΔρmin = 0.22 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.5753 (4)1.1759 (2)0.25135 (19)0.0371 (6)
H1A1.62411.27450.28190.056*
H1B1.54481.14830.17770.056*
H1C1.68361.13820.26890.056*
C21.3767 (3)1.1237 (2)0.29126 (16)0.0272 (5)
C31.2717 (3)1.2119 (2)0.35009 (16)0.0302 (5)
H3A1.32471.30620.36590.036*
C41.0896 (3)1.1610 (2)0.38542 (16)0.0272 (5)
H4A1.02271.22220.42510.033*
C51.2941 (3)0.9840 (2)0.27002 (16)0.0271 (5)
H5A1.36390.92360.23170.032*
C61.1100 (3)0.9315 (2)0.30440 (15)0.0243 (5)
C71.0027 (3)1.0199 (2)0.36312 (15)0.0230 (5)
C80.8034 (3)0.9769 (2)0.40407 (15)0.0230 (5)
C90.4670 (3)0.6593 (2)0.40029 (15)0.0272 (5)
C100.2783 (3)0.6153 (2)0.44886 (17)0.0356 (6)
H10A0.24940.69630.49560.043*
H10B0.31170.56250.48900.043*
C110.0800 (4)0.5283 (3)0.3690 (2)0.0434 (6)
H11A0.03620.50220.40340.065*
H11B0.10710.44720.32320.065*
H11C0.04420.58090.33030.065*
C122.0539 (4)0.8165 (3)0.0799 (2)0.0423 (6)
H12A2.02820.85920.12810.063*
H12B2.11200.74220.11220.063*
H12C2.15280.88310.02080.063*
C131.8475 (3)0.7613 (2)0.04652 (17)0.0312 (5)
C141.8192 (3)0.8096 (2)0.05601 (17)0.0331 (5)
H14A1.92930.87690.10540.040*
C151.6810 (3)0.6616 (2)0.11824 (16)0.0293 (5)
H15A1.69850.62820.18700.035*
C161.4884 (3)0.6101 (2)0.08999 (16)0.0267 (5)
C171.6287 (3)0.7582 (2)0.08499 (17)0.0320 (5)
H17A1.61360.79100.15410.038*
C181.4587 (3)0.6587 (2)0.01368 (16)0.0257 (5)
C191.2600 (3)0.6131 (2)0.05327 (16)0.0252 (5)
N10.7128 (3)0.84114 (17)0.37670 (13)0.0273 (4)
H1D0.76630.78380.33470.033*
N20.5341 (3)0.79291 (17)0.41560 (13)0.0263 (4)
H2A0.46720.84840.44920.032*
O41.2460 (2)0.65694 (15)0.14648 (11)0.0333 (4)
O11.0312 (2)0.79309 (14)0.28105 (11)0.0322 (4)
H1E1.10840.75330.24670.048*
O20.7227 (2)1.06102 (14)0.45964 (11)0.0314 (4)
O30.5567 (2)0.57635 (14)0.34881 (11)0.0329 (4)
N31.0943 (3)0.52334 (18)0.01587 (15)0.0291 (5)
O51.3246 (2)0.51267 (15)0.16289 (12)0.0333 (4)
H3B1.104 (4)0.490 (2)0.0786 (19)0.036 (7)*
H5B1.368 (4)0.481 (3)0.223 (2)0.055 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (12)0.0416 (14)0.0485 (14)0.0077 (11)0.0136 (10)0.0233 (11)
C20.0192 (11)0.0345 (13)0.0299 (12)0.0067 (10)0.0031 (9)0.0148 (10)
C30.0249 (12)0.0268 (12)0.0401 (13)0.0045 (10)0.0048 (10)0.0158 (10)
C40.0249 (12)0.0262 (12)0.0316 (12)0.0094 (10)0.0067 (9)0.0100 (9)
C50.0226 (12)0.0307 (12)0.0293 (12)0.0108 (10)0.0085 (9)0.0096 (9)
C60.0235 (12)0.0234 (12)0.0256 (11)0.0058 (9)0.0056 (9)0.0089 (9)
C70.0196 (11)0.0280 (12)0.0221 (11)0.0073 (9)0.0038 (8)0.0095 (9)
C80.0208 (11)0.0267 (12)0.0222 (11)0.0079 (10)0.0042 (9)0.0087 (9)
C90.0287 (12)0.0254 (12)0.0253 (11)0.0071 (10)0.0090 (9)0.0060 (9)
C100.0349 (13)0.0255 (12)0.0442 (14)0.0059 (10)0.0223 (11)0.0088 (10)
C110.0267 (13)0.0530 (15)0.0628 (17)0.0105 (12)0.0157 (12)0.0356 (13)
C120.0302 (13)0.0454 (14)0.0524 (15)0.0062 (11)0.0121 (11)0.0216 (12)
C130.0278 (12)0.0308 (12)0.0407 (14)0.0104 (10)0.0087 (10)0.0182 (11)
C140.0267 (13)0.0323 (13)0.0373 (13)0.0046 (10)0.0022 (10)0.0122 (10)
C150.0303 (13)0.0303 (12)0.0302 (12)0.0104 (10)0.0108 (10)0.0123 (10)
C160.0259 (12)0.0248 (11)0.0302 (12)0.0090 (9)0.0061 (9)0.0093 (9)
C170.0333 (13)0.0346 (13)0.0283 (12)0.0126 (11)0.0076 (10)0.0091 (10)
C180.0276 (12)0.0233 (11)0.0313 (12)0.0117 (9)0.0119 (10)0.0120 (9)
C190.0287 (13)0.0233 (11)0.0303 (13)0.0143 (10)0.0126 (10)0.0117 (10)
N10.0245 (10)0.0254 (10)0.0316 (10)0.0066 (8)0.0167 (8)0.0079 (8)
N20.0222 (10)0.0266 (10)0.0321 (10)0.0089 (8)0.0167 (8)0.0097 (8)
O40.0351 (9)0.0339 (9)0.0309 (9)0.0122 (7)0.0152 (7)0.0083 (7)
O10.0301 (9)0.0232 (8)0.0429 (9)0.0079 (7)0.0195 (7)0.0087 (7)
O20.0284 (8)0.0286 (8)0.0383 (9)0.0105 (7)0.0155 (7)0.0101 (7)
O30.0338 (9)0.0282 (8)0.0356 (9)0.0094 (7)0.0166 (7)0.0076 (7)
N30.0258 (10)0.0340 (11)0.0290 (11)0.0080 (9)0.0153 (9)0.0116 (9)
O50.0280 (9)0.0366 (9)0.0262 (9)0.0017 (7)0.0106 (7)0.0044 (7)
Geometric parameters (Å, º) top
C1—C21.505 (3)C11—H11C0.9600
C1—H1A0.9600C12—C131.508 (3)
C1—H1B0.9600C12—H12A0.9600
C1—H1C0.9600C12—H12B0.9600
C2—C51.385 (3)C12—H12C0.9600
C2—C31.388 (3)C13—C151.382 (3)
C3—C41.380 (3)C13—C141.390 (3)
C3—H3A0.9300C14—C171.381 (3)
C4—C71.399 (3)C14—H14A0.9300
C4—H4A0.9300C15—C161.387 (3)
C5—C61.388 (3)C15—H15A0.9300
C5—H5A0.9300C16—O51.371 (2)
C6—O11.365 (2)C16—C181.407 (3)
C6—C71.400 (3)C17—C181.391 (3)
C7—C81.492 (3)C17—H17A0.9300
C8—O21.234 (2)C18—C191.485 (3)
C8—N11.342 (3)C19—O41.243 (2)
C9—O31.244 (2)C19—N31.330 (3)
C9—N21.332 (3)N1—N21.382 (2)
C9—C101.500 (3)N1—H1D0.8600
C10—C111.526 (3)N2—H2A0.8600
C10—H10A0.9700O1—H1E0.8200
C10—H10B0.9700N3—N3i1.376 (3)
C11—H11A0.9600N3—H3B0.84 (2)
C11—H11B0.9600O5—H5B0.88 (3)
C2—C1—H1A109.5H11A—C11—H11C109.5
C2—C1—H1B109.5H11B—C11—H11C109.5
H1A—C1—H1B109.5C13—C12—H12A109.5
C2—C1—H1C109.5C13—C12—H12B109.5
H1A—C1—H1C109.5H12A—C12—H12B109.5
H1B—C1—H1C109.5C13—C12—H12C109.5
C5—C2—C3118.03 (19)H12A—C12—H12C109.5
C5—C2—C1120.00 (19)H12B—C12—H12C109.5
C3—C2—C1121.96 (19)C15—C13—C14118.5 (2)
C4—C3—C2120.70 (19)C15—C13—C12120.2 (2)
C4—C3—H3A119.6C14—C13—C12121.3 (2)
C2—C3—H3A119.6C17—C14—C13120.4 (2)
C3—C4—C7121.80 (19)C17—C14—H14A119.8
C3—C4—H4A119.1C13—C14—H14A119.8
C7—C4—H4A119.1C13—C15—C16121.5 (2)
C2—C5—C6121.78 (19)C13—C15—H15A119.3
C2—C5—H5A119.1C16—C15—H15A119.3
C6—C5—H5A119.1O5—C16—C15120.35 (18)
O1—C6—C5120.36 (17)O5—C16—C18119.40 (18)
O1—C6—C7119.25 (17)C15—C16—C18120.25 (19)
C5—C6—C7120.39 (18)C14—C17—C18121.9 (2)
C4—C7—C6117.28 (18)C14—C17—H17A119.1
C4—C7—C8117.01 (18)C18—C17—H17A119.1
C6—C7—C8125.70 (18)C17—C18—C16117.49 (19)
O2—C8—N1120.91 (18)C17—C18—C19117.19 (18)
O2—C8—C7122.27 (18)C16—C18—C19125.33 (19)
N1—C8—C7116.81 (17)O4—C19—N3120.78 (19)
O3—C9—N2121.63 (19)O4—C19—C18122.20 (19)
O3—C9—C10122.19 (18)N3—C19—C18117.01 (18)
N2—C9—C10116.18 (18)C8—N1—N2120.37 (16)
C9—C10—C11112.34 (18)C8—N1—H1D119.8
C9—C10—H10A109.1N2—N1—H1D119.8
C11—C10—H10A109.1C9—N2—N1119.05 (16)
C9—C10—H10B109.1C9—N2—H2A120.5
C11—C10—H10B109.1N1—N2—H2A120.5
H10A—C10—H10B107.9C6—O1—H1E109.5
C10—C11—H11A109.5C19—N3—N3i119.9 (2)
C10—C11—H11B109.5C19—N3—H3B121.4 (16)
H11A—C11—H11B109.5N3i—N3—H3B118.6 (16)
C10—C11—H11C109.5C16—O5—H5B110.8 (17)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.861.932.620 (2)136
O1—H1E···O40.821.872.682 (2)169
N2—H2A···O2ii0.862.032.866 (2)165
N3—H3B···O50.84 (2)1.94 (3)2.613 (3)136 (2)
N3—H3B···O4i0.84 (2)2.37 (3)2.655 (3)101 (2)
O5—H5B···O3i0.89 (3)1.80 (3)2.685 (2)175 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula2C11H14N2O3·C16H16N2O4
Mr744.79
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5778 (10), 10.7618 (17), 13.936 (2)
α, β, γ (°)109.522 (3), 93.608 (1), 104.448 (4)
V3)888.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5076, 4125, 1865
Rint0.022
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 0.90
No. of reflections4125
No. of parameters246
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.86001.93002.620 (2)136.00
O1—H1E···O40.82001.87002.682 (2)169.00
N2—H2A···O2i0.86002.03002.866 (2)165.00
N3—H3B···O50.84 (2)1.94 (3)2.613 (3)136 (2)
N3—H3B···O4ii0.84 (2)2.37 (3)2.655 (3)101 (2)
O5—H5B···O3ii0.89 (3)1.80 (3)2.685 (2)175 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohn, R. P., Moon, D. Y. & Lah, M. S. (2007). Supramol. Chem. 19, 295–308.  Web of Science CrossRef CAS Google Scholar
First citationMajumder, A., Goswami, S., Batten, S. R., El Fallah, M. S., Ribas, J. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 2375–2382.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds