organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,4,6-Tetra­chloro-7,7-bis­­(4-chloro­phen­yl)bi­cyclo­[4.2.0]oct-3-ene-2,5-dione

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: huayouhu@seu.edu.cn

(Received 24 September 2008; accepted 26 September 2008; online 22 October 2008)

The title compound, C20H10Cl6O2, a quinone derivative, was obtained by the irradiation of 2,3,5,6-tetra­chloro­benzo­quinone and 4,4′-(ethene-1,1-di­yl)bis­(chloro­benzene). The six- and four-membered rings are fused in a cis configuration. The dihedral angle between them is 53.4 (3)°.

Related literature

For related literature, see: Eckert & Goez (1994[Eckert, G. & Goez, M. (1994). J. Am. Chem. Soc. 116, 11999-12009.]); Miyashi et al. (1985[Miyashi, T., Takahashi, Y., Mukai, T., Roth, H. D. & Schilling, M. L. M. (1985). J. Am. Chem. Soc. 107, 1079-1080.]); Schenk (1960[Schenk, G. O. Z. (1960). Electrochemistry, 64, 997-1011.]); Xu, Song et al. (1994[Xu, J. H., Song, Y. L., Zhang, Z. G., Wang, L. C. & Xu, J. W. (1994). Tetrahedron, 50, 1199-1210.]); Xu, Wang et al. 1994[Xu, J. H., Wang, L. C., Xu, J. W., Yan, B. Z. & Yuan, H. C. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 571-577.]); Xue et al. (2000[Xue, J., Xu, J.-W., Yang, L. & Xu, J.-H. (2000). J. Org. Chem. 65, 30-40.]). For a related structure, see: Braun et al. (1999[Braun, M., Christl, M., Peters, E.-M. & Peters, K. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2813-2820.])

[Scheme 1]

Experimental

Crystal data
  • C20H10Cl6O2

  • Mr = 494.98

  • Triclinic, [P \overline 1]

  • a = 8.6710 (17) Å

  • b = 9.6850 (19) Å

  • c = 12.864 (3) Å

  • α = 105.49 (3)°

  • β = 97.11 (3)°

  • γ = 102.68 (3)°

  • V = 996.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.779, Tmax = 0.917

  • 3879 measured reflections

  • 3619 independent reflections

  • 2787 reflections with I > 2σ(I)

  • Rint = 0.049

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.192

  • S = 1.00

  • 3619 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1993[Harms, K. (1993). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reactions of the high potential 2,3,5,6-tetrachlorobenzoquinone with alkenes display varied reaction sites and regioselectivity, depending on the structure of the alkenes and reaction conditions (Schenk 1960; Miyashi et al. 1985; Eckert & Goez 1994; Xu, Song et al. 1994; Xu, Wang et al. 1994). While irradiation of a benzene solution of 2,3,5,6-tetrachlorobenzoquinone and 4,4'-(ethene-1,1-diyl)bis(chlorobenzene) with light of wavelength longer than 400 nm resulted in formation products of the title compound as a yellow solid (Xue et al. 2000). The yellow crystals were obtained by recrystallization of these solids from petroleum ether-chloroform.

The title compound, C20H10Cl6O2, is a quinone derivative. In the quinone, the distances of the C=O bonds are 1.191 (7) and 1.199 (7) Å, which are considered to to have full double-bond character. Meanwhile, the distances of C1—C2 and C5—C6 are, respectively, 1.478 (9) and 1.475 (8) Å, which are a little longer than that of C1=C6 (1.354 (9) Å), but shorter than those of C—C bonds (1.527 (8)–1.560 (7) Å). This shows that C1—C2 and C5—C6 bonds both have part double-bond character.

Related literature top

For related literature, see: Eckert & Goez (1994); Miyashi et al. (1985); Schenk (1960); Xu, Song et al. (1994); Xu, Wang et al. 1994); Xue et al. (2000). For a related structure, see: Braun et al. (1999)

Experimental top

Irradiation of a benzene solution of 2,3,5,6-tetrachlorobenzoquinone (0.05 mol L-1) and 4,4'-(ethene-1,1-diyl)bis(chlorobenzene) (0.10 mol L-1) with light of wavelength longer than 400 nm for 10 h resulted in complete consumption of 2,3,5,6-tetrachlorobenzoquinone and the formation of products 1,3,4,6-tetrachloro-7,7-bis(4-chlorophenyl)bicyclo[4.2.0]oct-3-ene-2,5-dione. Recrystallization from petroleum ether (bp 60–90 °) and chloroform gave a slightly yellow crystal.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids.
1,3,4,6-Tetrachloro-7,7-bis(4-chlorophenyl)bicyclo[4.2.0]oct-3-ene-2,5-dione top
Crystal data top
C20H10Cl6O2Z = 2
Mr = 494.98F(000) = 496
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6710 (17) ÅCell parameters from 25 reflections
b = 9.6850 (19) Åθ = 10–13°
c = 12.864 (3) ŵ = 0.88 mm1
α = 105.49 (3)°T = 293 K
β = 97.11 (3)°Block, yellow
γ = 102.68 (3)°0.30 × 0.20 × 0.10 mm
V = 996.4 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2787 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
k = 1111
Tmin = 0.779, Tmax = 0.917l = 015
3879 measured reflections3 standard reflections every 200 reflections
3619 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 6P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C20H10Cl6O2γ = 102.68 (3)°
Mr = 494.98V = 996.4 (3) Å3
Triclinic, P1Z = 2
a = 8.6710 (17) ÅMo Kα radiation
b = 9.6850 (19) ŵ = 0.88 mm1
c = 12.864 (3) ÅT = 293 K
α = 105.49 (3)°0.30 × 0.20 × 0.10 mm
β = 97.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2787 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
Rint = 0.049
Tmin = 0.779, Tmax = 0.9173 standard reflections every 200 reflections
3879 measured reflections intensity decay: none
3619 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.01Δρmax = 0.66 e Å3
3619 reflectionsΔρmin = 0.58 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3758 (2)0.1746 (2)0.61309 (16)0.0752 (6)
Cl20.0143 (2)0.07268 (16)0.83090 (14)0.0527 (4)
Cl30.4819 (2)0.4713 (2)0.81185 (19)0.0761 (6)
Cl40.25830 (19)0.20039 (18)1.01117 (12)0.0524 (4)
Cl50.2014 (3)0.5682 (2)0.53637 (17)0.0788 (6)
Cl60.7475 (2)0.30216 (19)0.73595 (17)0.0653 (5)
O10.0754 (6)0.0161 (5)0.6230 (4)0.0625 (12)
O20.2265 (5)0.4901 (4)0.9419 (4)0.0574 (11)
C10.2697 (7)0.2059 (7)0.7168 (5)0.0444 (13)
C20.1230 (7)0.0867 (6)0.7046 (4)0.0409 (13)
C30.0404 (6)0.1008 (6)0.8037 (4)0.0365 (11)
C40.1223 (7)0.2309 (6)0.9110 (4)0.0382 (12)
C50.2210 (6)0.3667 (6)0.8877 (4)0.0384 (12)
C60.3165 (6)0.3339 (6)0.8013 (5)0.0422 (13)
C70.0468 (6)0.2385 (6)0.9327 (4)0.0385 (12)
H7A0.08510.18190.98060.046*
H7B0.05800.33890.95770.046*
C80.1175 (6)0.1593 (6)0.8105 (4)0.0337 (11)
C90.1295 (6)0.2656 (6)0.7408 (4)0.0360 (11)
C100.1477 (7)0.2165 (6)0.6274 (5)0.0449 (13)
H10A0.14630.11930.59320.054*
C110.1680 (9)0.3087 (7)0.5634 (5)0.0554 (16)
H11A0.17660.27470.48760.067*
C120.1752 (7)0.4491 (6)0.6133 (5)0.0445 (13)
C130.1599 (7)0.5022 (6)0.7252 (5)0.0452 (13)
H13A0.16300.59910.75850.054*
C140.1399 (7)0.4087 (6)0.7877 (5)0.0459 (14)
H14A0.13320.44320.86330.055*
C150.2792 (6)0.0423 (6)0.7864 (4)0.0341 (11)
C160.3207 (7)0.0869 (6)0.6989 (5)0.0441 (13)
H16A0.25060.10290.65050.053*
C170.4660 (7)0.1935 (7)0.6820 (5)0.0493 (14)
H17A0.49300.28010.62290.059*
C180.5684 (7)0.1687 (6)0.7538 (5)0.0431 (13)
C190.5304 (7)0.0393 (7)0.8409 (5)0.0487 (14)
H19A0.60050.02320.88930.058*
C200.3883 (7)0.0644 (6)0.8548 (4)0.0421 (13)
H20A0.36420.15270.91220.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0764 (12)0.0926 (14)0.0673 (11)0.0278 (10)0.0554 (10)0.0190 (10)
Cl20.0647 (10)0.0394 (8)0.0665 (10)0.0226 (7)0.0264 (8)0.0234 (7)
Cl30.0535 (10)0.0653 (11)0.1098 (16)0.0045 (8)0.0405 (10)0.0250 (10)
Cl40.0565 (9)0.0623 (9)0.0436 (8)0.0229 (7)0.0147 (6)0.0167 (7)
Cl50.1310 (18)0.0587 (10)0.0781 (12)0.0495 (11)0.0479 (12)0.0402 (10)
Cl60.0518 (9)0.0553 (10)0.0947 (13)0.0112 (7)0.0326 (9)0.0267 (9)
O10.080 (3)0.054 (3)0.049 (3)0.019 (2)0.038 (2)0.003 (2)
O20.069 (3)0.037 (2)0.064 (3)0.014 (2)0.032 (2)0.003 (2)
C10.050 (3)0.052 (3)0.043 (3)0.025 (3)0.031 (3)0.015 (3)
C20.048 (3)0.049 (3)0.039 (3)0.030 (3)0.026 (2)0.014 (3)
C30.048 (3)0.034 (3)0.036 (3)0.019 (2)0.023 (2)0.011 (2)
C40.047 (3)0.034 (3)0.035 (3)0.013 (2)0.018 (2)0.005 (2)
C50.036 (3)0.038 (3)0.039 (3)0.010 (2)0.014 (2)0.005 (2)
C60.032 (3)0.047 (3)0.052 (3)0.014 (2)0.015 (2)0.017 (3)
C70.047 (3)0.048 (3)0.029 (3)0.023 (2)0.019 (2)0.011 (2)
C80.042 (3)0.038 (3)0.031 (2)0.021 (2)0.021 (2)0.012 (2)
C90.044 (3)0.035 (3)0.040 (3)0.020 (2)0.026 (2)0.014 (2)
C100.067 (4)0.037 (3)0.040 (3)0.028 (3)0.023 (3)0.010 (2)
C110.091 (5)0.045 (3)0.044 (3)0.033 (3)0.034 (3)0.016 (3)
C120.047 (3)0.036 (3)0.058 (4)0.014 (2)0.023 (3)0.018 (3)
C130.055 (3)0.025 (3)0.055 (3)0.013 (2)0.023 (3)0.005 (2)
C140.060 (4)0.039 (3)0.046 (3)0.021 (3)0.031 (3)0.010 (2)
C150.041 (3)0.035 (3)0.031 (3)0.012 (2)0.015 (2)0.013 (2)
C160.048 (3)0.043 (3)0.044 (3)0.015 (2)0.029 (3)0.006 (2)
C170.046 (3)0.042 (3)0.054 (4)0.011 (3)0.019 (3)0.003 (3)
C180.038 (3)0.047 (3)0.051 (3)0.014 (2)0.013 (2)0.022 (3)
C190.049 (3)0.057 (4)0.054 (3)0.024 (3)0.035 (3)0.021 (3)
C200.050 (3)0.043 (3)0.039 (3)0.020 (3)0.021 (2)0.011 (2)
Geometric parameters (Å, º) top
Cl1—C11.712 (5)C9—C141.384 (7)
Cl2—C31.779 (5)C9—C101.385 (7)
Cl3—C61.693 (6)C10—C111.390 (8)
Cl4—C41.766 (6)C10—H10A0.9300
Cl5—C121.740 (6)C11—C121.359 (8)
Cl6—C181.734 (6)C11—H11A0.9300
O1—C21.190 (7)C12—C131.372 (8)
O2—C51.200 (6)C13—C141.385 (8)
C1—C61.354 (8)C13—H13A0.9300
C1—C21.478 (8)C14—H14A0.9300
C2—C31.528 (7)C15—C201.382 (7)
C3—C41.560 (7)C15—C161.383 (7)
C3—C81.596 (7)C16—C171.393 (8)
C4—C51.526 (7)C16—H16A0.9300
C4—C71.540 (7)C17—C181.370 (8)
C5—C61.474 (7)C17—H17A0.9300
C7—C81.532 (7)C18—C191.383 (8)
C7—H7A0.9700C19—C201.365 (8)
C7—H7B0.9700C19—H19A0.9300
C8—C151.534 (7)C20—H20A0.9300
C8—C91.545 (7)
C6—C1—C2123.4 (5)C14—C9—C10117.1 (5)
C6—C1—Cl1121.3 (5)C14—C9—C8121.3 (5)
C2—C1—Cl1115.2 (4)C10—C9—C8121.2 (5)
O1—C2—C1121.5 (5)C9—C10—C11121.7 (5)
O1—C2—C3122.3 (5)C9—C10—H10A119.1
C1—C2—C3116.1 (5)C11—C10—H10A119.1
C2—C3—C4118.3 (5)C12—C11—C10119.0 (6)
C2—C3—C8123.0 (4)C12—C11—H11A120.5
C4—C3—C886.8 (4)C10—C11—H11A120.5
C2—C3—Cl2106.0 (3)C11—C12—C13121.4 (5)
C4—C3—Cl2110.3 (4)C11—C12—Cl5120.6 (5)
C8—C3—Cl2111.5 (3)C13—C12—Cl5118.0 (4)
C5—C4—C7115.4 (4)C12—C13—C14118.8 (5)
C5—C4—C3112.4 (4)C12—C13—H13A120.6
C7—C4—C388.4 (4)C14—C13—H13A120.6
C5—C4—Cl4103.3 (4)C9—C14—C13121.9 (5)
C7—C4—Cl4118.9 (4)C9—C14—H14A119.0
C3—C4—Cl4118.7 (4)C13—C14—H14A119.0
O2—C5—C6123.6 (5)C20—C15—C16117.9 (5)
O2—C5—C4121.0 (5)C20—C15—C8119.4 (5)
C6—C5—C4115.2 (5)C16—C15—C8122.6 (4)
C1—C6—C5122.0 (5)C15—C16—C17121.0 (5)
C1—C6—Cl3122.7 (4)C15—C16—H16A119.5
C5—C6—Cl3115.2 (4)C17—C16—H16A119.5
C8—C7—C489.8 (4)C18—C17—C16119.0 (5)
C8—C7—H7A113.7C18—C17—H17A120.5
C4—C7—H7A113.7C16—C17—H17A120.5
C8—C7—H7B113.7C17—C18—C19120.9 (5)
C4—C7—H7B113.7C17—C18—Cl6119.6 (5)
H7A—C7—H7B110.9C19—C18—Cl6119.5 (4)
C7—C8—C15114.9 (4)C20—C19—C18119.0 (5)
C7—C8—C9114.1 (4)C20—C19—H19A120.5
C15—C8—C9109.7 (4)C18—C19—H19A120.5
C7—C8—C387.4 (4)C19—C20—C15122.0 (5)
C15—C8—C3117.2 (4)C19—C20—H20A119.0
C9—C8—C3112.1 (4)C15—C20—H20A119.0
C6—C1—C2—O1171.0 (6)C4—C3—C8—C720.4 (4)
Cl1—C1—C2—O16.9 (8)Cl2—C3—C8—C790.1 (4)
C6—C1—C2—C311.0 (8)C2—C3—C8—C15100.7 (6)
Cl1—C1—C2—C3171.1 (4)C4—C3—C8—C15137.3 (4)
O1—C2—C3—C4173.7 (5)Cl2—C3—C8—C1526.7 (5)
C1—C2—C3—C44.3 (7)C2—C3—C8—C927.4 (7)
O1—C2—C3—C880.5 (7)C4—C3—C8—C994.6 (4)
C1—C2—C3—C8101.6 (6)Cl2—C3—C8—C9154.9 (4)
O1—C2—C3—Cl249.4 (7)C7—C8—C9—C1425.0 (7)
C1—C2—C3—Cl2128.6 (4)C15—C8—C9—C14105.5 (6)
C2—C3—C4—C529.4 (6)C3—C8—C9—C14122.4 (5)
C8—C3—C4—C596.7 (4)C7—C8—C9—C10162.0 (5)
Cl2—C3—C4—C5151.6 (4)C15—C8—C9—C1067.4 (6)
C2—C3—C4—C7146.4 (5)C3—C8—C9—C1064.7 (7)
C8—C3—C4—C720.3 (4)C14—C9—C10—C112.9 (9)
Cl2—C3—C4—C791.5 (4)C8—C9—C10—C11176.2 (6)
C2—C3—C4—Cl491.2 (5)C9—C10—C11—C122.1 (10)
C8—C3—C4—Cl4142.7 (4)C10—C11—C12—C131.2 (10)
Cl2—C3—C4—Cl430.9 (5)C10—C11—C12—Cl5179.7 (5)
C7—C4—C5—O244.0 (7)C11—C12—C13—C141.2 (9)
C3—C4—C5—O2143.4 (5)Cl5—C12—C13—C14179.7 (5)
Cl4—C4—C5—O287.4 (6)C10—C9—C14—C133.0 (9)
C7—C4—C5—C6140.6 (5)C8—C9—C14—C13176.2 (5)
C3—C4—C5—C641.2 (6)C12—C13—C14—C92.2 (9)
Cl4—C4—C5—C688.0 (5)C7—C8—C15—C2034.1 (7)
C2—C1—C6—C51.7 (9)C9—C8—C15—C2096.0 (5)
Cl1—C1—C6—C5176.1 (4)C3—C8—C15—C20134.7 (5)
C2—C1—C6—Cl3178.1 (4)C7—C8—C15—C16145.2 (5)
Cl1—C1—C6—Cl30.3 (8)C9—C8—C15—C1684.8 (6)
O2—C5—C6—C1155.5 (6)C3—C8—C15—C1644.6 (7)
C4—C5—C6—C129.3 (8)C20—C15—C16—C171.8 (9)
O2—C5—C6—Cl321.2 (8)C8—C15—C16—C17177.4 (5)
C4—C5—C6—Cl3154.1 (4)C15—C16—C17—C180.0 (9)
C5—C4—C7—C893.0 (5)C16—C17—C18—C191.0 (9)
C3—C4—C7—C821.1 (4)C16—C17—C18—Cl6178.5 (5)
Cl4—C4—C7—C8143.4 (4)C17—C18—C19—C200.1 (9)
C4—C7—C8—C15139.6 (4)Cl6—C18—C19—C20179.4 (5)
C4—C7—C8—C992.5 (5)C18—C19—C20—C151.8 (9)
C4—C7—C8—C320.7 (4)C16—C15—C20—C192.8 (8)
C2—C3—C8—C7142.4 (5)C8—C15—C20—C19176.5 (5)

Experimental details

Crystal data
Chemical formulaC20H10Cl6O2
Mr494.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6710 (17), 9.6850 (19), 12.864 (3)
α, β, γ (°)105.49 (3), 97.11 (3), 102.68 (3)
V3)996.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.779, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
3879, 3619, 2787
Rint0.049
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.192, 1.01
No. of reflections3619
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.58

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms, 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBraun, M., Christl, M., Peters, E.-M. & Peters, K. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2813–2820.  Web of Science CSD CrossRef Google Scholar
First citationEckert, G. & Goez, M. (1994). J. Am. Chem. Soc. 116, 11999–12009.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. (1993). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMiyashi, T., Takahashi, Y., Mukai, T., Roth, H. D. & Schilling, M. L. M. (1985). J. Am. Chem. Soc. 107, 1079–1080.  CrossRef CAS Web of Science Google Scholar
First citationSchenk, G. O. Z. (1960). Electrochemistry, 64, 997–1011.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. H., Song, Y. L., Zhang, Z. G., Wang, L. C. & Xu, J. W. (1994). Tetrahedron, 50, 1199–1210.  CrossRef CAS Web of Science Google Scholar
First citationXu, J. H., Wang, L. C., Xu, J. W., Yan, B. Z. & Yuan, H. C. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 571–577.  CrossRef Web of Science Google Scholar
First citationXue, J., Xu, J.-W., Yang, L. & Xu, J.-H. (2000). J. Org. Chem. 65, 30–40.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds