organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N-Dimethyl-N-propylpropan-1aminium chloride monohydrate

Minna Kärnä, Manu Lahtinen* and Jussi Valkonen

University of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 JY, Finland Correspondence e-mail: manu.lahtinen@ivu.fi

Received 1 October 2008; accepted 7 October 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 15.9.

The title compound, $C_8H_{20}N^+ \cdot Cl^- \cdot H_2O$, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water molecules, which interact via $O-H\cdots Cl$ hydrogen bonds $[O\cdots Cl = 3.285 (3)]$ and 3.239 (3) Å] to form helical chains. The cations are involved in weak intermolecular $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

Related literature

For general background, see: Ropponen et al. (2004). For related structures, see: Busi et al. (2005).

Experimental

Crystal data

 $C_8H_{20}N^+ \cdot Cl^- \cdot H_2O$ $M_r = 183.72$ Monoclinic, $P2_1/n$ a = 7.9870 (16) Åb = 9.4210 (19) Åc = 14.875 (3) Å $\beta = 100.23 \ (3)^{\circ}$

V = 1101.5 (4) Å ³	
Z = 4	
Cu Ka radiation	
$\mu = 2.71 \text{ mm}^{-1}$	
T = 173 (2) K	
$0.40 \times 0.12 \times 0.12$ m	ım

Data collection

Nonius Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.534, T_{\max} = 0.737$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.108$	independent and constrained
S = 1.04	refinement
1784 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
112 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

6471 measured reflections

 $R_{\rm int} = 0.056$

1784 independent reflections

1474 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W - H1W \cdots Cl1$	0.79 (4)	2.47 (4)	3.239 (3)	164 (3)
$O1W^{i} - H2W^{i} \cdots Cl1$	0.84 (4)	2.46 (4)	3.285 (3)	172 (4)
$C31^{ii} - H5B^{ii} \cdots O1W$	0.98	2.54	3.489 (4)	162
$C21^{ii}$ – $H4A^{ii}$ · · · $Cl1$	0.99	2.76	3.742 (2)	172
$C41^{iii} - H7A^{iii} \cdots Cl1$	0.98	2.80	3.721 (3)	156
$C41 - H7C \cdots Cl1$	0.98	2.76	3.691 (3)	158

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Inorganic Materials Chemistry Graduate Program for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2460).

References

- Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C.,
- Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. Busi, S., Lahtinen, M., Mansikkamäki, H., Valkonen, J. & Rissanen, K. (2005).
- J. Solid State Chem. 178, 1722-1737.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Ropponen, J., Lahtinen, M., Busi, S., Nissinen, M., Kolehmainen, E. & Rissanen, K. (2004). New J. Chem. 28, 1426-1430.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2100 [doi:10.1107/S1600536808032340]

N,N-Dimethyl-N-propylpropan-1-aminium chloride monohydrate

Minna Kärnä, Manu Lahtinen and Jussi Valkonen

S1. Comment

As a part of our ongoing study of small $R_2 R'_2 N^+ X$ -type quaternary ammonium halides (Ropponen *et al.*, 2004; Busi *et al.*, 2005) the title compound (Fig. 1) has been synthesized and its crystal structure is reported here.

The asymmetric unit consists of one cation and one anion with one water molecule. The intermolecular (O)H···Cl distances vary from 2.456 (41) to 2.477 (40) Å. The shortest intermolecular (C)H···Cl distance is 2.779 (1) Å and the shortest (C)H···O distance is 2.561 (3) Å. The packing is affected by these weak intermolecular bonds (Table 1) causing the cations to arrange in layers which are separated by anions and the water molecules. The anions and the water molecules form a hydrogen-bonded chain along the crystallographic *b*-axis.

S2. Experimental

The mixture of 1-bromopropane (95.2 mmol) and dimethylformamide (0.47 mol) in the presence of potassiumcarbonate (95.2 mmol) was stirred at 70°C for 72 h. The reaction mixture was cooled and filtered and the filtrate was evaporated. The product (white powder) was washed with diethyl ether and recrystallized from dichloromethane and dried *in vacuo*. The anion exhange was performed in a suitable resin, resulting in a light yellow, hygroscopic final product.

S3. Refinement

The water H atoms were located from the difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.98-0.99 Å and with Uiso~(H) = 1.2 (1.5 for methyl groups) times U~eq~(C).

Figure 1

The molecular structure of (1) showing the atomic numbering and 50% probability displacement ellipsoids.

Figure 2

The packing of (1) viewed along the crystallographic *b*-axis. Dashed lines indicate hydrogen bonds. The helical structure of the network between the anions and the water molecules can be seen. The H atoms not involved in the network have been omitted for clarity, as well as some of the cations.

N,N-Dimethyl-N-propylpropan-1-aminium chloride monohydrate

Crystal data	
$C_8H_{20}N^+ \cdot Cl^- \cdot H_2O$	F(000) = 408
$M_r = 183.72$	$D_{\rm x} = 1.108 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/n$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
a = 7.9870 (16) Å	Cell parameters from 1705 reflections
b = 9.4210 (19) Å	$\theta = 0.9 - 63.7^{\circ}$
c = 14.875 (3) Å	$\mu = 2.71 \text{ mm}^{-1}$
$\beta = 100.23 \ (3)^{\circ}$	T = 173 K
V = 1101.5 (4) Å ³	Rod, colourless
Z = 4	$0.40 \times 0.12 \times 0.12$ mm

Data collection

Nomus Rappa AFEXI04diffractometer17Radiation source: fine-focus sealed tube14Graphite monochromator R_{ii} φ and ω scans θ_{rr} Absorption correction: multi-scan $h =$ $(SADABS; Sheldrick, 2004)$ $k =$ $T_{min} = 0.534, T_{max} = 0.737$ $l =$ Padinament	784 independent reflections 474 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 63.4^\circ, \ \theta_{min} = 5.6^\circ$ $a = -7 \rightarrow 9$ $c = -10 \rightarrow 10$ $= -17 \rightarrow 16$
Refinement on F^2 SetLeast-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.108$ H_2 $S = 1.04$ H 1784 reflections H_2 112 parameters w 0 restraints W Primary atom site location: structure-invariant (Δt)	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $v = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.2799P]$ where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{max} < 0.001$ $v_{0} = 0.20 \text{ s} h^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.33660 (7)	-0.05079 (6)	0.66252 (4)	0.0363 (2)	
0.7874 (2)	0.10789 (19)	0.61585 (11)	0.0244 (4)	
0.0649 (3)	-0.2974 (3)	0.68554 (19)	0.0673 (7)	
0.9430 (2)	0.1617 (2)	0.58112 (14)	0.0272 (5)	
1.0416	0.1023	0.6077	0.033*	
0.9243	0.1489	0.5140	0.033*	
0.7647 (3)	-0.0457 (2)	0.59034 (16)	0.0311 (5)	
0.6659	-0.0836	0.6131	0.047*	
0.8668	-0.0987	0.6175	0.047*	
0.7466	-0.0551	0.5237	0.047*	
0.9427 (3)	0.0851 (3)	0.87601 (15)	0.0366 (6)	
0.9657	0.1866	0.8863	0.055*	
1.0303	0.0295	0.9153	0.055*	
0.8308	0.0622	0.8905	0.055*	
0.6317 (3)	0.1857 (3)	0.56898 (16)	0.0333 (5)	
	x 0.33660 (7) 0.7874 (2) 0.0649 (3) 0.9430 (2) 1.0416 0.9243 0.7647 (3) 0.6659 0.8668 0.7466 0.9427 (3) 0.9657 1.0303 0.8308 0.6317 (3)	xy $0.33660(7)$ $-0.05079(6)$ $0.7874(2)$ $0.10789(19)$ $0.0649(3)$ $-0.2974(3)$ $0.9430(2)$ $0.1617(2)$ 1.0416 0.1023 0.9243 0.1489 $0.7647(3)$ $-0.0457(2)$ 0.6659 -0.0836 0.8668 -0.0987 0.7466 -0.0551 $0.9427(3)$ $0.0851(3)$ 0.9657 0.1866 1.0303 0.0295 0.8308 0.0622 $0.6317(3)$ $0.1857(3)$	xyz $0.33660(7)$ $-0.05079(6)$ $0.66252(4)$ $0.7874(2)$ $0.10789(19)$ $0.61585(11)$ $0.0649(3)$ $-0.2974(3)$ $0.68554(19)$ $0.9430(2)$ $0.1617(2)$ $0.58112(14)$ 1.0416 0.1023 0.6077 0.9243 0.1489 0.5140 $0.7647(3)$ $-0.0457(2)$ $0.59034(16)$ 0.6659 -0.0987 0.6175 0.7466 -0.0551 0.5237 $0.9427(3)$ $0.0851(3)$ $0.87601(15)$ 0.9657 0.1866 0.8863 1.0303 0.0295 0.9153 0.8308 0.0622 0.8905 $0.6317(3)$ $0.1857(3)$ $0.56898(16)$	xyz $U_{150}*/U_{eq}$ 0.33660 (7)-0.05079 (6)0.66252 (4)0.0363 (2)0.7874 (2)0.10789 (19)0.61585 (11)0.0244 (4)0.0649 (3)-0.2974 (3)0.68554 (19)0.0673 (7)0.9430 (2)0.1617 (2)0.58112 (14)0.0272 (5)1.04160.10230.60770.033*0.92430.14890.51400.033*0.7647 (3)-0.0457 (2)0.59034 (16)0.0311 (5)0.6659-0.08360.61310.047*0.8668-0.09870.61750.047*0.7466-0.05510.52370.047*0.9427 (3)0.0851 (3)0.87601 (15)0.0366 (6)0.96570.18660.88630.055*1.03030.02950.91530.055*0.83080.06220.89050.055*0.6317 (3)0.1857 (3)0.56898 (16)0.0333 (5)

H7A	0.6236	0.1783	0.5026	0.050*	
H7B	0.6399	0.2859	0.5870	0.050*	
H7C	0.5302	0.1437	0.5868	0.050*	
C11	0.7990 (2)	0.1267 (2)	0.71770 (13)	0.0269 (5)	
H8A	0.6911	0.0936	0.7346	0.032*	
H8B	0.8097	0.2294	0.7319	0.032*	
C12	0.9448 (3)	0.0497 (3)	0.77691 (15)	0.0319 (5)	
H9A	0.9323	-0.0540	0.7672	0.038*	
H9B	1.0542	0.0796	0.7604	0.038*	
C22	0.9876 (3)	0.3154 (2)	0.60251 (17)	0.0360 (6)	
H10A	1.0077	0.3301	0.6695	0.043*	
H10B	0.8915	0.3768	0.5749	0.043*	
C23	1.1457 (3)	0.3563 (3)	0.5653 (2)	0.0497 (7)	
H11A	1.2408	0.2956	0.5929	0.074*	
H11B	1.1739	0.4558	0.5802	0.074*	
H11C	1.1247	0.3438	0.4989	0.074*	
H1W	0.141 (4)	-0.250 (4)	0.675 (2)	0.065 (11)*	
H2W	0.100 (4)	-0.360 (4)	0.724 (3)	0.084 (12)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0368 (3)	0.0399 (4)	0.0335 (3)	0.0034 (2)	0.0099 (2)	0.0041 (2)
N1	0.0251 (9)	0.0244 (10)	0.0234 (9)	0.0008 (7)	0.0037 (7)	0.0005 (7)
O1W	0.0431 (12)	0.0528 (15)	0.1006 (19)	-0.0032 (11)	-0.0020 (12)	0.0265 (13)
C21	0.0270 (11)	0.0327 (13)	0.0226 (11)	0.0014 (9)	0.0067 (8)	0.0011 (9)
C31	0.0359 (12)	0.0241 (12)	0.0326 (12)	-0.0012 (9)	0.0038 (9)	-0.0041 (9)
C13	0.0479 (14)	0.0344 (14)	0.0265 (12)	0.0043 (11)	0.0038 (10)	-0.0001 (10)
C41	0.0264 (11)	0.0375 (14)	0.0333 (13)	0.0071 (10)	-0.0020 (9)	0.0037 (10)
C11	0.0281 (11)	0.0305 (13)	0.0232 (11)	0.0028 (9)	0.0074 (8)	0.0002 (9)
C12	0.0321 (11)	0.0384 (14)	0.0251 (12)	0.0046 (10)	0.0047 (9)	0.0023 (10)
C22	0.0391 (12)	0.0319 (14)	0.0390 (14)	-0.0060 (10)	0.0122 (10)	-0.0033 (10)
C23	0.0465 (14)	0.0420 (16)	0.0639 (18)	-0.0122 (12)	0.0192 (13)	0.0043 (13)

Geometric parameters (Å, °)

N1—C31	1.499 (3)	С13—Н6С	0.9800
N1-C41	1.504 (3)	C41—H7A	0.9800
N1-C11	1.512 (3)	C41—H7B	0.9800
N1—C21	1.515 (3)	C41—H7C	0.9800
O1W—H1W	0.79 (4)	C11—C12	1.514 (3)
O1W—H2W	0.84 (4)	C11—H8A	0.9900
C21—C22	1.512 (3)	C11—H8B	0.9900
C21—H4A	0.9900	С12—Н9А	0.9900
C21—H4B	0.9900	С12—Н9В	0.9900
C31—H5A	0.9800	C22—C23	1.516 (3)
C31—H5B	0.9800	C22—H10A	0.9900
C31—H5C	0.9800	C22—H10B	0.9900

C13—C12	1.514 (3)	C23—H11A	0.9800
С13—Н6А	0.9800	C23—H11B	0.9800
С13—Н6В	0.9800	C23—H11C	0.9800
C31—N1—C41	107.48 (16)	N1—C41—H7C	109.5
C31—N1—C11	110.50 (16)	H7A—C41—H7C	109.5
C41—N1—C11	107.79 (16)	H7B—C41—H7C	109.5
C31—N1—C21	107.86 (15)	N1-C11-C12	115.50 (16)
C41—N1—C21	109.83 (16)	N1—C11—H8A	108.4
C11—N1—C21	113.22 (15)	С12—С11—Н8А	108.4
H1W—O1W—H2W	110 (3)	N1—C11—H8B	108.4
C22—C21—N1	115.22 (17)	C12—C11—H8B	108.4
C22—C21—H4A	108.5	H8A—C11—H8B	107.5
N1—C21—H4A	108.5	C13—C12—C11	108.70 (18)
C22—C21—H4B	108.5	С13—С12—Н9А	109.9
N1—C21—H4B	108.5	С11—С12—Н9А	109.9
H4A—C21—H4B	107.5	С13—С12—Н9В	109.9
N1—C31—H5A	109.5	С11—С12—Н9В	109.9
N1—C31—H5B	109.5	H9A—C12—H9B	108.3
H5A—C31—H5B	109.5	C21—C22—C23	110.3 (2)
N1—C31—H5C	109.5	C21—C22—H10A	109.6
H5A—C31—H5C	109.5	С23—С22—Н10А	109.6
H5B—C31—H5C	109.5	C21—C22—H10B	109.6
С12—С13—Н6А	109.5	C23—C22—H10B	109.6
С12—С13—Н6В	109.5	H10A-C22-H10B	108.1
H6A—C13—H6B	109.5	C22—C23—H11A	109.5
С12—С13—Н6С	109.5	C22—C23—H11B	109.5
H6A—C13—H6C	109.5	H11A—C23—H11B	109.5
H6B—C13—H6C	109.5	C22—C23—H11C	109.5
N1—C41—H7A	109.5	H11A—C23—H11C	109.5
N1—C41—H7B	109.5	H11B-C23-H11C	109.5
H7A—C41—H7B	109.5		
C31—N1—C21—C22	-178.85 (18)	C41—N1—C11—C12	177.38 (18)
C41—N1—C21—C22	64.3 (2)	C21—N1—C11—C12	-60.9 (2)
C11—N1—C21—C22	-56.3 (2)	N1-C11-C12-C13	177.40 (18)
C31—N1—C11—C12	60.2 (2)	N1—C21—C22—C23	179.42 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>W</i> …Cl1	0.79 (4)	2.47 (4)	3.239 (3)	164 (3)
$O1W^{i}$ —H2 W^{i} ····Cl1	0.84 (4)	2.46 (4)	3.285 (3)	172 (4)
$C31^{ii}$ — $H5B^{ii}$ $O1W$	0.98	2.54	3.489 (4)	162
$C21^{ii}$ —H4 A^{ii} ····Cl1	0.99	2.76	3.742 (2)	172

			supporting information		
C41 ⁱⁱⁱ —H7 <i>A</i> ⁱⁱⁱ …Cl1	0.98	2.80	3.721 (3)	156	
C41—H7C…Cl1	0.98	2.76	3.691 (3)	158	

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.