organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[4-Acetyl-5-(3-methoxyphenyl)-4,5dihydro-1,3,4-thiadiazol-2-yl]acetamide

G. Aridoss,^a S. Amirthaganesan,^a D. Velmurugan,^b S. H. Kim^a and Y. T. Jeong^a*

^aDivision of Image and Information Engineering, Pukyong National University, Busan 608-739. Republic of Korea, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: ytjeong@pknu.ac.kr

Received 29 September 2008; accepted 6 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.109; data-to-parameter ratio = 20.7.

The title compound, C₁₃H₁₅N₃O₃S, crystallizes with two molecules in the asymmetric unit. The thiadiazole rings in both the molecules adopt an envelope conformation. The crystal packing is stabilized by intermolecular N-H···O and C-H···O interactions.

Related literature

For biological activities of thiadiazole derivatives, see: Balasubramanian et al. (2004); Li et al. (2001); Radwan et al. (2007); Supuran et al. (2001). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental . .

a = 11.3790 (4) Å
b = 10.5993 (3) Å
c = 11.9596 (2) Å

 $\beta = 108.225 \ (2)^{\circ}$ V = 1370.08 (7) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min} = 0.930, \ T_{\max} = 0.962$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
with 3584 Friedel pairs
Flack parameter: 0.07 (7)

 $\mu = 0.25 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.030$

 $0.30 \times 0.20 \times 0.16 \text{ mm}$

16660 measured reflections

7595 independent reflections 5635 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3 - H3A \cdots O5^{i}$ $N6 - H6A \cdots O2^{ii}$	0.86 0.86	1.95 1.96	2.801 (3) 2.799 (3)	171 164
$C25-H25C\cdots O2^{ii}$	0.96	2.37	3.238 (4)	150

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This research work was supported by the second stage of the BK21 Program, Republic of Korea. DV acknowledges financial support from the University Grants Commission (UGC-SAP) and the Department of Science and Technology (DST-FIST), Government of India, for providing facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2802).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Balasubramanian, S., Ramalingan, C., Aridoss, G., Parthiban, S. & Kabilan, S. (2004). Med. Chem. Res. 13(5), 297-311.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, Z., Wang, X. & Da, Y. (2001). Synth. Commun. 31, 1829-1936.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832-3841.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Supuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703-714.

supporting information

Acta Cryst. (2008). E64, o2096 [doi:10.1107/S1600536808032108]

N-[4-Acetyl-5-(3-methoxyphenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

G. Aridoss, S. Amirthaganesan, D. Velmurugan, S. H. Kim and Y. T. Jeong

S1. Comment

Nitrogen heterocycles are one of the most important classes of biologically active compounds. Suitably substituted 1,3,4-t hiadiazoles have attracted great attention owing to their broad spectrum of biological activities in the areas of medicine which includes antimicrobial, antituberculosis, anesthetic, antithrombotic, anticonvulsant, antihypertensive, antiinflammatory and antiulcer activities (Balasubramanian *et al.*, 2004; Li *et al.*, 2001; Radwan *et al.* 2007; Supuran *et al.*, 2001). Their action depends directly on the type and location of polar substituents on the heterocyclic ring. In general, pharmacological effect of potential drugs depends sensitively and solely on the stereochemistry and ring conformations. Thus, by keeping in view the promising biological potency of 1,3,4-thiadiazoles and variously substituted 1,3,4-thia-diazole frameworks, we have carried out the crystal structure determination of the title compound.

The title compound crystallizes with two molecules in the asymmetric unit. The sum of the angles at N1 (359.9 (6)°) and N4 (360.0 (6)°) are in accordance with *sp*² hybridization. The torsion angles around C6—C1—O1—C13 [0.0 (4)°] and C19—C14—O4—C26 [-1.8 (4)°] indicates the coplanarity of the methoxy groups with the corresponding phenyl rings (C1–C6) and (C14–C19), respectively. The thiadiazole ring in both the molecules adopt envelope conformation with atoms C7 and C20 deviating by 0.395 (3) and 0.350 (3) Å, respectively, from the mean plane of the remaining atoms. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiadiazole rings C10—S2—C7—N1—N2 and C20—S2—C23—N5—N4 are $q_2 = 0.245$ (2), 0.217 (2) Å, $\varphi = 36.4$ (6), 215.4 (6)° and $\Delta_s(C_7) = 6.9$ (2), $\Delta_s(C_{20}) = 5.4$ (2), respectively. N—H…O and C—H…O intermolecular interactions stabilize the crystal packing (Table 1).

S2. Experimental

The title compound was obtained by applying the method of Balasubramanian *et al.* (2004). 3-Methoxybenzadehyde thiosemicarbazone obtained by the reaction of 3-Methoxybenzadehyde and thiosemicarbazide was refluxed with excess of freshly distilled acetic anhydride on a water bath for about 7 h. After the completion of reaction, the excess of acetic anhydride was distilled off under reduced pressure and the obtained crude mass was purified by column chromatography (benzene–ethylacetate 5:1 v/v). Crystals were obtained from the solution of freshly distilled ethanol by slow evaporation at room temperature. ¹H NMR (DMSO- d_6 , p.p.m.): 10.90 (s, 1H, amide NH); 7.36–6.76 (m, 5H, aromatic and ring methine protons); 3.78 (s, 3H, OCH₃); 2.38 (s, 3H, –COCH₃); 2.28 (s, 3H, –COCH₃).

S3. Refinement

All H-atoms were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic, 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH, 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ and 0.86 Å, $U_{iso} = 1.2U_{eq}$ (N) for NH atoms. The methyl groups were allowed to rotate but not to tip.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

The molecular packing of the title compound. For clarity, hydrogen atoms which are not involved in hydrogen bonding were omitted.

N-[4-Acetyl-5-(3-methoxyphenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl]acetamide

F(000) = 616

 $\theta = 1.8 - 29.6^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

Prism. colourless

 $0.30 \times 0.20 \times 0.16 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.422 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5353 reflections

Crystal data

C13H15N3O3S $M_r = 293.34$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 11.3790 (4) Å*b* = 10.5993 (3) Å c = 11.9596 (2) Å $\beta = 108.225 \ (2)^{\circ}$ V = 1370.08 (7) Å³ Z = 4

Data collection

Bruker Kappa-APEXII CCD	16660 measured reflections
diffractometer	7595 independent reflections
Radiation source: fine-focus sealed tube	5635 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
ω and φ scans	$\theta_{\rm max} = 29.6^\circ, \ \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 1999)	$k = -14 \rightarrow 14$
$T_{\min} = 0.930, \ T_{\max} = 0.962$	$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.2666P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
7595 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
367 parameters	$\Delta \rho_{\rm max} = 0.33 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 3584 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.07 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5869 (2)	0.7772 (2)	0.4618 (2)	0.0397 (5)	
C2	0.6405 (3)	0.8511 (3)	0.3955 (3)	0.0498 (8)	
H2	0.6027	0.8595	0.3148	0.060*	

C3	0.7499 (3)	0.9119 (3)	0.4499 (2)	0.0538(7)
H3	0.7862	0.9615	0.4055	0.065*
C4	0.8069 (2)	0.9005 (3)	0.5697 (2)	0.0442 (6)
H4	0.8808	0.9428	0.6055	0.053*
C5	0.7547 (2)	0.8268 (2)	0.6360(2)	0.0309 (5)
C6	0.64253 (18)	0.7665 (2)	0.5812 (2)	0.0350 (5)
H6	0.6051	0.7186	0.6258	0.042*
C7	0.8123 (2)	0.8112 (3)	0.7677(2)	0.0324 (6)
H7	0.7546	0.8419	0.8076	0.039*
C8	0.9343 (2)	1.0017 (3)	0.8382 (2)	0.0363 (6)
C9	1.0571(2)	1.0645 (3)	0.8708(3)	0.0441(7)
H9A	1.0464	1 1541	0.8742	0.066*
H9R	1.0969	1.0455	0.8129	0.000
H9C	1.074	1.0346	0.9464	0.000
C10	1.0096 (2)	0.6892 (3)	0.8300(2)	0.0315 (6)
C10	1.0000(2) 1.0879(3)	0.0092(3) 0.4753(3)	0.8300(2) 0.8707(2)	0.0319 (6)
C12	1.0079(3) 1.1070(3)	0.4755(5)	0.8707(2) 0.8773(3)	0.0590(0)
U12	1.1970 (3)	0.3942 (3)	0.8773 (3)	0.0309 (8)
Ш12A Ц12D	1.1920	0.3038	0.7997	0.085*
	1.1975	0.3220	0.9207	0.085*
П12C	1.2/10	0.4420 0.6425(3)	0.9098	0.083°
U13	0.4198(2)	0.0425 (5)	0.4010 (5)	0.0348 (7)
ПІЗА 1112D	0.3971	0.0923	0.5160	0.082*
	0.4/48	0.3763	0.3011	0.082*
ПІЗС С14	0.3408	0.0002	0.4074	0.082°
C14	0.8900 (2)	0.2827(3)	0.5355(2)	0.0431 (6)
015	0.8399 (3)	0.3437 (3)	0.6089 (3)	0.0499 (8)
HI5	0.8/34	0.3319	0.6897	0.060*
C16	0.7400 (3)	0.4223 (3)	0.5648 (2)	0.0524 (7)
HI6	0.7053	0.4623	0.6162	0.063*
C17	0.6906 (2)	0.4425 (2)	0.4454 (2)	0.0420 (6)
H17	0.6236	0.4967	0.4164	0.050*
C18	0.7410 (2)	0.3820 (3)	0.3691 (2)	0.0313 (5)
C19	0.84171 (19)	0.3018 (2)	0.4136 (2)	0.0365 (5)
H19	0.8764	0.2611	0.3626	0.044*
C20	0.6864 (2)	0.3966 (3)	0.2384 (2)	0.0316 (5)
H20	0.7459	0.3662	0.2005	0.038*
C21	0.5698 (2)	0.2018 (3)	0.1704 (2)	0.0352 (6)
C22	0.4489 (2)	0.1337 (3)	0.1313 (3)	0.0457 (7)
H22A	0.4280	0.1056	0.1990	0.069*
H22B	0.4554	0.0621	0.0844	0.069*
H22C	0.3857	0.1895	0.0855	0.069*
C23	0.4851 (2)	0.5119 (3)	0.1630 (2)	0.0307 (5)
C24	0.4060 (2)	0.7251 (3)	0.1174 (2)	0.0371 (6)
C25	0.2952 (2)	0.8055 (3)	0.1067 (3)	0.0520 (8)
H25A	0.2616	0.8347	0.0271	0.078*
H25B	0.3190	0.8766	0.1587	0.078*
H25C	0.2340	0.7569	0.1275	0.078*
C26	1.0400 (3)	0.1360 (3)	0.5113 (3)	0.0692 (9)

H26A	1.0753	0.1935	0.4686	0.104*
H26B	0.9772	0.0863	0.4568	0.104*
H26C	1.1035	0.0814	0.5586	0.104*
N1	0.92957 (17)	0.8777 (2)	0.81336 (18)	0.0319 (5)
N2	1.03611 (17)	0.8057 (2)	0.8278 (2)	0.0339 (5)
N3	1.10017 (18)	0.5994 (2)	0.8432 (2)	0.0383 (5)
H3A	1.1689	0.6224	0.8336	0.046*
N4	0.57049 (17)	0.3249 (2)	0.1927 (2)	0.0332 (5)
N5	0.46128 (17)	0.3956 (2)	0.16790 (19)	0.0330 (5)
N6	0.39184 (18)	0.6002 (2)	0.1401 (2)	0.0357 (5)
H6A	0.3199	0.5754	0.1399	0.043*
01	0.47967 (16)	0.7197 (2)	0.39944 (16)	0.0550 (5)
O2	0.83930 (16)	1.0588 (2)	0.8297 (2)	0.0525 (5)
O3	0.99404 (17)	0.4378 (2)	0.88764 (19)	0.0514 (5)
O4	0.98715 (18)	0.2046 (2)	0.58456 (19)	0.0676 (6)
05	0.66898 (16)	0.1464 (2)	0.18601 (19)	0.0513 (5)
06	0.50089 (16)	0.7653 (2)	0.10697 (18)	0.0487 (5)
S1	0.85560 (5)	0.64828 (6)	0.81229 (6)	0.03785 (17)
S2	0.63984 (5)	0.55696 (6)	0.18841 (6)	0.03857 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0346 (10)	0.0384 (13)	0.0415 (13)	0.0002 (9)	0.0053 (10)	-0.0048 (10)
C2	0.0547 (16)	0.054 (2)	0.0347 (15)	-0.0045 (14)	0.0053 (13)	0.0004 (13)
C3	0.0597 (15)	0.0617 (19)	0.0407 (15)	-0.0191 (14)	0.0166 (12)	0.0057 (13)
C4	0.0404 (12)	0.0500 (15)	0.0426 (14)	-0.0140 (11)	0.0136 (11)	-0.0016 (12)
C5	0.0285 (10)	0.0297 (14)	0.0349 (13)	0.0004 (9)	0.0102 (10)	-0.0034 (11)
C6	0.0299 (9)	0.0337 (12)	0.0405 (12)	-0.0024 (8)	0.0099 (9)	-0.0001 (10)
C7	0.0236 (10)	0.0341 (14)	0.0378 (14)	-0.0022 (10)	0.0071 (10)	-0.0053 (12)
C8	0.0347 (12)	0.0371 (16)	0.0382 (15)	0.0007 (11)	0.0129 (11)	-0.0028 (12)
C9	0.0377 (12)	0.0392 (16)	0.0552 (18)	-0.0079 (13)	0.0142 (12)	-0.0115 (15)
C10	0.0253 (10)	0.0370 (16)	0.0324 (13)	-0.0024 (10)	0.0093 (9)	-0.0015 (11)
C11	0.0412 (13)	0.0371 (16)	0.0370 (15)	-0.0039 (12)	0.0096 (11)	-0.0004 (12)
C12	0.0521 (16)	0.0326 (16)	0.086 (2)	0.0014 (14)	0.0209 (16)	0.0069 (17)
C13	0.0384 (12)	0.0568 (17)	0.0667 (18)	-0.0103 (12)	0.0129 (12)	-0.0108 (15)
C14	0.0331 (10)	0.0456 (15)	0.0455 (14)	-0.0001 (10)	0.0048 (10)	0.0045 (11)
C15	0.0554 (16)	0.055 (2)	0.0351 (16)	-0.0062 (14)	0.0080 (13)	-0.0022 (13)
C16	0.0600 (15)	0.0552 (18)	0.0441 (15)	0.0019 (13)	0.0192 (13)	-0.0117 (13)
C17	0.0406 (11)	0.0386 (13)	0.0458 (14)	0.0050 (10)	0.0119 (11)	-0.0053 (11)
C18	0.0251 (10)	0.0291 (14)	0.0374 (14)	-0.0036 (9)	0.0066 (10)	-0.0007 (11)
C19	0.0301 (9)	0.0380 (12)	0.0417 (13)	0.0036 (9)	0.0118 (9)	0.0018 (11)
C20	0.0237 (10)	0.0339 (14)	0.0383 (14)	-0.0015 (10)	0.0112 (10)	-0.0012 (12)
C21	0.0325 (12)	0.0351 (15)	0.0398 (15)	-0.0032 (11)	0.0141 (10)	-0.0071 (12)
C22	0.0401 (13)	0.0432 (18)	0.0551 (18)	-0.0099 (13)	0.0167 (12)	-0.0118 (15)
C23	0.0268 (10)	0.0343 (15)	0.0289 (13)	-0.0005 (10)	0.0056 (9)	0.0035 (10)
C24	0.0371 (13)	0.0330 (15)	0.0358 (14)	-0.0013 (11)	0.0036 (11)	0.0008 (12)
C25	0.0428 (14)	0.0347 (16)	0.074 (2)	0.0065 (12)	0.0111 (14)	0.0046 (16)

C26	0.0557 (16)	0.066 (2)	0.088 (2)	0.0258 (16)	0.0253 (16)	0.0328 (19)
N1	0.0219 (9)	0.0343 (13)	0.0381 (12)	-0.0010 (8)	0.0074 (8)	-0.0054 (10)
N2	0.0238 (9)	0.0348 (13)	0.0425 (13)	0.0014 (9)	0.0096 (9)	-0.0019 (10)
N3	0.0308 (10)	0.0327 (13)	0.0541 (14)	-0.0009 (8)	0.0171 (9)	0.0045 (10)
N4	0.0234 (9)	0.0334 (13)	0.0407 (13)	-0.0005 (9)	0.0069 (8)	-0.0048 (10)
N5	0.0257 (9)	0.0332 (13)	0.0388 (12)	0.0007 (9)	0.0083 (8)	-0.0038 (10)
N6	0.0272 (9)	0.0322 (13)	0.0461 (12)	-0.0002 (8)	0.0089 (8)	0.0034 (10)
O1	0.0433 (9)	0.0665 (13)	0.0459 (10)	-0.0145 (9)	0.0006 (8)	-0.0070 (10)
O2	0.0383 (9)	0.0388 (12)	0.0845 (15)	0.0039 (10)	0.0252 (10)	-0.0079 (12)
O3	0.0465 (11)	0.0472 (14)	0.0617 (13)	-0.0102 (10)	0.0187 (10)	0.0077 (11)
O4	0.0572 (11)	0.0840 (16)	0.0567 (12)	0.0303 (11)	0.0110 (10)	0.0231 (12)
O5	0.0363 (9)	0.0405 (12)	0.0795 (14)	0.0048 (10)	0.0216 (9)	-0.0079 (12)
O6	0.0431 (10)	0.0430 (13)	0.0617 (13)	-0.0049 (9)	0.0187 (9)	0.0097 (11)
S 1	0.0281 (3)	0.0403 (4)	0.0434 (4)	-0.0051 (3)	0.0087 (2)	0.0057 (3)
S2	0.0264 (3)	0.0371 (4)	0.0505 (4)	-0.0023 (3)	0.0096 (3)	0.0090 (3)

Geometric parameters (Å, °)

C101	1.359 (3)	C14—C19	1.377 (3)
C1—C6	1.374 (3)	C15—C16	1.374 (4)
C1—C2	1.384 (4)	C15—H15	0.9300
C2—C3	1.372 (4)	C16—C17	1.378 (4)
С2—Н2	0.9300	C16—H16	0.9300
C3—C4	1.380 (4)	C17—C18	1.378 (3)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.374 (3)	C18—C19	1.392 (3)
C4—H4	0.9300	C18—C20	1.499 (3)
C5—C6	1.394 (3)	C19—H19	0.9300
С5—С7	1.514 (4)	C20—N4	1.471 (3)
С6—Н6	0.9300	C20—S2	1.824 (3)
C7—N1	1.456 (3)	C20—H20	0.9800
C7—S1	1.829 (3)	C21—O5	1.234 (3)
С7—Н7	0.9800	C21—N4	1.332 (4)
C8—O2	1.215 (3)	C21—C22	1.493 (3)
C8—N1	1.345 (4)	C22—H22A	0.9600
С8—С9	1.486 (4)	C22—H22B	0.9600
С9—Н9А	0.9600	C22—H22C	0.9600
С9—Н9В	0.9600	C23—N5	1.267 (4)
С9—Н9С	0.9600	C23—N6	1.377 (3)
C10—N2	1.274 (3)	C23—S2	1.757 (2)
C10—N3	1.375 (3)	C24—N6	1.370 (4)
C10—S1	1.753 (2)	C24—C25	1.493 (4)
C11—O3	1.215 (3)	C25—H25A	0.9600
C11—N3	1.373 (4)	C25—H25B	0.9600
C11—C12	1.492 (4)	C25—H25C	0.9600
C12—H12A	0.9600	C26—O4	1.410 (4)
C12—H12B	0.9600	C26—H26A	0.9600
C12—H12C	0.9600	C26—H26B	0.9600

C13—O1	1.416 (3)	C26—H26C	0.9600
C13—H13A	0.9600	N1—N2	1.397 (3)
C13—H13B	0.9600	N3—H3A	0.8600
C13—H13C	0.9600	N4—N5	1.401 (3)
C14—O4	1.364 (3)	N6—H6A	0.8600
C14—C15	1.373 (4)		
O1—C1—C6	125.1 (2)	C16—C17—C18	119.6 (2)
O1—C1—C2	114.9 (2)	C16—C17—H17	120.2
C6—C1—C2	120.0 (2)	C18—C17—H17	120.2
C3—C2—C1	119.4 (3)	C17—C18—C19	119.6 (2)
C3—C2—H2	120.3	C17—C18—C20	121.3 (2)
C1—C2—H2	120.3	C19—C18—C20	119.0 (2)
C2—C3—C4	120.9 (3)	C14—C19—C18	120.0 (2)
С2—С3—Н3	119.6	C14—C19—H19	120.0
С4—С3—Н3	119.6	С18—С19—Н19	120.0
C5—C4—C3	120.1 (2)	N4—C20—C18	111.4 (2)
C5—C4—H4	120.0	N4—C20—S2	103.01 (16)
C3—C4—H4	120.0	C18—C20—S2	114.9 (2)
C4—C5—C6	119.2 (2)	N4—C20—H20	109.1
C4—C5—C7	122.5 (2)	С18—С20—Н20	109.1
C6—C5—C7	118.3 (2)	S2—C20—H20	109.1
C1—C6—C5	120.5 (2)	O5—C21—N4	119.2 (2)
С1—С6—Н6	119.8	O5—C21—C22	121.8 (3)
С5—С6—Н6	119.8	N4—C21—C22	118.9 (2)
N1—C7—C5	112.6 (2)	C21—C22—H22A	109.5
N1—C7—S1	102.46 (16)	C21—C22—H22B	109.5
C5—C7—S1	113.33 (19)	H22A—C22—H22B	109.5
N1—C7—H7	109.4	C21—C22—H22C	109.5
С5—С7—Н7	109.4	H22A—C22—H22C	109.5
S1—C7—H7	109.4	H22B—C22—H22C	109.5
O2—C8—N1	119.7 (3)	N5—C23—N6	120.6 (2)
O2—C8—C9	122.5 (3)	N5—C23—S2	118.25 (19)
N1—C8—C9	117.7 (2)	N6—C23—S2	121.2 (2)
С8—С9—Н9А	109.5	O6—C24—N6	121.8 (3)
С8—С9—Н9В	109.5	O6—C24—C25	123.3 (3)
H9A—C9—H9B	109.5	N6-C24-C25	114.9 (2)
С8—С9—Н9С	109.5	С24—С25—Н25А	109.5
H9A—C9—H9C	109.5	С24—С25—Н25В	109.5
H9B—C9—H9C	109.5	H25A—C25—H25B	109.5
N2-C10-N3	120.0 (2)	С24—С25—Н25С	109.5
N2-C10-S1	118.12 (19)	H25A—C25—H25C	109.5
N3—C10—S1	121.8 (2)	H25B—C25—H25C	109.5
O3—C11—N3	120.9 (3)	O4—C26—H26A	109.5
O3—C11—C12	124.3 (3)	O4—C26—H26B	109.5
N3—C11—C12	114.8 (3)	H26A—C26—H26B	109.5
C11—C12—H12A	109.5	O4—C26—H26C	109.5
C11—C12—H12B	109.5	H26A—C26—H26C	109.5

H12A—C12—H12B	109.5	H26B—C26—H26C	109.5
C11—C12—H12C	109.5	C8—N1—N2	122.2 (2)
H12A—C12—H12C	109.5	C8—N1—C7	121.6 (2)
H12B—C12—H12C	109.5	N2—N1—C7	116.1 (2)
O1—C13—H13A	109.5	C10—N2—N1	109.3 (2)
O1—C13—H13B	109.5	C11—N3—C10	124.2 (2)
H13A—C13—H13B	109.5	C11—N3—H3A	117.9
O1—C13—H13C	109.5	C10—N3—H3A	117.9
H13A—C13—H13C	109.5	C21—N4—N5	122.2 (2)
H13B—C13—H13C	109.5	C21—N4—C20	122.0 (2)
O4—C14—C15	115.8 (2)	N5—N4—C20	115.8 (2)
O4—C14—C19	124.1 (2)	C23—N5—N4	110.0 (2)
C15—C14—C19	120.2 (2)	C24—N6—C23	124.4 (2)
C14—C15—C16	119.7 (3)	C24—N6—H6A	117.8
C14—C15—H15	120.1	C23—N6—H6A	117.8
C16—C15—H15	120.1	C1—O1—C13	117.9 (2)
C15—C16—C17	120.9 (3)	C14	118.5 (2)
C15—C16—H16	119.6	C10—S1—C7	88.3 (1)
C17—C16—H16	119.6	C23-S2-C20	88.6 (1)
O1—C1—C2—C3	-179.1 (3)	N3—C10—N2—N1	179.8 (2)
C6—C1—C2—C3	0.8 (4)	S1-C10-N2-N1	1.3 (3)
C1—C2—C3—C4	-0.1 (5)	C8—N1—N2—C10	162.3 (3)
C2—C3—C4—C5	0.5 (5)	C7—N1—N2—C10	-18.8(3)
C3—C4—C5—C6	-1.4 (4)	O3—C11—N3—C10	-1.5 (4)
C3—C4—C5—C7	-179.6 (3)	C12-C11-N3-C10	178.4 (3)
O1—C1—C6—C5	178.2 (2)	N2-C10-N3-C11	166.0 (3)
C2—C1—C6—C5	-1.8(4)	S1-C10-N3-C11	-15.5 (4)
C4—C5—C6—C1	2.1 (4)	O5—C21—N4—N5	174.7 (2)
C7—C5—C6—C1	-179.6 (2)	C22—C21—N4—N5	-7.5 (4)
C4—C5—C7—N1	-2.5 (4)	O5—C21—N4—C20	-1.6 (4)
C6—C5—C7—N1	179.3 (2)	C22-C21-N4-C20	176.2 (2)
C4—C5—C7—S1	-118.2 (2)	C18—C20—N4—C21	-81.9 (3)
C6—C5—C7—S1	63.5 (3)	S2-C20-N4-C21	154.4 (2)
O4—C14—C15—C16	-178.6 (3)	C18—C20—N4—N5	101.6 (3)
C19—C14—C15—C16	1.1 (4)	S2-C20-N4-N5	-22.2 (3)
C14—C15—C16—C17	-1.1 (5)	N6-C23-N5-N4	-179.8 (2)
C15—C16—C17—C18	0.8 (4)	S2-C23-N5-N4	-0.8 (3)
C16—C17—C18—C19	-0.4 (4)	C21—N4—N5—C23	-160.5(3)
C16—C17—C18—C20	177.1 (3)	C20—N4—N5—C23	16.0 (3)
O4—C14—C19—C18	179.0 (2)	O6—C24—N6—C23	5.9 (4)
C15—C14—C19—C18	-0.7 (4)	C25-C24-N6-C23	-174.3 (2)
C17—C18—C19—C14	0.4 (4)	N5-C23-N6-C24	-170.8 (3)
C20-C18-C19-C14	-177.2 (2)	S2-C23-N6-C24	10.3 (4)
C17—C18—C20—N4	-74.4 (3)	C6-C1-O1-C13	0.0 (4)
C19-C18-C20-N4	103.1 (2)	C2-C1-O1-C13	180.0 (2)
C17—C18—C20—S2	42.2 (3)	C15—C14—O4—C26	177.9 (3)
C19—C18—C20—S2	-140.2 (2)	C19—C14—O4—C26	-1.8 (4)

supporting information

O2—C8—N1—N2	-176.4 (2)	N2-C10-S1-C7	11.6 (2)
C9—C8—N1—N2	6.0 (4)	N3—C10—S1—C7	-166.9 (2)
O2—C8—N1—C7	4.7 (4)	N1-C7-S1-C10	-18.96 (18)
C9—C8—N1—C7	-172.9 (2)	C5—C7—S1—C10	102.70 (18)
C5—C7—N1—C8	82.3 (3)	N5-C23-S2-C20	-10.6 (2)
S1—C7—N1—C8	-155.5 (2)	N6-C23-S2-C20	168.4 (2)
C5—C7—N1—N2	-96.6 (3)	N4—C20—S2—C23	16.77 (18)
S1—C7—N1—N2	25.5 (3)	C18—C20—S2—C23	-104.62 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N3—H3A····O5 ⁱ	0.86	1.95	2.801 (3)	171
N6—H6A···O2 ⁱⁱ	0.86	1.96	2.799 (3)	164
C25—H25 <i>C</i> ···O2 ⁱⁱ	0.96	2.37	3.238 (4)	150

Symmetry codes: (i) -x+2, y+1/2, -z+1; (ii) -x+1, y-1/2, -z+1.