organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-(3,4,5-tri­meth­oxy­benzyl­­idene)hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 30 September 2008; accepted 30 September 2008; online 4 October 2008)

The mol­ecule of the title compound, C12H16N2O5, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene and hydrazinecarboxylic acid methyl ester planes is 12.55 (7)°. The mol­ecules are linked into a chain along [001] by inter­molecular N—H⋯O hydrogen bonds, and the chains are cross-linked into a two-dimensional zigzag structure by C—H⋯O hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O5

  • Mr = 268.27

  • Monoclinic, P 21 /c

  • a = 8.554 (3) Å

  • b = 22.705 (7) Å

  • c = 7.813 (2) Å

  • β = 116.15 (1)°

  • V = 1362.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.27 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.968

  • 7173 measured reflections

  • 2394 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.03

  • 2394 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.16 3.000 (2) 166
C2—H2B⋯O2ii 0.96 2.57 3.498 (3) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z+3.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig.1) adopts a trans configuration with respect to the CN bond. The hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the benzene ring and the C10/C11//N1/N2/O4/O5 plane [r.m.s. deviation 0.051 Å] is 12.55 (7)°. The O1-C1 and O3-C3 methoxy groups are coplanar with the benzene ring [C8—C4—O1—C1 = -1.7 (3)° and C7—C6—O3—C3 = -1.9 (3)°] while the O2-C2 group is twisted almost perpendicular to the attached ring [C6—C5—O2—C2 = 91.6 (2)°]. The bond lengths and angles agree with those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007).

The molecules are linked into a chain along the [001] by intermolecular N–H···O hydrogen bonds (Fig.2 and Table 1). The chains are cross-linked into a two-dimensional zigzag structure by C—H···O hydrogen bonds.

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental top

3,4,5-Trimethoxybenzaldehyde (1.96g, 0.01mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 94% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 472-474 K).

Refinement top

H atoms were positioned geometrically [N-H = 0.86 Å and C-H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methy groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate hydrogen bonds.
(E)-Methyl N'-(3,4,5-trimethoxybenzylidene)hydrazinecarboxylate top
Crystal data top
C12H16N2O5F(000) = 568
Mr = 268.27Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2394 reflections
a = 8.554 (3) Åθ = 1.8–25.0°
b = 22.705 (7) ŵ = 0.10 mm1
c = 7.813 (2) ÅT = 273 K
β = 116.15 (1)°Block, colourless
V = 1362.1 (7) Å30.27 × 0.25 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2394 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.965, Tmax = 0.968k = 2726
7173 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0696P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2394 reflectionsΔρmax = 0.18 e Å3
177 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C12H16N2O5V = 1362.1 (7) Å3
Mr = 268.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.554 (3) ŵ = 0.10 mm1
b = 22.705 (7) ÅT = 273 K
c = 7.813 (2) Å0.27 × 0.25 × 0.24 mm
β = 116.15 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2394 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1671 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.968Rint = 0.058
7173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2394 reflectionsΔρmin = 0.19 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1250 (2)0.29913 (8)0.4985 (2)0.0442 (5)
C70.5205 (3)0.07771 (8)0.7843 (3)0.0522 (5)
H70.47230.06070.66360.063*
C100.3534 (3)0.16740 (8)0.6404 (3)0.0493 (5)
H100.31710.15080.52010.059*
C90.4743 (2)0.13484 (8)0.8080 (2)0.0467 (5)
C60.6382 (3)0.04596 (8)0.9394 (3)0.0508 (5)
C80.5451 (3)0.16011 (9)0.9895 (2)0.0529 (5)
H80.51300.19801.00670.063*
C40.6637 (3)0.12845 (9)1.1436 (3)0.0526 (5)
C50.7116 (2)0.07116 (8)1.1194 (3)0.0499 (5)
C120.0302 (4)0.37985 (10)0.3123 (3)0.0850 (8)
H12A0.09840.38250.38200.127*
H12B0.10100.39000.18130.127*
H12C0.06660.40650.36620.127*
C30.6171 (3)0.03833 (9)0.7485 (3)0.0677 (6)
H3A0.49270.03900.70010.102*
H3B0.66000.07790.76090.102*
H3C0.64820.01690.66200.102*
C10.7014 (4)0.20690 (11)1.3617 (3)0.0986 (10)
H1A0.72530.23401.28180.148*
H1B0.77130.21691.49310.148*
H1C0.58040.20921.33350.148*
C21.0022 (3)0.04729 (13)1.3133 (4)0.0950 (9)
H2A1.01900.03321.20670.143*
H2B1.07520.02541.42530.143*
H2C1.03230.08831.33350.143*
O50.03345 (18)0.32059 (5)0.32345 (16)0.0574 (4)
O40.1466 (2)0.32391 (5)0.64414 (17)0.0632 (5)
O20.82545 (17)0.03987 (6)1.27554 (19)0.0608 (4)
O30.6917 (2)0.01046 (6)0.9293 (2)0.0670 (5)
O10.7416 (2)0.14863 (6)1.32715 (18)0.0745 (5)
N10.29649 (19)0.21810 (6)0.65536 (19)0.0442 (4)
N20.1871 (2)0.24529 (6)0.4883 (2)0.0492 (4)
H20.15880.22850.38010.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0513 (12)0.0478 (10)0.0312 (9)0.0013 (9)0.0160 (8)0.0003 (8)
C70.0572 (13)0.0525 (11)0.0440 (11)0.0038 (9)0.0198 (10)0.0014 (8)
C100.0541 (13)0.0511 (11)0.0382 (10)0.0028 (9)0.0162 (9)0.0023 (8)
C90.0474 (11)0.0509 (11)0.0403 (10)0.0040 (8)0.0180 (9)0.0054 (8)
C60.0510 (12)0.0468 (11)0.0576 (12)0.0075 (9)0.0268 (10)0.0085 (9)
C80.0588 (13)0.0498 (10)0.0445 (11)0.0071 (10)0.0178 (10)0.0048 (8)
C40.0564 (13)0.0591 (12)0.0382 (10)0.0032 (10)0.0171 (9)0.0068 (8)
C50.0466 (11)0.0554 (11)0.0478 (11)0.0073 (9)0.0211 (9)0.0165 (9)
C120.118 (2)0.0590 (14)0.0569 (14)0.0348 (14)0.0188 (14)0.0078 (10)
C30.0801 (17)0.0546 (12)0.0745 (16)0.0101 (11)0.0395 (13)0.0015 (10)
C10.134 (3)0.0820 (17)0.0484 (13)0.0263 (17)0.0111 (15)0.0086 (11)
C20.0506 (16)0.118 (2)0.101 (2)0.0070 (14)0.0191 (14)0.0537 (17)
O50.0733 (10)0.0556 (8)0.0359 (7)0.0213 (7)0.0174 (7)0.0050 (5)
O40.0951 (12)0.0523 (8)0.0379 (8)0.0124 (7)0.0253 (7)0.0012 (6)
O20.0523 (9)0.0694 (9)0.0573 (9)0.0100 (7)0.0211 (7)0.0266 (7)
O30.0761 (10)0.0544 (9)0.0661 (10)0.0191 (7)0.0275 (8)0.0098 (7)
O10.0913 (13)0.0709 (10)0.0415 (8)0.0192 (8)0.0111 (8)0.0042 (7)
N10.0497 (10)0.0482 (9)0.0317 (8)0.0036 (7)0.0152 (7)0.0034 (6)
N20.0616 (11)0.0501 (9)0.0296 (7)0.0133 (8)0.0145 (7)0.0004 (6)
Geometric parameters (Å, º) top
C11—O41.209 (2)C12—H12A0.96
C11—O51.333 (2)C12—H12B0.96
C11—N21.349 (2)C12—H12C0.96
C7—C61.388 (2)C3—O31.417 (2)
C7—C91.392 (3)C3—H3A0.96
C7—H70.93C3—H3B0.96
C10—N11.275 (2)C3—H3C0.96
C10—C91.462 (2)C1—O11.422 (3)
C10—H100.93C1—H1A0.96
C9—C81.396 (2)C1—H1B0.96
C6—O31.374 (2)C1—H1C0.96
C6—C51.386 (3)C2—O21.417 (3)
C8—C41.386 (2)C2—H2A0.96
C8—H80.93C2—H2B0.96
C4—O11.367 (2)C2—H2C0.96
C4—C51.401 (3)N1—N21.3723 (19)
C5—O21.376 (2)N2—H20.86
C12—O51.439 (2)
O4—C11—O5124.93 (17)H12A—C12—H12C109.5
O4—C11—N2125.21 (16)H12B—C12—H12C109.5
O5—C11—N2109.85 (14)O3—C3—H3A109.5
C6—C7—C9120.45 (17)O3—C3—H3B109.5
C6—C7—H7119.8H3A—C3—H3B109.5
C9—C7—H7119.8O3—C3—H3C109.5
N1—C10—C9121.47 (17)H3A—C3—H3C109.5
N1—C10—H10119.3H3B—C3—H3C109.5
C9—C10—H10119.3O1—C1—H1A109.5
C7—C9—C8119.77 (17)O1—C1—H1B109.5
C7—C9—C10118.81 (16)H1A—C1—H1B109.5
C8—C9—C10121.41 (17)O1—C1—H1C109.5
O3—C6—C5115.43 (16)H1A—C1—H1C109.5
O3—C6—C7124.47 (17)H1B—C1—H1C109.5
C5—C6—C7120.11 (17)O2—C2—H2A109.5
C4—C8—C9119.57 (18)O2—C2—H2B109.5
C4—C8—H8120.2H2A—C2—H2B109.5
C9—C8—H8120.2O2—C2—H2C109.5
O1—C4—C8124.72 (18)H2A—C2—H2C109.5
O1—C4—C5114.63 (16)H2B—C2—H2C109.5
C8—C4—C5120.65 (17)C11—O5—C12116.06 (14)
O2—C5—C6120.91 (17)C5—O2—C2113.36 (15)
O2—C5—C4119.61 (17)C6—O3—C3117.27 (15)
C6—C5—C4119.44 (16)C4—O1—C1117.67 (16)
O5—C12—H12A109.5C10—N1—N2116.53 (14)
O5—C12—H12B109.5C11—N2—N1118.23 (14)
H12A—C12—H12B109.5C11—N2—H2120.9
O5—C12—H12C109.5N1—N2—H2120.9
C6—C7—C9—C80.7 (3)C8—C4—C5—O2177.98 (18)
C6—C7—C9—C10178.45 (18)O1—C4—C5—C6178.96 (17)
N1—C10—C9—C7174.74 (18)C8—C4—C5—C60.5 (3)
N1—C10—C9—C86.1 (3)O4—C11—O5—C125.6 (3)
C9—C7—C6—O3179.79 (18)N2—C11—O5—C12175.51 (18)
C9—C7—C6—C50.5 (3)C6—C5—O2—C291.6 (2)
C7—C9—C8—C41.3 (3)C4—C5—O2—C291.0 (2)
C10—C9—C8—C4177.86 (18)C5—C6—O3—C3178.74 (18)
C9—C8—C4—O1179.89 (18)C7—C6—O3—C31.9 (3)
C9—C8—C4—C50.7 (3)C8—C4—O1—C11.7 (3)
O3—C6—C5—O22.1 (3)C5—C4—O1—C1178.9 (2)
C7—C6—C5—O2178.52 (17)C9—C10—N1—N2178.42 (17)
O3—C6—C5—C4179.53 (17)O4—C11—N2—N16.2 (3)
C7—C6—C5—C41.1 (3)O5—C11—N2—N1174.90 (15)
O1—C4—C5—O21.5 (3)C10—N1—N2—C11179.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.163.000 (2)166
C2—H2B···O2ii0.962.573.498 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+3.

Experimental details

Crystal data
Chemical formulaC12H16N2O5
Mr268.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)8.554 (3), 22.705 (7), 7.813 (2)
β (°) 116.15 (1)
V3)1362.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.965, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
7173, 2394, 1671
Rint0.058
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.04
No. of reflections2394
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.163.000 (2)166
C2—H2B···O2ii0.962.573.498 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+3.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds