Structure Reports

Online
ISSN 1600-5368

Poly $\left[\mu-4,4^{\prime}\right.$-bipyridine- $\kappa^{2} N: N^{\prime}-\mu$-thio-cyanato- $\kappa^{2} N: S$-copper(I)]

Mario Wriedt, Sina Sellmer and Christian Näther*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-
Strasse 2, D-24118 Kiel, Germany
Correspondence e-mail: cnaether@ac.uni-kiel.de

Received 10 October 2008; accepted 13 October 2008
Key indicators: single-crystal X-ray study; $T=170 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.047 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=20.0$.

In the crystal structure of the title compound, $[\mathrm{Cu}(\mathrm{NCS})-$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, the Cu^{I} atom is coordinated by two N atoms from two symmetry-related 4,4'-bipyridine (bipy) ligands and one N and one S atom from two symmetry-related thiocyanate ligands in a distorted tetrahedral environment. The thiocyanate ligands bridge the Cu^{1} atoms into a zigzag $[\mathrm{CuSCN}]_{n}$ chain running parallel to the a axis. These chains are further connected through two bipy ligands that bridge the Cu^{I} centers to generate a two-dimensional brick-like network. The pyridyl planes of the ligands exhibit a dihedral angle of 37.35 (12) ${ }^{\circ}$.

Related literature

For related structures, see: Goher \& Mautner (1999); Teichert \& Sheldrick (1999); Wang et al. (1999). For related chemistry, see: Bhosekar et al. (2007); Healy et al. (1984); Näther \& Greve (2003); Näther \& Jess (2001, 2006); Näther et al. (2002); Näther, Greve \& Jess (2003); Näther, Wriedt \& Jess (2003).

Experimental

Crystal data
$\left[\mathrm{Cu}(\mathrm{NCS})\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=277.80$
Orthorhombic, Pbca
$a=11.4340$ (4) \AA
$b=12.2530(5) \AA$
$c=15.3806$ (6) \AA

$$
\begin{aligned}
& V=2154.83(14) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.19 \mathrm{~mm}^{-1} \\
& T=170(2) \mathrm{K} \\
& 0.12 \times 0.08 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe
\& Cie, 2008)
$T_{\text {min }}=0.817, T_{\text {max }}=0.901$
23916 measured reflections 2915 independent reflections 2567 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.090$
146 parameters
H -atom parameters constrained
$S=1.24$
2915 reflections
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 11$	$1.966(2)$	$\mathrm{Cu} 1-\mathrm{S} 11^{\mathrm{ii}}$	$2.2755(8)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.080(2)$	$\mathrm{N} 11-\mathrm{C} 11$	$1.151(3)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.122(2)$	$\mathrm{C} 11-\mathrm{S} 11$	$1.651(3)$
$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{N} 1$	$111.31(9)$	$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{S} 11^{\mathrm{ii}}$	$115.22(7)$
$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$101.07(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{S} 11^{\mathrm{ii}}$	$111.96(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$97.36(9)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{S} 11^{\mathrm{ii}}$	$118.21(6)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$.

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: $X-A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.

MW thanks the 'Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie' for a PhD scholarship. This work is supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (projekt No. NA 720/1-1). We are very thankful to Professor Dr Wolfgang Bensch for the use of his experimental equipment.

[^0]
References

Bhosekar, G., Jess, I. \& Näther, C. (2007). Inorg. Chem. 43, 6508-6515.
Goher, M. A. S. \& Mautner, F. A. (1999). Polyhedron, 18, 1805-1810.
Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. \& White, A. H. (1984). Inorg. Chem. 23, 3769-3772.

Näther, C. \& Greve, J. (2003). J. Solid State Chem. 176, 259-265.
Näther, C., Greve, J. \& Jess, I. (2002). Chem. Mater. 14, 4536-4542.
Näther, C., Greve, J. \& Jess, I. (2003). J. Solid State Chem. 175, 328-340.
Näther, C. \& Jess, I. (2001). Monatsh. Chem. 132, 897-910.
Näther, C. \& Jess, I. (2006). Inorg. Chem. 45, 7446-7454.

metal-organic compounds

Näther, C., Wriedt, M. \& Jess, I. (2003). Inorg. Chem. 42, 2391-2397. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.

Teichert, O. \& Sheldrick, W. S. (1999). Z. Anorg. Allg. Chem. 625, 1860-1865. Wang, Q. M., Guo, G.-C. \& Mak, T. C. W. (1999). Chem. Commun. pp. 18491850.

supporting information

Acta Cryst. (2008). E64, m1424-m1425 [doi:10.1107/S1600536808033175]

Poly[$\mu-4,4^{\prime}$-bipyridine- $\kappa^{2} N: N^{\prime}-\mu$-thiocyanato- $\kappa^{2} N: S$-copper(I)]

Mario Wriedt, Sina Sellmer and Christian Näther

S1. Comment

In our ongoing investigation on the synthesis, structures and properties of new coordination polymers based on metal halides as well as pseudohalides and N -donor ligands, we have startet systematic investigation on their thermal behavior because we have demonstrated that new ligand deficient coordination polymers can be conveniently prepared by thermal decompisition of suitable ligand rich precursor compounds (Näther, Wriedt \& Jeß, 2003; Näther \& Jeß, 2006; Bhosekar et al. 2007). If the ligand rich precursor compounds contain besides the N -donor ligands paramagnetic metal atoms and small magnetically active ligands like SCN^{-}, ligand deficient compounds with briding SCN^{-}ligands are obtained, which show cooperative magnetic phenomena at lower temperatures (Näther \& Greve, 2003). During these investigations we have reacted copper(II)chloride and potassium thiocyanate with bipy. In this reaction the diamagnetic copper(I) title compound has been formed by accident.
The coordination properties of bipy enables a series of different coordination modes, because it can connect two different metal cations. In addition, typical $\mathrm{Cu}-\mathrm{S}-\mathrm{C}$ angles in CuSCN polymers are in the range of $100-106^{\circ}$ (Healy et al. 1984) and this should enable the construction of stairlike single or double $[\mathrm{Cu}(\mathrm{SCN})]$ chains in $1: 1$ and $2: 1$ complexes, whose Cu atoms can then be connected by linear spacer ligands into sheets (Näther \& Jeß, 2001; Näther et al. 2002; Näther, Greve \& Jeß, 2003).
The 1:1 title compound $[\mathrm{CuSCN}(\text { bipy })]_{\mathrm{n}}$, whose structure (Fig. 1) represents a two-dimensional CuSCN coordination polymer, contains single [CuSCN] ribbons (Fig. 2) as a characteristic motif. Copper(i) thiocyanato compounds with pyrazine (Goher \& Mautner, 1999), methylpyrazine (Teichert \& Sheldrick, 1999) and 1,2-bis(4-pyridyl)ethane (Wang et al. 1999) as ligand show a similar topology. Within each layer the metal ions are bridged by two $\mu_{2}\left(N, N^{\prime}\right)$-bipy ligands and two $\mu(N, S)$-thiocyanato groups. Thus, each copper(i) atom is tetrahedrally coordinated. The angels arround the copper(i) atoms range between 97.36 (9) and 115.22 (7) ${ }^{\circ}$ and the $\mathrm{Cu}-\mathrm{SCN}$ and $\mathrm{Cu}-\mathrm{NCS}$ distances amount to 2.2755 (8) and 1.966 (2) \AA, respectively. The $\mathrm{Cu}-\mathrm{N}_{\text {bipy }}$ distances ranges from 2.080 (2) to 2.122 (2) \AA (Tab. 1). The layers can be described as formed by two types of perpendicular zigzag like chains crossing at the copper(i) centers. Chains of the first type run along the c-axis and have bipy as a bridging ligand, while the second type extend along the a axis containing bridging thiocyanate ligands. The intralayer $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are 5.7942 (2) and 11.2037 (3) $\AA \mathrm{for} \mathrm{Cu}-$ NCS- Cu and $\mathrm{Cu}-\mathrm{bipy}-\mathrm{Cu}$, respectively. The packing of the crystal structure is achieved by stacking the twodimensional layers along the b-axis in corrugated sheets (Fig. 3) with an interlayer stacking distance between the centroides of the sixmembered rings of 4.237 (2) \AA.

S2. Experimental

CuCl_{2} and bipy was obtained from Alfa Aesar, KSCN and methanol was obtained from Fluka. $0.1 \mathrm{mmol}(13.4 \mathrm{mg}) \mathrm{CuCl}_{2}$, $0.2 \mathrm{mmol}(19.4 \mathrm{mg}) \mathrm{KSCN}, 0.6 \mathrm{mmol}(93.7 \mathrm{mg})$ and 1 ml of methanol were transfered in a test-tube, which was closed and heated to $120^{\circ} \mathrm{C}$ for three days. On cooling orange block-shaped single crystals of the title compound were obtained.

S3. Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{\mathrm{eq}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ of the parent atom using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$.

Figure 1

Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level.
[Symmetry codes: $\mathrm{i}=x,-y+1 / 2, z-1 / 2$; $\mathrm{ii}=x-1 / 2, y,-z+1 / 2$; $\mathrm{iii}=x+1 / 2, y,-z+1 / 2$.]

Figure 2
Crystal structure of the title compound with view along the b axis.

Figure 3
Crystal structure of the title compound with view along the a axis.

Poly[$\mu-4,4^{\prime}$-bipyridine- $\kappa^{2} \mathrm{~N}: \mathrm{N}^{\prime}-\mu$-thiocyanato- $\kappa^{2} N: S$ - copper(I)]

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=277.80$
Orthorhombic, Pbca
$a=11.4340$ (4) \AA
$b=12.2530$ (5) \AA
$c=15.3806$ (6) \AA
$V=2154.83(14) \AA^{3}$
$Z=8$
$F(000)=1120$

Data collection

Stoe IPDS-II
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.817, T_{\text {max }}=0.901$
$D_{\mathrm{x}}=1.713 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 23129 reflections
$\theta=1.7-29.7^{\circ}$
$\mu=2.19 \mathrm{~mm}^{-1}$
$T=170 \mathrm{~K}$
Block, orange
$0.12 \times 0.08 \times 0.05 \mathrm{~mm}$

23916 measured reflections
2915 independent reflections
2567 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=29.3^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-15 \rightarrow 15$
$k=-16 \rightarrow 16$
$l=-21 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.090$
$S=1.24$
2915 reflections
146 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0317 P)^{2}+1.4342 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0015(3)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	$0.44386(3)$	$0.58247(3)$	$0.28065(2)$	$0.03676(11)$
N1	$0.42996(19)$	$0.45592(18)$	$0.37017(14)$	$0.0353(5)$
N2	$0.4249(2)$	$0.01317(17)$	$0.66651(14)$	$0.0361(5)$
C1	$0.3680(2)$	$0.4601(2)$	$0.44384(17)$	$0.0385(6)$
H1	0.3252	0.5247	0.4561	0.046^{*}
C2	$0.3631(2)$	$0.3757(2)$	$0.50299(17)$	$0.0388(6)$
H2	0.3176	0.3825	0.5544	0.047^{*}
C3	$0.4252(2)$	$0.2806(2)$	$0.48664(16)$	$0.0325(5)$
C4	$0.4902(2)$	$0.2762(2)$	$0.41074(17)$	$0.0372(5)$
H4	0.5350	0.2132	0.3972	0.045^{*}
C5	$0.4892(2)$	$0.3641(2)$	$0.35506(17)$	$0.0387(6)$
H5	0.5332	0.3591	0.3028	0.046^{*}
C6	$0.4236(2)$	$0.18673(19)$	$0.54777(15)$	$0.0314(5)$
C7	$0.3241(2)$	$0.1573(2)$	$0.59312(19)$	$0.0404(6)$
H7	0.2532	0.1963	0.5845	0.048^{*}
C8	$0.3280(2)$	$0.0711(2)$	$0.65107(18)$	$0.0414(6)$
H8	0.2585	0.0521	0.6813	0.050^{*}
C9	$0.5207(2)$	$0.0408(2)$	$0.62150(17)$	$0.0389(6)$
H9	0.5902	-0.0001	0.6308	0.047^{*}
C10	$0.5238(2)$	$0.1255(2)$	$0.56241(17)$	$0.0375(6)$
H10	0.5939	0.1417	0.5320	0.045^{*}
N11	$0.6066(2)$	$0.6321(2)$	$0.26898(16)$	$0.0419(5)$
C11	$0.6915(2)$	$0.6652(2)$	$0.23866(16)$	$0.0342(5)$

S11	$0.81061(6)$	$0.71667(6)$	$0.19394(5)$	$0.04387(18)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cu1	$0.03545(17)$	$0.03621(17)$	$0.03862(17)$	$-0.00274(13)$	$0.00331(14)$	$0.00139(13)$
N1	$0.0374(11)$	$0.0341(10)$	$0.0342(11)$	$-0.0018(9)$	$0.0027(9)$	$0.0024(9)$
N2	$0.0416(12)$	$0.0339(10)$	$0.0329(11)$	$-0.0005(9)$	$0.0020(9)$	$0.0028(8)$
C1	$0.0445(15)$	$0.0336(12)$	$0.0375(13)$	$0.0026(11)$	$0.0052(11)$	$-0.0007(11)$
C2	$0.0459(15)$	$0.0372(13)$	$0.0334(12)$	$0.0005(11)$	$0.0078(11)$	$0.0011(11)$
C3	$0.0352(12)$	$0.0322(11)$	$0.0302(11)$	$-0.0046(9)$	$-0.0020(9)$	$0.0001(9)$
C4	$0.0419(14)$	$0.0338(12)$	$0.0359(13)$	$0.0039(11)$	$0.0027(11)$	$0.0004(10)$
C5	$0.0430(14)$	$0.0406(13)$	$0.0323(12)$	$0.0017(11)$	$0.0053(11)$	$0.0022(11)$
C6	$0.0386(13)$	$0.0275(10)$	$0.0281(11)$	$-0.0027(9)$	$-0.0021(9)$	$-0.0015(9)$
C7	$0.0374(14)$	$0.0366(13)$	$0.0472(15)$	$0.0009(11)$	$0.0032(11)$	$0.0052(11)$
C8	$0.0385(14)$	$0.0411(14)$	$0.0446(14)$	$-0.0020(11)$	$0.0043(11)$	$0.0049(12)$
C9	$0.0397(13)$	$0.0404(13)$	$0.0366(13)$	$0.0038(11)$	$0.0004(11)$	$0.0035(11)$
C10	$0.0375(13)$	$0.0418(14)$	$0.0332(12)$	$-0.0012(11)$	$0.0027(10)$	$0.0030(11)$
N11	$0.0348(12)$	$0.0455(13)$	$0.0455(13)$	$-0.0060(10)$	$-0.0005(10)$	$-0.0006(10)$
C11	$0.0322(12)$	$0.0330(12)$	$0.0374(13)$	$0.0021(10)$	$-0.0057(10)$	$-0.0006(10)$
S11	$0.0321(3)$	$0.0384(3)$	$0.0611(4)$	$-0.0008(3)$	$0.0043(3)$	$0.0118(3)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N} 11$	1.966 (2)	C4-C5	1.376 (4)
$\mathrm{Cu} 1-\mathrm{N} 1$	2.080 (2)	C4-H4	0.9500
$\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	2.122 (2)	C5-H5	0.9500
Cu1-S11 ${ }^{\text {ii }}$	2.2755 (8)	C6-C7	1.382 (4)
N1-C5	1.333 (3)	C6-C10	1.388 (4)
N1-C1	1.337 (3)	C7-C8	1.383 (4)
N2-C8	1.336 (4)	C7-H7	0.9500
N2-C9	1.339 (3)	C8-H8	0.9500
N2-Cu1 ${ }^{\text {iii }}$	2.122 (2)	C9-C10	1.380 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.379 (4)	C9-H9	0.9500
C1-H1	0.9500	C10-H10	0.9500
C2-C3	1.388 (4)	N11-C11	1.151 (3)
C2-H2	0.9500	C11-S11	1.651 (3)
C3-C4	1.385 (4)	$\mathrm{S} 11-\mathrm{Cu} 1^{\text {iv }}$	2.2755 (8)
C3-C6	1.485 (3)		
N11-Cu1-N1	111.31 (9)	C3-C4-H4	120.3
$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	101.07 (9)	N1-C5-C4	123.8 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	97.36 (9)	N1-C5-H5	118.1
$\mathrm{N} 11-\mathrm{Cu} 1-\mathrm{S} 11{ }^{\text {ii }}$	115.22 (7)	C4-C5-H5	118.1
N1-Cu1-S11i	111.96 (6)	C7-C6-C10	117.2 (2)
N2 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{S} 11^{\text {ii }}$	118.21 (6)	C7-C6-C3	122.1 (2)
C5-N1-C1	116.7 (2)	C10-C6-C3	120.7 (2)
C5-N1-Cu1	118.34 (17)	C6-C7-C8	119.8 (3)

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$124.96(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.1
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$116.8(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.1
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{Cu} 1^{\mathrm{iii}}$	$121.67(18)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$123.2(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{Cu} 1^{\mathrm{iii}}$	$118.92(18)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{H} 8$	118.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.5(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	118.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	118.2	$\mathrm{~N} 2-\mathrm{C} 9-\mathrm{C} 10$	$123.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.2	$\mathrm{~N} 2-\mathrm{C} 9-\mathrm{H} 9$	118.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.3(2)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	118.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 6$	$119.5(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.4	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	120.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.4(2)$	$\mathrm{C} 6-\mathrm{C} 10-\mathrm{H} 10$	120.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$120.7(2)$	$\mathrm{N} 11-\mathrm{C} 11-\mathrm{Cu} 11$	$160.8(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$121.9(2)$	$\mathrm{C} 11-\mathrm{S} 11-\mathrm{Cu} 1^{\mathrm{iv}}$	$177.9(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.4(2)$		$101.83(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.3		

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $x-1 / 2, y,-z+1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $x+1 / 2, y,-z+1 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2809).

