metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1471-m1472

μ-α-Methyl­glutarato-bis­­{aqua­[bis­­(2-pyridylcarbon­yl)aminato]copper(II)} trihydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xiehongzhen@nbu.edu.cn

(Received 24 June 2008; accepted 23 October 2008; online 31 October 2008)

In the title compound, [Cu2(C12H8N3O2)2(C6H8O4)(H2O)2]·3H2O, both crystallographically independent Cu atoms are in similar distorted square-pyramidal coordination environments. The dinuclear complex mol­ecules are assembled into one-dimensional supra­molecular chains extending in the [100] direction by hydrogen bonds. Inter­chain hydrogen bonds further link these chains into layers perpendicular to [001].

Related literature

For general background, see: Kajiwara et al. (2002[Kajiwara, T., Sensui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299-307.]); Kamiyama et al. (2000[Kamiyama, A., Noguchi, T., Kajiwara, T. & Ito, T. (2000). Angew. Chem. Int. Ed. 39, 3130-3132.]); Kooijman et al. (2006[Kooijman, H., Tanase, S., Bouwman, E., Reedijk, J. & Spek, A. L. (2006). Acta Cryst. C62, m510-m512.]); Lescouezec et al. (2005[Lescouezec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Perez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691-2729.]); Ohkoshi & Hashimoto (1999[Ohkoshi, S. & Hashimoto, K. (1999). J. Am. Chem. Soc. 121, 10591-10597.]); Ohkoshi et al. (1998[Ohkoshi, S., Fujishiman, A. & Hashimoto, K. (1998). J. Am. Chem. Soc. 120, 5349-5350.]); Smolin & Rapoport (1959[Smolin, E. M. & Rapoport, L. (1959). s-Triazines and Derivatives, p. 163. New York: Interscience.]); Toma et al. (2005[Toma, L. M., Lescouezec, R., Cangussu, D., Llusar, R., Mata, J., Spey, S., Thomas, J. A., Lloret, F. & Julve, M. (2005). Inorg. Chem. Commun. 8, 382-385.]); Yamamoto et al. (1998[Yamamoto, H. M., Yamaura, J. & Kato, R. (1998). J. Am. Chem. Soc. 120, 5905-5913.]); Zheng et al. (2006[Zheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825-1834.]). For related structures, see: Wei et al. (2002[Wei, D. Y., Kong, Z. P. & Zheng, Y. Q. (2002). Polyhedron, 21, 1621-1628.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H8N3O2)2(C6H8O4)(H2O)2]·3H2O

  • Mr = 813.71

  • Orthorhombic, P b c n

  • a = 7.2712 (15) Å

  • b = 26.910 (5) Å

  • c = 34.207 (7) Å

  • V = 6693 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 (2) K

  • 0.31 × 0.28 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.502, Tmax = 0.547 (expected range = 0.720–0.785)

  • 55287 measured reflections

  • 7670 independent reflections

  • 5714 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 7670 reflections

  • 461 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5i 0.89 2.06 2.835 (4) 144
O3—H3B⋯O12i 0.82 1.94 2.740 (4) 164
O6—H6A⋯O8i 0.80 2.04 2.819 (4) 165
O6—H6B⋯O1ii 0.82 2.00 2.822 (4) 179
O11—H11A⋯O13 0.962 1.94 2.808 (4) 150
O11—H11B⋯O2iii 0.910 2.17 2.968 (4) 146
O11—H11B⋯O1iii 0.910 2.41 3.129 (4) 136
O12—H12A⋯O10iv 0.88 2.09 2.907 (4) 154
O12—H12B⋯O9v 0.88 2.10 2.935 (4) 159
O12—H12B⋯O10v 0.88 2.53 3.108 (4) 124
O13—H13B⋯O7vi 0.820 2.13 2.933 (4) 168
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chemistry of multi-metal-centered complexes attracted much attention because they often show interesting properties induced by direct and indirect MM interactions such as magnetism (Ohkoshi & Hashimoto, 1999), conductivity (Yamamoto et al., 1998) and photoactivity (Ohkoshi, et al., 1998). Generally, the utilization of multidentate O– and N-donor ligands is an effective strategy to construct this kind of complex molecules. Hence, bpca (bis(2-pyridylcarbonyl)aminato) ligand is often used to prepare polynuclear complexes, (Lescouezec et al., 2005; Kamiyama et al., 2000; Kooijman et al., 2006; Kajiwara et al., 2002). However, investigations of the combination of bpca and dicarboxylate anions to design polynuclear ligands is limited. A novel dinuclear complex [Cu2(C10H8N3O2)2(C6H8O4)(H2O)2].3H2O was conceived as described.

Tptz (2,4,6-Tripyridyl-1,3,5-triazine) will only hydrolyse in the presence of concentrated mineral acids and temperatures above 150°C (Smolin & Rapoport, 1959) or in the presence of Cu2+ ions under mild conditions (Toma et al., 2005). In absence of any acids reaction of tptz and Cu2+ produced [Cu(bpca)(tca)].2H2O (tca: 2-pyridinecarboxylate) (Zheng et al., 2006). In the title compound tptz undergoes hydrolysis in the presence of α-methylglutaric acid.

The title crystal structure contains solvate water molecules and the dinuclear [Cu2(C10H8N3O2)2(C6H8O4) (H2O)2] complex (Fig 1). Both Cu atoms within the complex appear in similar square pyramidal coordination environments with the three N atoms of a bis(2-pyridylcarbonyl)amine (bpca) ligand and one O atoms of the α-methylglutarato ligand situtated at basal corners and one O atoms from the aqua ligand at apical position with normal Cu—N and Cu—O bond lengths (Wei et al., 2002). The Cu—O bond 2.273 (2) Å and 2.272 (2) Å is slightly longer than that of basal ones which vary from 1.939 (2) Å to 2.015 (2) Å. Through intermolecular hydrogen bonds between the uncoordinated carboxylate O atoms and coordinated aqua ligand [O3—O5i = 2.835 (2) Å and O6—O8i = 2.819 (2) Å; symmetry code: (i) x + 1, y, z], respectively, the dinuclear complex molecules [Cu2(C10H8N3O2)2(C6H8O4)(H2O)2] are assembled into infinite chains extending in the [100] directions. The resulting chains are further interlinked into two-dimensional layers, perpendicular to the [001] direction, by interchain hydrogen bonds between the O1 of a bpca ligand and O6 of an aqua ligand (Fig. 2). The two-dimensional layers are stacked parallel and the solvate water molecules are sandwiched between them. Extensive hydrogen bonding exist between the included water molecules and the carbonyl O atoms of α-methylglutarato ligands or between the carboxylate O atoms of the α-methylglutarato ligand (Table 1).

Related literature top

For general background, see: Kajiwara et al. (2002); Kamiyama et al. (2000); Kooijman et al. (2006); Lescouezec et al. (2005); Ohkoshi & Hashimoto (1999); Ohkoshi et al. (1998); Smolin & Rapoport (1959); Toma et al. (2005); Yamamoto et al. (1998); Zheng et al. (2006). For related structures, see: Wei et al. (2002).

Experimental top

Addition of 2.0 ml (1.0 M) NaOH to a stirred aqueous solution of CuCl2.2H2O (0.172 g, 1.0 mmol) yielded a blue precipitate. After centrifugation, the blue precipitate was subsequently added to a strirred solution of tptz (0.312 g, 1.0 mmol) and α-methylglutaric acid (0.146 g, 1.0 mmol) in 20 ml CH3OH–H2O (1:1 v/v). The resulting blue solution (pH = 6.13) was kept at room temperature and slow solvent evaporation afforded blue crystals (yield: 45% based on the initial CuCl2.2H2O input).

Refinement top

H atoms bonded to C atoms were placed in geometrically calulated positons and refined using a riding moldel, with Uiso(H) = 1.2Ueq(C). Water H atoms were found in difference Fourier synthesis and refined with th O—H distances fixed as initially found, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title complex with displacement ellipsoids drawn at the 45% probability level, H atoms omitted for visibility.
[Figure 2] Fig. 2. Two-dimensional supramolecular layer in the crystal perpendicular to the [001]direction with H-atoms omitted, broken lines indicate H-bridges.
µ-α-Methylglutarato-bis{aqua[bis(2-pyridylcarbonyl)aminato]copper(II)} trihydrate top
Crystal data top
[Cu2(C12H8N3O2)2(C6H8O4)(H2O)2]·3H2OF(000) = 3344
Mr = 813.71Dx = 1.615 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 37378 reflections
a = 7.2712 (15) Åθ = 3.0–27.5°
b = 26.910 (5) ŵ = 1.35 mm1
c = 34.207 (7) ÅT = 293 K
V = 6693 (2) Å3Prism, blue
Z = 80.31 × 0.28 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7670 independent reflections
Radiation source: fine-focus sealed tube5714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3434
Tmin = 0.502, Tmax = 0.547l = 3744
55287 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0539P)2 + 2.9935P]
where P = (Fo2 + 2Fc2)/3
7670 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu2(C12H8N3O2)2(C6H8O4)(H2O)2]·3H2OV = 6693 (2) Å3
Mr = 813.71Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 7.2712 (15) ŵ = 1.35 mm1
b = 26.910 (5) ÅT = 293 K
c = 34.207 (7) Å0.31 × 0.28 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7670 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5714 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.547Rint = 0.045
55287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
7670 reflectionsΔρmin = 0.26 e Å3
461 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54934 (4)0.175121 (11)0.399089 (8)0.03535 (9)
Cu20.53997 (4)0.428788 (12)0.359585 (9)0.03870 (10)
N10.6355 (3)0.39906 (8)0.30992 (6)0.0419 (5)
N20.5980 (3)0.49025 (8)0.33255 (6)0.0419 (5)
N30.4645 (3)0.47635 (8)0.40161 (6)0.0407 (5)
N40.6124 (3)0.22696 (8)0.43940 (6)0.0390 (5)
N50.5884 (3)0.13085 (8)0.44302 (6)0.0406 (5)
N60.4822 (3)0.11127 (8)0.37233 (6)0.0373 (5)
O10.6058 (3)0.57559 (7)0.34103 (6)0.0569 (5)
O20.7173 (4)0.51996 (9)0.27399 (6)0.0710 (7)
O30.8095 (3)0.40705 (9)0.38851 (6)0.0580 (5)
H3A0.90770.39110.37920.070*
H3B0.81480.41940.41040.070*
O40.4229 (2)0.36961 (7)0.38088 (6)0.0455 (4)
O50.1669 (3)0.40030 (7)0.35585 (6)0.0520 (5)
O60.8389 (3)0.17044 (8)0.37424 (7)0.0631 (6)
H6A0.93440.18040.38300.076*
H6B0.85440.14310.36420.076*
O70.4551 (2)0.22091 (7)0.35979 (5)0.0422 (4)
O80.1987 (3)0.20334 (8)0.39062 (6)0.0545 (5)
O90.6702 (4)0.13072 (8)0.50887 (6)0.0742 (7)
O100.6010 (3)0.04711 (7)0.45907 (6)0.0548 (5)
O110.1837 (5)0.12871 (10)0.26137 (10)0.1035 (10)
H11B0.18640.10000.27540.124*
H11A0.24080.16080.25880.124*
O120.1091 (4)0.43917 (9)0.46254 (6)0.0694 (6)
H12A0.07010.47020.46360.083*
H12B0.01900.42450.47530.083*
O130.3775 (4)0.21512 (10)0.28183 (7)0.0788 (7)
H13A0.48030.21030.27120.095*
H13B0.40910.21860.30470.095*
C10.6535 (4)0.35111 (11)0.30126 (9)0.0494 (7)
H10.61770.32760.31970.059*
C20.7233 (4)0.33506 (13)0.26606 (9)0.0587 (8)
H20.73390.30130.26060.070*
C30.7770 (5)0.37017 (14)0.23906 (9)0.0634 (9)
H30.82450.36030.21500.076*
C40.7601 (4)0.41966 (13)0.24782 (8)0.0560 (8)
H40.79560.44370.22980.067*
C50.6896 (4)0.43331 (11)0.28384 (7)0.0427 (6)
C60.6701 (4)0.48686 (11)0.29562 (8)0.0461 (6)
C70.5733 (3)0.53352 (10)0.35210 (8)0.0424 (6)
C80.4951 (3)0.52436 (10)0.39251 (8)0.0405 (6)
C90.4558 (4)0.56223 (12)0.41808 (9)0.0536 (7)
H90.47850.59510.41130.064*
C100.3814 (5)0.55019 (13)0.45422 (9)0.0592 (8)
H100.35330.57510.47210.071*
C110.3496 (4)0.50144 (13)0.46335 (8)0.0569 (8)
H110.29970.49280.48750.068*
C120.3924 (4)0.46541 (12)0.43645 (8)0.0498 (7)
H120.37050.43230.44270.060*
C130.2503 (4)0.36850 (9)0.37466 (7)0.0383 (6)
C140.1458 (4)0.32513 (10)0.39196 (8)0.0464 (6)
H14A0.05440.33760.41010.056*
H14B0.23050.30430.40650.056*
C150.0508 (4)0.29403 (10)0.36086 (9)0.0495 (7)
H15A0.03780.27220.37330.059*
H15B0.01550.31580.34320.059*
C160.1865 (4)0.26321 (11)0.33775 (8)0.0454 (6)
H160.27910.28550.32660.054*
C170.2841 (4)0.22620 (10)0.36493 (7)0.0401 (6)
C180.0964 (5)0.23415 (14)0.30441 (10)0.0677 (9)
H18A0.18900.21610.29030.081*
H18B0.03550.25680.28700.081*
H18C0.00830.21120.31500.081*
C190.6176 (4)0.27655 (10)0.43521 (8)0.0469 (6)
H190.59750.29020.41060.056*
C200.6518 (5)0.30785 (11)0.46620 (10)0.0591 (8)
H200.65510.34210.46250.071*
C210.6809 (5)0.28799 (12)0.50268 (9)0.0613 (8)
H210.70080.30850.52410.074*
C220.6800 (4)0.23712 (12)0.50692 (8)0.0546 (7)
H220.70250.22290.53120.065*
C230.6456 (4)0.20759 (10)0.47502 (7)0.0428 (6)
C240.6377 (4)0.15139 (10)0.47802 (8)0.0459 (6)
C250.5724 (3)0.08108 (10)0.43633 (8)0.0392 (6)
C260.5099 (3)0.07091 (9)0.39491 (7)0.0362 (5)
C270.4783 (4)0.02377 (10)0.38124 (8)0.0446 (6)
H270.49760.00360.39730.054*
C280.4175 (4)0.01755 (11)0.34332 (9)0.0503 (7)
H280.39700.01420.33340.060*
C290.3879 (4)0.05820 (11)0.32057 (9)0.0518 (7)
H290.34500.05470.29510.062*
C300.4223 (4)0.10465 (10)0.33579 (8)0.0460 (6)
H300.40320.13240.32010.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04081 (18)0.03272 (16)0.03252 (16)0.00093 (12)0.00488 (13)0.00500 (12)
Cu20.03813 (18)0.03853 (18)0.03945 (17)0.00216 (13)0.00413 (13)0.00180 (13)
N10.0352 (11)0.0474 (13)0.0429 (12)0.0011 (10)0.0028 (9)0.0040 (10)
N20.0423 (12)0.0409 (12)0.0424 (11)0.0042 (10)0.0038 (10)0.0018 (10)
N30.0343 (11)0.0438 (12)0.0441 (12)0.0003 (9)0.0023 (9)0.0013 (10)
N40.0388 (11)0.0392 (11)0.0390 (11)0.0006 (9)0.0043 (9)0.0026 (9)
N50.0498 (13)0.0361 (11)0.0358 (11)0.0021 (9)0.0064 (10)0.0069 (9)
N60.0378 (11)0.0363 (11)0.0378 (11)0.0002 (9)0.0003 (9)0.0045 (9)
O10.0696 (14)0.0403 (11)0.0607 (12)0.0068 (10)0.0064 (11)0.0039 (9)
O20.0964 (18)0.0621 (14)0.0544 (12)0.0039 (13)0.0194 (13)0.0150 (11)
O30.0429 (11)0.0751 (14)0.0562 (12)0.0099 (10)0.0059 (9)0.0121 (11)
O40.0365 (10)0.0407 (10)0.0594 (12)0.0002 (8)0.0034 (9)0.0073 (9)
O50.0456 (11)0.0405 (10)0.0699 (13)0.0011 (9)0.0042 (10)0.0123 (9)
O60.0454 (12)0.0494 (12)0.0944 (17)0.0048 (9)0.0140 (12)0.0135 (11)
O70.0443 (10)0.0427 (10)0.0395 (9)0.0084 (8)0.0055 (8)0.0053 (8)
O80.0469 (11)0.0563 (12)0.0601 (12)0.0039 (10)0.0005 (10)0.0112 (10)
O90.120 (2)0.0585 (13)0.0436 (11)0.0118 (14)0.0271 (13)0.0149 (10)
O100.0743 (14)0.0414 (11)0.0487 (11)0.0025 (10)0.0117 (10)0.0150 (9)
O110.128 (3)0.0629 (17)0.120 (2)0.0112 (17)0.010 (2)0.0282 (16)
O120.0928 (18)0.0621 (14)0.0531 (12)0.0024 (13)0.0098 (12)0.0001 (11)
O130.0754 (16)0.100 (2)0.0607 (14)0.0013 (15)0.0081 (12)0.0096 (14)
C10.0420 (15)0.0497 (16)0.0565 (16)0.0013 (13)0.0056 (13)0.0061 (13)
C20.0512 (17)0.063 (2)0.0615 (19)0.0038 (15)0.0064 (15)0.0207 (16)
C30.0538 (18)0.086 (3)0.0502 (17)0.0043 (17)0.0012 (15)0.0222 (17)
C40.0498 (16)0.080 (2)0.0383 (14)0.0017 (16)0.0020 (13)0.0009 (15)
C50.0353 (13)0.0568 (16)0.0360 (12)0.0018 (12)0.0035 (11)0.0009 (12)
C60.0408 (14)0.0555 (17)0.0421 (14)0.0031 (12)0.0004 (12)0.0079 (13)
C70.0344 (13)0.0439 (15)0.0489 (15)0.0047 (11)0.0003 (11)0.0006 (12)
C80.0312 (12)0.0464 (15)0.0440 (14)0.0023 (11)0.0009 (10)0.0019 (12)
C90.0493 (17)0.0514 (17)0.0601 (18)0.0007 (13)0.0030 (14)0.0114 (14)
C100.0567 (18)0.068 (2)0.0533 (17)0.0021 (16)0.0031 (15)0.0180 (16)
C110.0513 (17)0.079 (2)0.0404 (14)0.0042 (16)0.0073 (13)0.0023 (15)
C120.0474 (15)0.0566 (17)0.0455 (15)0.0016 (13)0.0048 (13)0.0056 (13)
C130.0440 (14)0.0319 (13)0.0388 (13)0.0017 (11)0.0061 (11)0.0013 (10)
C140.0473 (15)0.0421 (15)0.0496 (15)0.0018 (12)0.0071 (13)0.0056 (12)
C150.0400 (15)0.0373 (14)0.071 (2)0.0006 (12)0.0042 (14)0.0079 (13)
C160.0416 (14)0.0508 (16)0.0438 (14)0.0005 (12)0.0076 (12)0.0048 (12)
C170.0474 (15)0.0376 (13)0.0354 (12)0.0008 (12)0.0051 (12)0.0009 (11)
C180.075 (2)0.076 (2)0.0524 (18)0.0053 (19)0.0135 (17)0.0037 (17)
C190.0488 (15)0.0430 (15)0.0490 (15)0.0003 (12)0.0070 (13)0.0048 (12)
C200.066 (2)0.0412 (16)0.070 (2)0.0052 (14)0.0114 (17)0.0046 (14)
C210.071 (2)0.0567 (19)0.0564 (18)0.0087 (16)0.0156 (16)0.0119 (15)
C220.0607 (19)0.0628 (19)0.0402 (14)0.0070 (15)0.0134 (14)0.0012 (13)
C230.0436 (15)0.0456 (15)0.0391 (13)0.0039 (12)0.0060 (11)0.0033 (11)
C240.0533 (16)0.0468 (15)0.0377 (13)0.0045 (13)0.0078 (12)0.0079 (12)
C250.0361 (13)0.0393 (13)0.0421 (13)0.0007 (10)0.0002 (11)0.0078 (11)
C260.0307 (12)0.0380 (13)0.0400 (13)0.0010 (10)0.0047 (10)0.0047 (11)
C270.0493 (15)0.0344 (13)0.0502 (15)0.0023 (12)0.0051 (13)0.0052 (12)
C280.0556 (17)0.0411 (15)0.0541 (16)0.0073 (13)0.0039 (14)0.0068 (13)
C290.0605 (18)0.0534 (17)0.0417 (14)0.0065 (14)0.0039 (14)0.0052 (13)
C300.0586 (17)0.0401 (14)0.0392 (14)0.0010 (13)0.0059 (12)0.0041 (12)
Geometric parameters (Å, º) top
Cu1—N51.939 (2)C3—H30.9300
Cu1—O71.9479 (17)C4—C51.384 (4)
Cu1—N62.007 (2)C4—H40.9300
Cu1—N42.014 (2)C5—C61.503 (4)
Cu1—O62.274 (2)C7—C81.515 (4)
Cu2—N21.941 (2)C8—C91.373 (4)
Cu2—O41.9470 (19)C9—C101.388 (4)
Cu2—N32.001 (2)C9—H90.9300
Cu2—N12.002 (2)C10—C111.368 (5)
Cu2—O32.272 (2)C10—H100.9300
N1—C11.330 (4)C11—C121.373 (4)
N1—C51.342 (3)C11—H110.9300
N2—C71.355 (3)C12—H120.9300
N2—C61.371 (3)C13—C141.513 (4)
N3—C121.335 (3)C14—C151.520 (4)
N3—C81.347 (4)C14—H14A0.9700
N4—C191.342 (3)C14—H14B0.9700
N4—C231.347 (3)C15—C161.512 (4)
N5—C251.364 (3)C15—H15A0.9700
N5—C241.366 (3)C15—H15B0.9700
N6—C301.336 (3)C16—C181.530 (4)
N6—C261.348 (3)C16—C171.536 (4)
O1—C71.217 (3)C16—H160.9800
O2—C61.208 (3)C18—H18A0.9600
O3—H3A0.8924C18—H18B0.9600
O3—H3B0.8203C18—H18C0.9600
O4—C131.274 (3)C19—C201.376 (4)
O5—C131.230 (3)C19—H190.9300
O6—H6A0.8019C20—C211.374 (4)
O6—H6B0.8200C20—H200.9300
O7—C171.264 (3)C21—C221.377 (4)
O8—C171.239 (3)C21—H210.9300
O9—C241.216 (3)C22—C231.373 (4)
O10—C251.218 (3)C22—H220.9300
O11—H11B0.9101C23—C241.517 (4)
O11—H11A0.9623C25—C261.513 (4)
O12—H12A0.8813C26—C271.371 (4)
O12—H12B0.8800C27—C281.380 (4)
O13—H13A0.8412C27—H270.9300
O13—H13B0.8222C28—C291.360 (4)
C1—C21.376 (4)C28—H280.9300
C1—H10.9300C29—C301.377 (4)
C2—C31.378 (5)C29—H290.9300
C2—H20.9300C30—H300.9300
C3—C41.370 (5)
N5—Cu1—O7167.20 (9)C11—C10—C9119.5 (3)
N5—Cu1—N682.13 (9)C11—C10—H10120.2
O7—Cu1—N698.13 (8)C9—C10—H10120.2
N5—Cu1—N482.04 (9)C10—C11—C12119.1 (3)
O7—Cu1—N496.56 (8)C10—C11—H11120.5
N6—Cu1—N4163.82 (8)C12—C11—H11120.5
N5—Cu1—O696.91 (9)N3—C12—C11122.1 (3)
O7—Cu1—O695.88 (8)N3—C12—H12118.9
N6—Cu1—O690.41 (8)C11—C12—H12118.9
N4—Cu1—O694.80 (8)O5—C13—O4123.8 (2)
N2—Cu2—O4165.95 (9)O5—C13—C14119.6 (2)
N2—Cu2—N381.77 (9)O4—C13—C14116.6 (2)
O4—Cu2—N397.74 (9)C13—C14—C15112.3 (2)
N2—Cu2—N182.00 (9)C13—C14—H14A109.1
O4—Cu2—N198.17 (9)C15—C14—H14A109.1
N3—Cu2—N1163.76 (9)C13—C14—H14B109.1
N2—Cu2—O3103.84 (9)C15—C14—H14B109.1
O4—Cu2—O390.20 (8)H14A—C14—H14B107.9
N3—Cu2—O395.07 (8)C16—C15—C14111.8 (2)
N1—Cu2—O388.13 (8)C16—C15—H15A109.3
C1—N1—C5119.3 (2)C14—C15—H15A109.3
C1—N1—Cu2127.6 (2)C16—C15—H15B109.3
C5—N1—Cu2113.05 (18)C14—C15—H15B109.3
C7—N2—C6124.2 (2)H15A—C15—H15B107.9
C7—N2—Cu2117.93 (17)C15—C16—C18113.0 (3)
C6—N2—Cu2117.74 (18)C15—C16—C17109.9 (2)
C12—N3—C8118.8 (2)C18—C16—C17108.5 (2)
C12—N3—Cu2127.4 (2)C15—C16—H16108.4
C8—N3—Cu2113.71 (17)C18—C16—H16108.4
C19—N4—C23118.4 (2)C17—C16—H16108.4
C19—N4—Cu1128.44 (18)O8—C17—O7122.4 (2)
C23—N4—Cu1113.08 (17)O8—C17—C16121.3 (2)
C25—N5—C24124.5 (2)O7—C17—C16116.3 (2)
C25—N5—Cu1117.44 (17)C16—C18—H18A109.5
C24—N5—Cu1117.98 (17)C16—C18—H18B109.5
C30—N6—C26118.5 (2)H18A—C18—H18B109.5
C30—N6—Cu1128.33 (18)C16—C18—H18C109.5
C26—N6—Cu1113.10 (17)H18A—C18—H18C109.5
Cu2—O3—H3A131.2H18B—C18—H18C109.5
Cu2—O3—H3B109.5N4—C19—C20122.1 (3)
H3A—O3—H3B118.9N4—C19—H19119.0
C13—O4—Cu2112.80 (16)C20—C19—H19119.0
Cu1—O6—H6A130.1C21—C20—C19119.3 (3)
Cu1—O6—H6B109.5C21—C20—H20120.4
H6A—O6—H6B109.6C19—C20—H20120.4
C17—O7—Cu1108.74 (16)C20—C21—C22118.8 (3)
H11B—O11—H11A143.2C20—C21—H21120.6
H12A—O12—H12B99.4C22—C21—H21120.6
H13A—O13—H13B100.4C23—C22—C21119.5 (3)
N1—C1—C2122.4 (3)C23—C22—H22120.2
N1—C1—H1118.8C21—C22—H22120.2
C2—C1—H1118.8N4—C23—C22121.9 (3)
C1—C2—C3118.4 (3)N4—C23—C24116.1 (2)
C1—C2—H2120.8C22—C23—C24122.0 (2)
C3—C2—H2120.8O9—C24—N5128.8 (3)
C4—C3—C2119.6 (3)O9—C24—C23120.5 (3)
C4—C3—H3120.2N5—C24—C23110.7 (2)
C2—C3—H3120.2O10—C25—N5128.0 (3)
C3—C4—C5119.0 (3)O10—C25—C26120.9 (2)
C3—C4—H4120.5N5—C25—C26111.1 (2)
C5—C4—H4120.5N6—C26—C27121.7 (2)
N1—C5—C4121.2 (3)N6—C26—C25115.8 (2)
N1—C5—C6116.9 (2)C27—C26—C25122.5 (2)
C4—C5—C6121.9 (3)C26—C27—C28119.1 (3)
O2—C6—N2128.6 (3)C26—C27—H27120.5
O2—C6—C5121.1 (3)C28—C27—H27120.5
N2—C6—C5110.3 (2)C29—C28—C27119.4 (3)
O1—C7—N2128.3 (3)C29—C28—H28120.3
O1—C7—C8120.5 (3)C27—C28—H28120.3
N2—C7—C8111.1 (2)C28—C29—C30119.0 (3)
N3—C8—C9122.0 (3)C28—C29—H29120.5
N3—C8—C7115.4 (2)C30—C29—H29120.5
C9—C8—C7122.6 (3)N6—C30—C29122.3 (3)
C8—C9—C10118.4 (3)N6—C30—H30118.9
C8—C9—H9120.8C29—C30—H30118.9
C10—C9—H9120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5i0.892.062.835 (4)144
O3—H3B···O12i0.821.942.740 (4)164
O6—H6A···O8i0.802.042.819 (4)165
O6—H6B···O1ii0.822.002.822 (4)179
O11—H11A···O130.9621.942.808 (4)150
O11—H11B···O2iii0.9102.172.968 (4)146
O11—H11B···O1iii0.9102.413.129 (4)136
O12—H12A···O10iv0.882.092.907 (4)154
O12—H12B···O9v0.882.102.935 (4)159
O12—H12B···O10v0.882.533.108 (4)124
O13—H13B···O7vi0.8202.132.933 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H8N3O2)2(C6H8O4)(H2O)2]·3H2O
Mr813.71
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)7.2712 (15), 26.910 (5), 34.207 (7)
V3)6693 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.31 × 0.28 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.502, 0.547
No. of measured, independent and
observed [I > 2σ(I)] reflections
55287, 7670, 5714
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections7670
No. of parameters461
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5i0.8922.062.835 (4)144
O3—H3B···O12i0.8201.942.740 (4)164
O6—H6A···O8i0.8022.042.819 (4)165
O6—H6B···O1ii0.8202.002.822 (4)179
O11—H11A···O130.9621.942.808 (4)150
O11—H11B···O2iii0.9102.172.968 (4)146
O11—H11B···O1iii0.9102.413.129 (4)136
O12—H12A···O10iv0.8812.092.907 (4)154
O12—H12B···O9v0.8802.102.935 (4)159
O12—H12B···O10v0.8802.533.108 (4)124
O13—H13B···O7vi0.8202.132.933 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1, y, z.
 

Acknowledgements

The project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061) and the Ningbo University Foundation (008–460452 and 008–460453), and sponsored by the K. C. Wong Magna Fund of Ningbo University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKajiwara, T., Sensui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationKamiyama, A., Noguchi, T., Kajiwara, T. & Ito, T. (2000). Angew. Chem. Int. Ed. 39, 3130–3132.  Web of Science CrossRef CAS Google Scholar
First citationKooijman, H., Tanase, S., Bouwman, E., Reedijk, J. & Spek, A. L. (2006). Acta Cryst. C62, m510–m512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLescouezec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Perez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691–2729.  Web of Science CrossRef CAS Google Scholar
First citationOhkoshi, S., Fujishiman, A. & Hashimoto, K. (1998). J. Am. Chem. Soc. 120, 5349–5350.  Web of Science CrossRef CAS Google Scholar
First citationOhkoshi, S. & Hashimoto, K. (1999). J. Am. Chem. Soc. 121, 10591–10597.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmolin, E. M. & Rapoport, L. (1959). s-Triazines and Derivatives, p. 163. New York: Interscience.  Google Scholar
First citationToma, L. M., Lescouezec, R., Cangussu, D., Llusar, R., Mata, J., Spey, S., Thomas, J. A., Lloret, F. & Julve, M. (2005). Inorg. Chem. Commun. 8, 382–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, D. Y., Kong, Z. P. & Zheng, Y. Q. (2002). Polyhedron, 21, 1621–1628.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamamoto, H. M., Yamaura, J. & Kato, R. (1998). J. Am. Chem. Soc. 120, 5905–5913.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825–1834.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1471-m1472
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds