Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Methoxycarbonyl)hydrazinium chloride monohydrate

Jian-Wu Xie, ${ }^{\text {a }}$ Lu-Ping Lv, ${ }^{\text {a }}$ Wen-Bo Yu, ${ }^{\text {a }}$ Wei-Wei Li ${ }^{\text {a }}$ and Xian-Chao Hu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and ${ }^{\text {b }}$ Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
Correspondence e-mail: zgdhxc@126.com

Received 21 September 2008; accepted 29 September 2008

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=14.9$.

In the title compound, $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the non- H atoms of the cation are approximately coplanar. The organic cations, chloride ions and water molecules are linked into a twodimensional network parallel to the $b c$ plane by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For applications of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987). For the crystal structure of a nickel methylcarbazate complex, see: Song et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
b=7.6444 \text { (7) } \AA
$$

$M_{r}=144.56$
Monoclinic, $P 2_{1} / c$
$a=12.6621$ (13) \AA

$$
\begin{aligned}
& c=6.6948(7) \AA \\
& \beta=97.199(4)^{\circ} \\
& V=642.91(11) \AA^{3}
\end{aligned}
$$

$Z=4$
$T=123$ (2) K
Mo $K \alpha$ radiation
$\mu=0.53 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.861, T_{\text {max }}=0.881$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.080 \quad$ independent and constrained
$S=1.04$ refinement
1445 reflections
97 parameters
3 restraints
$0.28 \times 0.24 \times 0.23 \mathrm{~mm}$

7105 measured reflections 1445 independent reflections 1360 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$
$\Delta \rho_{\max }=0.59 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W$	$0.92(2)$	$1.84(2)$	$2.743(2)$	$167(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.93(2)$	$2.20(2)$	$3.1152(14)$	$168(2)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots 1^{\text {ii }}$	$0.89(2)$	$2.00(2)$	$2.8443(17)$	$158(2)$
$\mathrm{O}_{1} W-\mathrm{H} 1 W \cdots \mathrm{Cl}^{\text {iii }}$	$0.85(2)$	$2.41(3)$	$3.2172(16)$	$161(3)$
$\mathrm{N}^{2}-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {iv }}$	$0.86(1)$	$2.33(1)$	$3.1833(13)$	$171(2)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Cl} 1$	$0.82(2)$	$2.58(3)$	$3.1959(14)$	$133(3)$

Symmetry codes: (i) $x, y, z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iv)
$x,-y-\frac{1}{2}, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2680).

References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, J. C., Zhang, T. L., Zhang, J. G., Ma, G. X., Li, Y. F. \& Yu, K. B. (2003). Ниахие Xиebao, 61, 1444-1448.

supporting information

Acta Cryst. (2008). E64, o2064 [doi:10.1107/S1600536808031474]

(Methoxycarbonyl)hydrazinium chloride monohydrate

Jian-Wu Xie, Lu-Ping Lv, Wen-Bo Yu, Wei-Wei Li and Xian-Chao Hu

S1. Comment

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). The title compound is an important intermediate in the synthesis of benzaldehydehydrazone derivatives. We report here the crystal structure of the title compound (Fig. 1).

In the cation, atoms O1, O2, N2, C1 and C2 are coplanar (r.m.s. deviation $0.029 \AA$) and atom N1 deviates by 0.260 (2) \AA from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{O} 2 / \mathrm{N} 2$ plane. The bond lengths and angles in the organic cation are comparable to those in a related structure (Song et al., 2003).
The molecules are linked into a two-dimensional network parallel to the $b c$ plane by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds involving the water molecule and chloride ions (Table 1 and Fig.2).

S2. Experimental

Methyl hydrazinecarboxylate $(0.90 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in ethanol- dilute HCl and single crystals suitable for Xray analysis were obtained by slow evaporation at room temperature (m.p. 463-465 K).

S3. Refinement

O - and N -bound H atoms were located in a difference map and were refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{N} 2-\mathrm{H} 2$ distances restrained to 0.85 (2) \AA and 0.87 (1) \AA, respectively. The methyl H atoms were disordered over two orientations and their occupancies were initially refined and later fixed at 0.75 and 0.25 , with C-H $=0.96$ å and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.

Figure 2
The crystal packing of the title compound, viewed approximately along the c axis. Hydrogen bonds are shown as dashed lines.
(Methoxycarbonyl)hydrazinium chloride monohydrate

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \cdot \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	$a=12.6621(13) \AA$
$M_{r}=144.56$	$b=7.6444(7) \AA$
Monoclinic, $P 2_{1} / c$	$c=6.6948(7) \AA$
Hall symbol: -P 2ybc	$\beta=97.199(4)^{\circ}$

$V=642.91(11) \AA^{3}$
$Z=4$
$F(000)=304$
$D_{\mathrm{x}}=1.494 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1122 reflections

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.861, T_{\text {max }}=0.881$

$$
\begin{aligned}
& \theta=1.6-25.0^{\circ} \\
& \mu=0.53 \mathrm{~mm}^{-1} \\
& T=123 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.28 \times 0.24 \times 0.23 \mathrm{~mm} \\
& \\
& 7105 \text { measured reflections } \\
& 1445 \text { independent reflections } \\
& 1360 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=1.6^{\circ} \\
& h=-14 \rightarrow 15 \\
& k=-9 \rightarrow 9 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.080$
$S=1.05$
1445 reflections
97 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	$0.83051(8)$	$0.17986(13)$	$0.89504(15)$	$0.0351(2)$	
O2	$0.88232(9)$	$-0.10131(13)$	$0.86201(17)$	$0.0380(3)$	
N1	$0.69905(11)$	$0.07910(18)$	$1.1544(2)$	$0.0343(3)$	
H1A	$0.6428(16)$	$0.110(3)$	$1.061(3)$	$0.047(6)^{*}$	
H1B	$0.6731(14)$	$0.031(3)$	$1.267(3)$	$0.042(5)^{*}$	
H1C	$0.7342(16)$	$0.174(3)$	$1.203(3)$	$0.047(5)^{*}$	
N2	$0.77164(10)$	$-0.04049(16)$	$1.08177(18)$	$0.0337(3)$	
H2	$0.7430(14)$	$-0.1422(16)$	$1.064(3)$	$0.045(5)^{*}$	
C1	$0.82736(11)$	$0.02547(18)$	$0.93676(19)$	$0.0287(3)$	
C2	$0.93930(14)$	$-0.0505(2)$	$0.6966(3)$	$0.0441(4)$	

H2A	0.9769	-0.1498	0.6530	0.066^{*}	0.75
H2B	0.9892	0.0405	0.7402	0.066^{*}	0.75
H2C	0.8896	-0.0086	0.5869	0.066^{*}	0.75
H2D	0.9269	0.0712	0.6670	0.066^{*}	0.25
H2E	0.9146	-0.1191	0.5799	0.066^{*}	0.25
H2F	1.0141	-0.0700	0.7332	0.066^{*}	0.25
O1W	$0.55461(12)$	$0.1831(2)$	$0.8367(2)$	$0.0561(4)$	
H1W	$0.4948(17)$	$0.216(4)$	$0.867(4)$	$0.095(10)^{*}$	
H2W	$0.537(3)$	$0.109(4)$	$0.751(4)$	$0.115(12)^{*}$	
C11	$0.64630(3)$	$-0.09761(5)$	$0.54932(5)$	$0.03710(14)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0401(6)$	$0.0279(5)$	$0.0388(5)$	$-0.0011(4)$	$0.0106(4)$	$0.0032(4)$
O2	$0.0416(6)$	$0.0320(5)$	$0.0426(6)$	$0.0058(4)$	$0.0136(5)$	$0.0020(4)$
N1	$0.0351(7)$	$0.0369(7)$	$0.0323(6)$	$-0.0037(5)$	$0.0101(5)$	$-0.0023(5)$
N2	$0.0381(7)$	$0.0275(6)$	$0.0371(6)$	$-0.0032(5)$	$0.0113(5)$	$0.0010(5)$
C1	$0.0276(6)$	$0.0293(6)$	$0.0285(6)$	$-0.0009(5)$	$0.0013(5)$	$0.0005(5)$
C2	$0.0430(9)$	$0.0471(9)$	$0.0455(8)$	$0.0020(7)$	$0.0182(7)$	$-0.0039(7)$
O1W	$0.0544(8)$	$0.0635(9)$	$0.0482(7)$	$0.0110(7)$	$-0.0022(6)$	$-0.0172(6)$
C11	$0.0391(2)$	$0.0390(2)$	$0.0344(2)$	$0.00628(14)$	$0.00935(14)$	$0.00276(13)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.2146 (17)	C2-H2A	0.96
$\mathrm{O} 2-\mathrm{C} 1$	1.3272 (17)	C2-H2B	0.96
$\mathrm{O} 2-\mathrm{C} 2$	1.4486 (19)	C2-H2C	0.96
N1-N2	1.4243 (17)	C2-H2D	0.96
N1-H1A	0.92 (2)	C2-H2E	0.96
N1-H1B	0.93 (2)	C2-H2F	0.96
N1-H1C	0.89 (2)	O1W-H1W	0.847 (17)
N2-C1	1.3661 (17)	O1W-H2W	0.819 (18)
N2-H2	0.860 (9)		
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	115.31 (12)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
N2-N1-H1A	114.1 (12)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	109.5
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.4 (12)	H2A-C2-H2D	141.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.2 (16)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	56.3
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5 (13)	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	56.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	110.5 (18)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	103.5 (17)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	56.3
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	114.74 (12)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	141.1
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	118.7 (13)	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	56.3
N1-N2-H2	110.5 (13)	$\mathrm{H} 2 \mathrm{D}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	126.08 (13)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	123.84 (13)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	56.3
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 2$	109.90 (12)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	56.3

supporting information

$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	141.1
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{H} 2 \mathrm{D}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{H} 2 \mathrm{E}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~F}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$102(3)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5		
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$			$12.3(2)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 2$	$-8.8(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$-172.27(12)$

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1 W$	$0.92(2)$	$1.84(2)$	$2.743(2)$	$167(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.93(2)$	$2.20(2)$	$3.1152(14)$	$168(2)$
$\mathrm{N} 1 — \mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{ii}}$	$0.89(2)$	$2.00(2)$	$2.8443(17)$	$158(2)$
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.85(2)$	$2.41(3)$	$3.2172(16)$	$161(3)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{\text {iv }}$	$0.86(1)$	$2.33(1)$	$3.1833(13)$	$171(2)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Cl} 1$	$0.82(2)$	$2.58(3)$	$3.1959(14)$	$133(3)$

Symmetry codes: (i) $x, y, z+1$; (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x+1, y+1 / 2,-z+3 / 2$; (iv) $x,-y-1 / 2, z+1 / 2$.

