metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Carbon­yl{1-[(di­phenyl­phosphino)meth­yl]ethane­thiol­ato}(tri­phenyl­phosphine)rhodium(I)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx, damor@unam.mx

(Received 24 September 2008; accepted 20 October 2008; online 25 October 2008)

The title compound, [Rh(C15H16PS)(C18H15P)(CO)], was synthesized from the reaction of the ligand rac-[Ph2PCH2CH(CH3)SH] with trans-[Rh(F)(CO)(PPh3)2] in a 1:1 molar ratio in toluene. The Rh atom is four-coordinated in a distorted square-planar geometry with the P—S ligand [Ph2PCH2CH(CH3)S] acting as a chelate and the PPh3 and disordered CO [site occupation factors of 0.61 (5) and 0.39 (5)] ligands completing the coordination.

Related literature

For general background, see: Au-Yeung & Chan (2004[Au-Yeung, T. T. L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151-2164.]); Braunstein & Naud (2001[Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. Engl. 40, 680-699.]); Dilworth & Weatley (2000[Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89-158.]); Dilworth et al. (2000[Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007-3015.]); Fierro-Arias et al. (2008[Fierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196.]); Gómez-Benítez et al. (2007[Gómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 2128-2138.]); Morales-Morales et al. (2002[Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002). Inorg. Chim. Acta, 332, 101-107.]); Xie & Zhou (2008[Xie, J. H. & Zhou, Q. L. (2008). Acc. Chem. Res. 41, 581-593.]). For related structures, see: Lee et al. (2002[Lee, H.-S., Bae, J.-Y., Kim, D.-H., Kim, H. S., Kim, S.-J., Cho, S., Ko, J. & Kang, S. O. (2002). Organometallics, 21, 210-219.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C15H16PS)(C18H15P)(CO)]

  • Mr = 652.50

  • Orthorhombic, P b c a

  • a = 10.3142 (7) Å

  • b = 16.865 (1) Å

  • c = 34.984 (2) Å

  • V = 6085.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 (2) K

  • 0.26 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.827, Tmax = 0.978

  • 48521 measured reflections

  • 5573 independent reflections

  • 4152 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.108

  • S = 1.06

  • 5573 reflections

  • 372 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes [Dilworth, et al. 2000, Morales-Morales, et al., 2002]. In the specific case of compounds with platinum group metals these may be suitable species for catalytic screening. Addiconally, the presence of these ligands in their transition metal complexes may render interesting behaviors in solution as these ligands can be capable of full or partial deligation (hemilability), (Dilworth & Weatley, 2000, Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process ([Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Moreover, chiral or potentially bidentate ligands have been used extensively to perform asymmetric transformations [Au-Yeung, et al. 2004, & Xie et al., 2008], however the most commonly employed are bidentated phosphines and the use of sulfur containing ligands has been avoided owing to the well known propensity of platinum group metals to sulfur poisoning.

Thus, owing to our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands [Morales-Morales, et al., 2002, Gómez-Benítez, et al., 2007, Fierro-Arias, et al. 2008] we would like to report the crystal structure of the rhodium(I) complex [Rh(Ph2PCH2CH(CH3)S)(PPh3)(CO)] (I).

The rhodium atom is four-coordinated in a distorted square planar geometry with the P—S ligand [Ph2PCH2CH(CH3)S] acting as a chelate and the PPh3 and CO ligands completing the coordination sphere (Fig. 1). Similar geometry has been found in a previously reported rhodium complex (Lee et al., 2002). The phenyl ring on the P atoms are essentially planar, these phenyl rings are rotated around the P—C bond, forming the dihedral angles with the coordination plane P1-C34-P2-S1 (Table 1).

Related literature top

For general background, see: Au-Yeung & Chan (2004); Braunstein & Naud (2001); Dilworth & Weatley (2000); Dilworth, et al. (2000); Fierro-Arias et al. (2008); Gómez-Benítez et al. (2007); Morales-Morales et al. (2002); Xie & Zhou (2008). For related structures, see: Lee et al. (2002).

Experimental top

Synthesis of [Rh(Ph2PCH2CH(CH3)S)(PPh3)(CO)] (1). To a solution of trans-[Rh(F)(CO)(PPh3)2] (100 mg, 12 mmol) in toluene (25 ml) 1 equivalent of the ligand rac-[Ph2PCH2CH(CH3)SH] in toluene (10 ml) was added under stirring. The resulting mixture was allowed to stir overnight. After this time, the solvent was taken off under vacuum and the residue recrystallized from a double layer solvent system CH2Cl2/MeOH to afford complex 1 as a microcrystalline yellow powder. Yield 87%. 1H-NMR (300 MHz, CDCl3), (7.00–8.00 (m, Ph, 25H), 2.90–3.20 (m, CH2, 2H), 2.40–2.70 (m, CH, 1H), 1.30–1.50 (d, CH3, 3H); 31P-NMR (121 MHz, CDCl3), (68.21 (dd), 59.86 (dd) 1JRh-P= 133.4 Hz, 2JP-P = 304.2 Hz. Elem. Anal. Calculated for [C34H31OP2RhS] Calc. %: C: 62.49, H: 4.94. Found %: C: 62.50, H: 4.90. MS-FAB+ [M+] = 653 m/z.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyne), 0.97 Å (methylene), 0.96Å (methyl) and 0.93Å (aromatic) with Uiso(H)= 1.2Ueq(aroatic, methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

The CO is disordered and was refined anisotropically in two major contributors (61/39% for C34,O1/C34A,O1A, respectively)

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Disordered atom and hydrogen atoms were omitted for clarity.
rac-Carbonyl{1- [(diphenylphosphino)methyl]ethanethiolato}(triphenylphosphine)rhodium(I) top
Crystal data top
[Rh(C15H16PS)(C18H15P)(CO)]F(000) = 2672
Mr = 652.50Dx = 1.424 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7386 reflections
a = 10.3142 (7) Åθ = 2.3–31.0°
b = 16.865 (1) ŵ = 0.76 mm1
c = 34.984 (2) ÅT = 298 K
V = 6085.5 (6) Å3Prism, yellow
Z = 80.26 × 0.23 × 0.03 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5573 independent reflections
Radiation source: fine-focus sealed tube4152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.827, Tmax = 0.978l = 4242
48521 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0403P)2 + 6.156P]
where P = (Fo2 + 2Fc2)/3
5573 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.65 e Å3
45 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Rh(C15H16PS)(C18H15P)(CO)]V = 6085.5 (6) Å3
Mr = 652.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.3142 (7) ŵ = 0.76 mm1
b = 16.865 (1) ÅT = 298 K
c = 34.984 (2) Å0.26 × 0.23 × 0.03 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5573 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4152 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.978Rint = 0.095
48521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04945 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.65 e Å3
5573 reflectionsΔρmin = 0.49 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.32255 (3)0.37305 (2)0.105932 (9)0.03228 (11)
C340.1592 (15)0.377 (2)0.0860 (10)0.047 (4)0.61 (5)
O10.0553 (7)0.3812 (17)0.0750 (4)0.067 (4)0.61 (5)
C34A0.154 (2)0.363 (3)0.0902 (18)0.050 (5)0.39 (5)
O1A0.0544 (11)0.344 (2)0.0794 (8)0.068 (5)0.39 (5)
S10.53111 (12)0.35920 (9)0.13006 (4)0.0596 (4)
P10.40804 (11)0.32103 (6)0.05089 (3)0.0316 (3)
P20.26119 (11)0.43243 (7)0.16325 (3)0.0357 (3)
C10.3715 (4)0.2171 (2)0.04190 (12)0.0331 (9)
C20.3274 (5)0.1695 (3)0.07131 (13)0.0519 (13)
H20.30990.19130.09520.062*
C30.3096 (6)0.0894 (3)0.06497 (15)0.0610 (15)
H30.28190.05730.08500.073*
C40.3320 (5)0.0561 (3)0.02980 (15)0.0555 (14)
H40.31860.00210.02600.067*
C50.3742 (5)0.1030 (3)0.00031 (14)0.0481 (12)
H50.38910.08100.02370.058*
C60.3945 (4)0.1826 (3)0.00618 (12)0.0398 (10)
H60.42390.21400.01390.048*
C70.3736 (4)0.3667 (2)0.00480 (11)0.0340 (10)
C80.2469 (5)0.3649 (3)0.00953 (13)0.0435 (11)
H80.18230.33910.00420.052*
C90.2169 (6)0.4009 (3)0.04367 (14)0.0540 (13)
H90.13260.39870.05300.065*
C100.3106 (7)0.4400 (3)0.06404 (15)0.0661 (16)
H100.28930.46500.08690.079*
C110.4348 (7)0.4422 (3)0.05088 (15)0.0677 (17)
H110.49830.46820.06500.081*
C120.4671 (5)0.4061 (3)0.01658 (14)0.0542 (13)
H120.55210.40820.00780.065*
C130.5832 (4)0.3222 (3)0.05573 (12)0.0400 (11)
H13A0.62230.28770.03680.048*
H13B0.61590.37550.05190.048*
C140.6172 (5)0.2934 (3)0.09580 (13)0.0489 (12)
H140.58640.23890.09910.059*
C150.7617 (5)0.2968 (4)0.10406 (16)0.0695 (17)
H15A0.80640.26030.08760.104*
H15B0.77700.28270.13030.104*
H15C0.79300.34960.09950.104*
C160.2358 (5)0.3652 (3)0.20339 (13)0.0448 (12)
C170.2788 (5)0.2880 (3)0.20110 (15)0.0578 (14)
H170.32370.27080.17960.069*
C180.2550 (7)0.2360 (4)0.23093 (17)0.0781 (19)
H180.28300.18370.22930.094*
C190.1906 (6)0.2614 (4)0.26265 (18)0.081 (2)
H190.17410.22600.28240.098*
C200.1502 (6)0.3382 (5)0.26568 (16)0.080 (2)
H200.10970.35560.28790.096*
C210.1692 (6)0.3896 (4)0.23600 (15)0.0683 (17)
H210.13760.44110.23760.082*
C220.3760 (4)0.5072 (3)0.17966 (13)0.0432 (11)
C230.4103 (6)0.5192 (3)0.21715 (15)0.0634 (15)
H230.38000.48490.23590.076*
C240.4899 (7)0.5821 (4)0.2272 (2)0.086 (2)
H240.51360.58940.25260.103*
C250.5334 (6)0.6333 (4)0.2000 (2)0.086 (2)
H250.58260.67710.20700.103*
C260.5047 (6)0.6204 (4)0.1623 (2)0.0798 (19)
H260.53750.65390.14360.096*
C270.4273 (5)0.5577 (3)0.15254 (15)0.0602 (15)
H270.40870.54890.12690.072*
C280.1079 (4)0.4881 (3)0.16297 (12)0.0382 (10)
C290.1033 (5)0.5697 (3)0.16278 (13)0.0495 (12)
H290.18000.59860.16360.059*
C300.0137 (6)0.6091 (3)0.16137 (16)0.0634 (15)
H300.01520.66430.16100.076*
C310.1269 (6)0.5679 (4)0.16049 (16)0.0706 (17)
H310.20520.59520.15940.085*
C320.1268 (5)0.4868 (4)0.16114 (17)0.0691 (16)
H320.20430.45860.16090.083*
C330.0086 (5)0.4475 (3)0.16212 (15)0.0576 (14)
H330.00770.39240.16220.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03252 (19)0.0389 (2)0.02540 (18)0.00223 (16)0.00101 (15)0.00288 (15)
C340.042 (4)0.076 (10)0.021 (7)0.001 (5)0.000 (4)0.009 (6)
O10.044 (3)0.106 (11)0.052 (4)0.004 (4)0.013 (3)0.006 (6)
C34A0.042 (4)0.079 (12)0.028 (10)0.011 (6)0.004 (5)0.019 (9)
O1A0.048 (4)0.097 (12)0.057 (8)0.022 (6)0.009 (5)0.013 (9)
S10.0400 (7)0.1022 (12)0.0366 (7)0.0153 (7)0.0063 (6)0.0186 (7)
P10.0355 (6)0.0331 (6)0.0261 (6)0.0007 (5)0.0030 (5)0.0019 (5)
P20.0355 (6)0.0446 (7)0.0270 (6)0.0050 (5)0.0021 (5)0.0037 (5)
C10.034 (2)0.033 (2)0.032 (2)0.0000 (19)0.0003 (19)0.0014 (18)
C20.077 (4)0.044 (3)0.034 (3)0.005 (3)0.009 (3)0.003 (2)
C30.090 (4)0.039 (3)0.053 (3)0.019 (3)0.007 (3)0.007 (2)
C40.066 (3)0.036 (3)0.064 (3)0.008 (3)0.014 (3)0.007 (2)
C50.062 (3)0.038 (3)0.044 (3)0.001 (2)0.001 (2)0.008 (2)
C60.044 (3)0.036 (2)0.039 (2)0.001 (2)0.007 (2)0.001 (2)
C70.047 (2)0.028 (2)0.028 (2)0.003 (2)0.0034 (19)0.0047 (18)
C80.055 (3)0.041 (3)0.035 (3)0.002 (2)0.001 (2)0.006 (2)
C90.072 (4)0.050 (3)0.039 (3)0.011 (3)0.012 (3)0.005 (2)
C100.100 (5)0.061 (4)0.038 (3)0.005 (4)0.011 (3)0.006 (3)
C110.100 (5)0.061 (4)0.041 (3)0.015 (3)0.017 (3)0.012 (3)
C120.060 (3)0.060 (3)0.043 (3)0.013 (3)0.002 (3)0.009 (2)
C130.035 (2)0.047 (3)0.038 (3)0.004 (2)0.006 (2)0.008 (2)
C140.044 (3)0.061 (3)0.042 (3)0.001 (3)0.004 (2)0.007 (2)
C150.050 (3)0.088 (4)0.070 (4)0.012 (3)0.004 (3)0.017 (3)
C160.045 (3)0.056 (3)0.034 (2)0.008 (2)0.006 (2)0.003 (2)
C170.065 (4)0.065 (4)0.044 (3)0.010 (3)0.006 (3)0.005 (3)
C180.105 (5)0.070 (4)0.059 (4)0.016 (4)0.010 (4)0.024 (3)
C190.082 (5)0.103 (5)0.059 (4)0.001 (4)0.007 (3)0.039 (4)
C200.083 (5)0.112 (6)0.046 (3)0.017 (4)0.022 (3)0.017 (3)
C210.082 (4)0.080 (4)0.042 (3)0.016 (3)0.021 (3)0.006 (3)
C220.034 (2)0.054 (3)0.041 (3)0.005 (2)0.004 (2)0.011 (2)
C230.074 (4)0.070 (4)0.046 (3)0.007 (3)0.013 (3)0.011 (3)
C240.092 (5)0.100 (5)0.066 (4)0.009 (4)0.029 (4)0.027 (4)
C250.070 (4)0.094 (5)0.094 (5)0.024 (4)0.007 (4)0.040 (4)
C260.065 (4)0.088 (5)0.086 (5)0.025 (4)0.017 (4)0.017 (4)
C270.056 (3)0.079 (4)0.046 (3)0.024 (3)0.003 (3)0.014 (3)
C280.038 (3)0.049 (3)0.027 (2)0.009 (2)0.001 (2)0.007 (2)
C290.050 (3)0.058 (3)0.041 (3)0.011 (3)0.006 (2)0.001 (2)
C300.076 (4)0.055 (3)0.059 (3)0.024 (3)0.004 (3)0.008 (3)
C310.053 (4)0.095 (5)0.064 (4)0.031 (4)0.004 (3)0.022 (3)
C320.041 (3)0.093 (5)0.073 (4)0.001 (3)0.006 (3)0.017 (4)
C330.043 (3)0.064 (4)0.066 (4)0.001 (3)0.003 (3)0.012 (3)
Geometric parameters (Å, º) top
Rh1—C341.824 (7)C14—C151.519 (7)
Rh1—C34A1.827 (8)C14—H140.9800
Rh1—P12.2922 (11)C15—H15A0.9600
Rh1—S12.3225 (13)C15—H15B0.9600
Rh1—P22.3289 (11)C15—H15C0.9600
C34—O11.141 (8)C16—C171.378 (7)
C34A—O1A1.145 (11)C16—C211.394 (7)
S1—C141.859 (5)C17—C181.385 (7)
P1—C131.815 (4)C17—H170.9300
P1—C11.820 (4)C18—C191.362 (8)
P1—C71.822 (4)C18—H180.9300
P2—C221.822 (5)C19—C201.365 (9)
P2—C161.824 (5)C19—H190.9300
P2—C281.840 (4)C20—C211.367 (8)
C1—C21.382 (6)C20—H200.9300
C1—C61.399 (6)C21—H210.9300
C2—C31.382 (7)C22—C231.374 (7)
C2—H20.9300C22—C271.381 (7)
C3—C41.372 (7)C23—C241.387 (8)
C3—H30.9300C23—H230.9300
C4—C51.371 (7)C24—C251.362 (9)
C4—H40.9300C24—H240.9300
C5—C61.374 (6)C25—C261.367 (9)
C5—H50.9300C25—H250.9300
C6—H60.9300C26—C271.368 (7)
C7—C121.390 (6)C26—H260.9300
C7—C81.399 (6)C27—H270.9300
C8—C91.375 (7)C28—C291.376 (6)
C8—H80.9300C28—C331.383 (7)
C9—C101.369 (8)C29—C301.379 (7)
C9—H90.9300C29—H290.9300
C10—C111.362 (8)C30—C311.359 (8)
C10—H100.9300C30—H300.9300
C11—C121.386 (7)C31—C321.368 (8)
C11—H110.9300C31—H310.9300
C12—H120.9300C32—C331.388 (7)
C13—C141.524 (6)C32—H320.9300
C13—H13A0.9700C33—H330.9300
C13—H13B0.9700
C34—Rh1—P192.7 (13)C15—C14—C13112.9 (4)
C34A—Rh1—P194 (2)C15—C14—S1108.9 (3)
C34—Rh1—S1176.0 (12)C13—C14—S1107.0 (3)
C34A—Rh1—S1168.4 (17)C15—C14—H14109.3
P1—Rh1—S184.87 (4)C13—C14—H14109.3
C34—Rh1—P293.6 (13)S1—C14—H14109.3
C34A—Rh1—P292 (2)C14—C15—H15A109.5
P1—Rh1—P2172.88 (4)C14—C15—H15B109.5
S1—Rh1—P288.97 (4)H15A—C15—H15B109.5
O1—C34—Rh1177 (3)C14—C15—H15C109.5
O1A—C34A—Rh1168 (5)H15A—C15—H15C109.5
C14—S1—Rh1105.56 (16)H15B—C15—H15C109.5
C13—P1—C1103.5 (2)C17—C16—C21119.0 (5)
C13—P1—C7105.8 (2)C17—C16—P2119.8 (4)
C1—P1—C7102.34 (19)C21—C16—P2121.2 (4)
C13—P1—Rh1107.49 (14)C16—C17—C18119.8 (5)
C1—P1—Rh1115.72 (14)C16—C17—H17120.1
C7—P1—Rh1120.42 (14)C18—C17—H17120.1
C22—P2—C16106.3 (2)C19—C18—C17120.1 (6)
C22—P2—C28102.0 (2)C19—C18—H18120.0
C16—P2—C28101.4 (2)C17—C18—H18120.0
C22—P2—Rh1113.09 (16)C18—C19—C20120.7 (6)
C16—P2—Rh1115.75 (16)C18—C19—H19119.6
C28—P2—Rh1116.67 (14)C20—C19—H19119.6
C2—C1—C6118.6 (4)C19—C20—C21119.9 (6)
C2—C1—P1119.9 (3)C19—C20—H20120.0
C6—C1—P1121.3 (3)C21—C20—H20120.0
C1—C2—C3119.5 (4)C20—C21—C16120.4 (6)
C1—C2—H2120.3C20—C21—H21119.8
C3—C2—H2120.3C16—C21—H21119.8
C4—C3—C2121.5 (5)C23—C22—C27117.8 (5)
C4—C3—H3119.3C23—C22—P2124.8 (4)
C2—C3—H3119.3C27—C22—P2117.3 (4)
C5—C4—C3119.4 (5)C22—C23—C24120.5 (6)
C5—C4—H4120.3C22—C23—H23119.8
C3—C4—H4120.3C24—C23—H23119.8
C4—C5—C6120.0 (5)C25—C24—C23120.2 (6)
C4—C5—H5120.0C25—C24—H24119.9
C6—C5—H5120.0C23—C24—H24119.9
C5—C6—C1121.0 (4)C24—C25—C26120.1 (6)
C5—C6—H6119.5C24—C25—H25119.9
C1—C6—H6119.5C26—C25—H25119.9
C12—C7—C8117.7 (4)C25—C26—C27119.4 (6)
C12—C7—P1122.9 (4)C25—C26—H26120.3
C8—C7—P1119.4 (3)C27—C26—H26120.3
C9—C8—C7120.8 (5)C26—C27—C22121.9 (5)
C9—C8—H8119.6C26—C27—H27119.1
C7—C8—H8119.6C22—C27—H27119.1
C10—C9—C8120.4 (5)C29—C28—C33117.7 (4)
C10—C9—H9119.8C29—C28—P2122.7 (4)
C8—C9—H9119.8C33—C28—P2119.6 (4)
C11—C10—C9120.1 (5)C28—C29—C30120.8 (5)
C11—C10—H10120.0C28—C29—H29119.6
C9—C10—H10120.0C30—C29—H29119.6
C10—C11—C12120.4 (5)C31—C30—C29120.4 (5)
C10—C11—H11119.8C31—C30—H30119.8
C12—C11—H11119.8C29—C30—H30119.8
C11—C12—C7120.6 (5)C30—C31—C32120.7 (5)
C11—C12—H12119.7C30—C31—H31119.7
C7—C12—H12119.7C32—C31—H31119.7
C14—C13—P1108.1 (3)C31—C32—C33118.6 (6)
C14—C13—H13A110.1C31—C32—H32120.7
P1—C13—H13A110.1C33—C32—H32120.7
C14—C13—H13B110.1C28—C33—C32121.8 (5)
P1—C13—H13B110.1C28—C33—H33119.1
H13A—C13—H13B108.4C32—C33—H33119.1

Experimental details

Crystal data
Chemical formula[Rh(C15H16PS)(C18H15P)(CO)]
Mr652.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)10.3142 (7), 16.865 (1), 34.984 (2)
V3)6085.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.26 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.827, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
48521, 5573, 4152
Rint0.095
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.108, 1.06
No. of reflections5573
No. of parameters372
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.49

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Dihedral angle of phenyl rings with the coordination center (P1-S1-P2-C34) (Å). top
Planeangle
C1-C685.4 (1)
C7-C1256.29 (9)
C16-C2174.2 (2)
C22-C2770.4 (1)
C28-C3368.9 (1)
 

Acknowledgements

Financial support of this research by CONACYT (F58692) and PAPIIT (IN227008) is gratefully acknowledged.

References

First citationAu-Yeung, T. T. L. & Chan, A. S. C. (2004). Coord. Chem. Rev. 248, 2151–2164.  Web of Science CrossRef CAS Google Scholar
First citationBraunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. Engl. 40, 680–699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.  Web of Science CSD CrossRef Google Scholar
First citationDilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89–158.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 2128–2138.  Google Scholar
First citationLee, H.-S., Bae, J.-Y., Kim, D.-H., Kim, H. S., Kim, S.-J., Cho, S., Ko, J. & Kang, S. O. (2002). Organometallics, 21, 210–219.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002). Inorg. Chim. Acta, 332, 101–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. H. & Zhou, Q. L. (2008). Acc. Chem. Res. 41, 581–593.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds