

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Dicarbonyl(n^5-cyclopentadienyl)$ bis(trimethylphosphine)molybdenum(II) trifluoromethanesulfonate

Samuel Jali, Holger B. Friedrich and Muhammad D. Bala*

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 1 October 2008; accepted 9 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.054; data-to-parameter ratio = 20.6.

In the title compound, $[Mo(C_5H_5)(CO)_2(C_3H_9P)_2]CF_3SO_3$, the cationic complex displays a classical four-legged pianostool square-pyramidal geometry with a trans configuration of the basal ligands around the Mo atom. The cyclopentadienyl (Cp) ligand occupies the apical position of the piano-stool configuration. The average Mo-P bond length of the two trans PMe₃ ligands is 2.474 (5) Å and the Mo-Cp centroid distance is 2.003 (2) Å.

Related literature

For similar crystal structures, see: Fettinger et al. (1998); Schubert et al. (1982). For general discussion of piano-stool complexes, see: Kubáček et al. (1982); Haines et al. (1967); Treichel et al. (1967). For our previous work in this area, see: Changamu et al. (2006). For the synthesis of the starting compound, see: Markham et al. (1985).

Experimental

Crystal data

[Mo(C₅H₅)(CO)₂(C₃H₉P)₂]CF₃SO₃ $M_r = 518.26$ Monoclinic, $P2_1/n$ a = 10.8919 (5) Å b = 8.0864 (3) Å c = 23.4132 (10) Å $\beta = 95.464 \ (1)^{\circ}$

V = 2052.78 (15) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.94 \text{ mm}^{-1}$ T = 296 (2) K $0.48 \times 0.23 \times 0.16 \text{ mm}$

Data collection

S = 1.09

4960 reflections

Bruker SMART CCD area-detector diffractometer	20835 measured reflections 4960 independent reflections
Absorption correction: integration	4542 reflections with $I > 2\sigma(I)$
(XPREP; Bruker, 2005)	$R_{\rm int} = 0.042$
$T_{\min} = 0.660, \ T_{\max} = 0.864$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.024$	241 parameters
$wR(F^2) = 0.054$	H-atom parameters constraine

neters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2388).

References

- Bruker (2005). APEX2 and SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
- Changamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615-4625.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fettinger, J. C., Kraatz, H.-B. & Poli, R. (1998). Acta Cryst. C54, 181-183.
- Haines, R. J., Nyholm, R. S., Stiddard, M. H. B. & Ramsay, W. (1967). J. Chem. Soc. A, pp. 94-98.
- Kubáček, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180-188.
- Markham, J., Menard, K. & Cutler, A. (1985). Inorg. Chem. 24, 1581-1587. Schubert, U., Ackerman, K., Janta, R. & Voran, S. (1982). Chem. Ber. 115,
- 2003-2008:
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Treichel, P. M., Barnett, K. W. & Shubkin, R. L. (1967). J. Organomet. Chem. 7, 449-459.

supporting information

Acta Cryst. (2008). E64, m1401 [doi:10.1107/S1600536808032662]

Dicarbonyl(η^5 -cyclopentadienyl)bis(trimethylphosphine)molybdenum(II) trifluoromethanesulfonate

Samuel Jali, Holger B. Friedrich and Muhammad D. Bala

S1. Comment

The title compound was prepared as part of our ongoing study on mixed ligand complexes (Changamu *et al.*, 2006). It crystallizes in a monoclinic $P2_1/n$ space group having a square-pyramidal geometry of ligands around Mo typical of four-legged piano-stool CpMo L_4 complexes (Kubáček *et al.*, 1982; Fettinger *et al.*, 1998). The complex shows a *trans* orientation of the two phosphine ligands.

A cation-anion paired complex $[Mo(C_5H_5)(CO)_2(PMe_3)_2][Mo(C_5H_5)(CO)_3]$ also having a similar arrangement of ligands around the cationic moiety has been previously reported (Schubert *et al.*, 1982).

The title compound forms an adduct pair with trifluorosulphonic acid (trifluoromethanesulfonate) group. Generally these complexes may be considered as disubstituted derivatives of $[CpMo(CO)_4]^+$ in which double CO-substitution leads to either a *cis* or a *trans* product (Treichel *et al.*,1967; Haines *et al.*, 1967). However, due to unfavourable steric interactions between bulky ligands only the *trans* isomer was observed in the title complex. The influence of steric size on the spatial orientation of the ligands is further evidenced by the large difference in the angles between the dissimilar *trans* ligands. Hence the P12—Mo1—P13 bonds angle is 130.34 (4)° while the C16—Mo1—C17 bonds angle is only 110.75 (4)°. The crystal of (I) is stabilized by a series of short inter-molecular contacts between neighbouring molecules.

S2. Experimental

To a dark purple solution of 0.85 g (2.15 mmol) of $[CpMo(CO)_3][SO_3CF_3]$ (Markham *et al.*, 1985) in dichloromethane was added 1 ml (0.735 g, 9.66 mmol) of PMe₃ at room temperature. The reaction was stirred overnight. The resulting yellow solution was transferred to an ether–hexane mixture (10: 1), cooled to -78°C. A yellow solid precipitate resulted. Room temperature recrystallization from hexane–dichloromethane afforded yellow crystals of (I) suitable for X-ray analysis.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) and 0.95 Å (Cp) with $U_{iso}(H) = 1.2U_{eq}(Cp)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$.

Figure 1

Molecular structure of the title complex with the atom labelling scheme. Hydrogen atoms are omitted for clarity. Ellipsoids are drawn at the 50% probability level.

$Dicarbonyl(\eta^{5}-cyclopentadienyl)bis(trimethylphosphine)molybdenum(II) trifluoromethanesulfonate$

Crystal data	
$[Mo(C_{5}H_{5})(CO)_{2}(C_{3}H_{9}P)_{2}]CF_{3}SO_{3}$ $M_{r} = 518.26$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 10.8919 (5) Å b = 8.0864 (3) Å c = 23.4132 (10) Å $\beta = 95.464$ (1)° V = 2052.78 (15) Å ³	F(000) = 1048 $D_x = 1.677 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 6234 reflections \theta = 1.8-28.0° \mu = 0.94 mm^{-1} T = 296 K Block, yellow 0.48 \times 0.23 \times 0.16 mm
 <i>Data collection</i> Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube 	20835 measured reflections 4960 independent reflections 4542 reflections with $I > 2\sigma(I)$

Graphite monochromator	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: integration	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.660, \ T_{\max} = 0.864$	$l = -29 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.054$	neighbouring sites
S = 1.09	H-atom parameters constrained
4960 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0157P)^2 + 1.38P]$
241 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.43 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mo1	0.085336 (12)	0.084776 (17)	0.865019 (6)	0.01416 (4)
S4	0.41202 (4)	0.53406 (6)	1.12198 (2)	0.02194 (10)
P12	0.29392 (4)	-0.03890 (6)	0.87511 (2)	0.01945 (10)
P13	-0.11979 (4)	-0.04769 (6)	0.84825 (2)	0.01899 (10)
O11	0.07705 (14)	-0.1616 (2)	0.96710 (6)	0.0382 (4)
O12	0.10322 (15)	-0.1046 (2)	0.75064 (7)	0.0429 (4)
O41	0.33084 (14)	0.6492 (2)	1.14629 (7)	0.0394 (4)
O42	0.53050 (12)	0.59896 (17)	1.11112 (7)	0.0318 (3)
O43	0.41363 (13)	0.37125 (19)	1.14704 (7)	0.0341 (3)
F41	0.33337 (16)	0.6369 (2)	1.01893 (6)	0.0600 (4)
F42	0.39519 (15)	0.3859 (2)	1.02214 (6)	0.0547 (4)
F43	0.22046 (12)	0.4479 (2)	1.05128 (6)	0.0522 (4)
C11	0.0608 (2)	0.3282 (2)	0.91851 (10)	0.0372 (5)
H11	0.0451	0.3259	0.9577	0.045*
C12	0.17744 (19)	0.3326 (2)	0.89736 (10)	0.0322 (5)
H12	0.2547	0.3324	0.9199	0.039*
C13	0.1599 (2)	0.3372 (2)	0.83737 (10)	0.0350 (5)
H13	0.2233	0.3416	0.8122	0.042*
C14	0.0330 (2)	0.3343 (3)	0.82086 (11)	0.0382 (5)
H14	-0.0049	0.3363	0.7826	0.046*
C15	-0.02827 (19)	0.3280 (2)	0.87089 (12)	0.0388 (6)
H15	-0.1151	0.3242	0.8723	0.047*
C16	0.08055 (16)	-0.0733 (2)	0.92869 (8)	0.0222 (4)
C17	0.09558 (16)	-0.0397 (2)	0.79389 (8)	0.0236 (4)
C21	0.2917 (2)	-0.2612 (2)	0.86869 (12)	0.0390 (5)

H21A	0.3764	-0.3033	0.8727	0.059*
H21B	0.2514	-0.2924	0.8310	0.059*
H21C	0.2460	-0.3085	0.8989	0.059*
C22	0.39704 (18)	0.0273 (3)	0.82312 (9)	0.0312 (4)
H22A	0.4707	-0.0430	0.8263	0.047*
H22B	0.4213	0.1425	0.8306	0.047*
H22C	0.3549	0.0181	0.7844	0.047*
C23	0.38690 (19)	-0.0031 (3)	0.94249 (9)	0.0359 (5)
H23A	0.3408	-0.0378	0.9744	0.054*
H23B	0.4067	0.1148	0.9463	0.054*
H23C	0.4634	-0.0671	0.9432	0.054*
C31	-0.11193 (18)	-0.2684 (2)	0.83587 (10)	0.0320 (5)
H31A	-0.1953	-0.3151	0.8329	0.048*
H31B	-0.0619	-0.3207	0.8679	0.048*
H31C	-0.0743	-0.2890	0.8001	0.048*
C32	-0.21945 (17)	-0.0306 (3)	0.90569 (9)	0.0274 (4)
H32A	-0.2405	0.0858	0.9111	0.041*
H32B	-0.1767	-0.0742	0.9413	0.041*
H32C	-0.2951	-0.0942	0.8958	0.041*
C33	-0.21636 (19)	0.0275 (3)	0.78623 (9)	0.0340 (5)
H33A	-0.2929	-0.0368	0.7816	0.051*
H33B	-0.1724	0.0154	0.7518	0.051*
H33C	-0.2358	0.1443	0.7918	0.051*
C41	0.3370 (2)	0.4999 (3)	1.04982 (9)	0.0338 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01406 (7)	0.01252 (7)	0.01594 (7)	0.00108 (5)	0.00169 (5)	0.00056 (5)
S4	0.01749 (19)	0.0219 (2)	0.0267 (2)	0.00263 (16)	0.00369 (17)	-0.00058 (17)
P12	0.0156 (2)	0.0171 (2)	0.0252 (2)	0.00222 (16)	-0.00038 (17)	0.00011 (17)
P13	0.0158 (2)	0.0189 (2)	0.0222 (2)	-0.00024 (16)	0.00109 (17)	-0.00368 (17)
O43	0.0266 (7)	0.0312 (8)	0.0444 (9)	-0.0025 (6)	0.0025 (6)	0.0111 (7)
O42	0.0240 (7)	0.0291 (7)	0.0429 (8)	-0.0053 (6)	0.0064 (6)	0.0003 (6)
O11	0.0392 (8)	0.0433 (9)	0.0321 (8)	-0.0005 (7)	0.0036 (7)	0.0186 (7)
O41	0.0342 (8)	0.0435 (9)	0.0409 (9)	0.0151 (7)	0.0064 (7)	-0.0108 (7)
O12	0.0372 (8)	0.0633 (11)	0.0285 (8)	0.0020 (8)	0.0053 (7)	-0.0207 (8)
F42	0.0582 (9)	0.0639 (10)	0.0435 (8)	0.0006 (8)	0.0121 (7)	-0.0247 (7)
F43	0.0294 (7)	0.0817 (11)	0.0439 (8)	-0.0119 (7)	-0.0053 (6)	-0.0059 (8)
F41	0.0748 (11)	0.0613 (10)	0.0415 (8)	-0.0009 (9)	-0.0075 (8)	0.0212 (8)
C14	0.0466 (13)	0.0209 (10)	0.0458 (13)	0.0084 (9)	-0.0025 (11)	0.0122 (9)
C12	0.0299 (10)	0.0149 (9)	0.0508 (13)	-0.0020 (8)	-0.0020 (9)	-0.0052 (9)
C21	0.0284 (10)	0.0194 (10)	0.0687 (16)	0.0076 (8)	0.0017 (10)	-0.0008 (10)
C31	0.0248 (9)	0.0219 (9)	0.0497 (13)	-0.0063 (8)	0.0061 (9)	-0.0119 (9)
C11	0.0564 (14)	0.0157 (9)	0.0429 (12)	-0.0026 (9)	0.0228 (11)	-0.0097 (8)
C41	0.0334 (11)	0.0375 (12)	0.0305 (11)	-0.0011 (9)	0.0034 (9)	-0.0002 (9)
C15	0.0217 (9)	0.0141 (9)	0.0820 (18)	0.0046 (7)	0.0123 (10)	-0.0014 (10)
C17	0.0167 (8)	0.0299 (10)	0.0241 (9)	0.0026 (7)	0.0021 (7)	-0.0020 (8)

supporting information

C32	0.0225 (9)	0.0294 (10)	0.0315 (10)	-0.0022 (8)	0.0091 (8)	-0.0018 (8)
C16	0.0192 (8)	0.0237 (9)	0.0235 (9)	-0.0004 (7)	0.0009 (7)	0.0008 (7)
C22	0.0224 (9)	0.0383 (11)	0.0339 (11)	0.0003 (8)	0.0089 (8)	-0.0013 (9)
C33	0.0246 (9)	0.0478 (13)	0.0279 (10)	0.0080 (9)	-0.0055 (8)	-0.0055 (9)
C13	0.0372 (11)	0.0162 (9)	0.0549 (14)	0.0009 (8)	0.0217 (10)	0.0089 (9)
C23	0.0265 (10)	0.0458 (13)	0.0331 (11)	0.0017 (9)	-0.0088 (9)	0.0016 (10)

Geometric parameters (Å, °)

Mo1—C17	1.9581 (19)	C14—H14	0.9500
Mo1-C16	1.9683 (19)	C12—C13	1.400 (3)
Mo1-C13	2.3123 (19)	C12—C11	1.407 (3)
Mo1-C14	2.314 (2)	C12—H12	0.9500
Mo1-C15	2.3346 (19)	C21—H21A	0.9800
Mo1-C12	2.3348 (19)	C21—H21B	0.9800
Mo1-C11	2.362 (2)	C21—H21C	0.9800
Mo1—P12	2.4729 (5)	C31—H31A	0.9800
Mo1—P13	2.4751 (5)	C31—H31B	0.9800
S4—O42	1.4379 (14)	C31—H31C	0.9800
S4—O41	1.4384 (15)	C11—C15	1.406 (3)
S4—O43	1.4408 (15)	C11—H11	0.9500
S4—C41	1.826 (2)	C15—H15	0.9500
P12—C21	1.804 (2)	C32—H32A	0.9800
P12—C22	1.814 (2)	C32—H32B	0.9800
P12—C23	1.815 (2)	C32—H32C	0.9800
P13—C31	1.812 (2)	C22—H22A	0.9800
P13—C32	1.8122 (19)	C22—H22B	0.9800
P13—C33	1.815 (2)	C22—H22C	0.9800
O11—C16	1.152 (2)	С33—Н33А	0.9800
O12—C17	1.150 (2)	С33—Н33В	0.9800
F42—C41	1.323 (3)	С33—Н33С	0.9800
F43—C41	1.341 (3)	С13—Н13	0.9500
F41—C41	1.321 (3)	C23—H23A	0.9800
C14—C13	1.399 (3)	C23—H23B	0.9800
C14—C15	1.403 (3)	C23—H23C	0.9800
C17—Mo1—C16	108.55 (8)	C11—C12—H12	125.9
C17—Mo1—C13	99.54 (8)	Mo1—C12—H12	120.6
C16—Mo1—C13	145.16 (8)	P12—C21—H21A	109.5
C17—Mo1—C14	95.73 (8)	P12—C21—H21B	109.5
C16—Mo1—C14	151.85 (8)	H21A—C21—H21B	109.5
C13—Mo1—C14	35.22 (8)	P12—C21—H21C	109.5
C17—Mo1—C15	123.82 (9)	H21A—C21—H21C	109.5
C16—Mo1—C15	116.75 (8)	H21B—C21—H21C	109.5
C13—Mo1—C15	58.33 (7)	P13—C31—H31A	109.5
C14—Mo1—C15	35.14 (9)	P13—C31—H31B	109.5
C17—Mo1—C12	131.26 (8)	H31A—C31—H31B	109.5
C16—Mo1—C12	110.69 (8)	P13—C31—H31C	109.5

C13 Mo1 C12	35.06 (8)	H31A C31 H31C	100.5
C13 - M01 - C12	58 41 (8)	$H_{21}^{21}R = C_{21}^{21} = H_{21}^{21}C$	109.5
$C_{14} = Mo_{1} = C_{12}$	58 10 (7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3
C13 - M01 - C12	36.10(7)	C15 - C11 - C12	107.4(2)
	133.07(0)	C12 - C11 - M01	71.51 (11)
	97.31 (8)		/1.51 (11)
CI3—MoI—CII	58.21 (8)	CI5—CII—HII	126.3
CI4—MoI—CII	58.30 (9)	C12—C11—H11	126.3
C15—Mo1—C11	34.84 (9)	Mo1—C11—H11	122.4
C12—Mo1—C11	34.86 (7)	F41—C41—F42	107.85 (19)
C17—Mo1—P12	75.35 (5)	F41—C41—F43	107.34 (19)
C16—Mo1—P12	75.84 (5)	F42—C41—F43	107.02 (19)
C13—Mo1—P12	92.28 (5)	F41—C41—S4	111.54 (16)
C14—Mo1—P12	125.47 (6)	F42—C41—S4	111.43 (15)
C15—Mo1—P12	145.32 (5)	F43—C41—S4	111.42 (15)
C12—Mo1—P12	87.35 (5)	C14—C15—C11	108.34 (19)
C11—Mo1—P12	115.83 (6)	C14-C15-Mo1	71.62 (11)
C17—Mo1—P13	76.49 (5)	C11-C15-Mo1	73.65 (11)
C16—Mo1—P13	75.55 (5)	C14—C15—H15	125.8
C13—Mo1—P13	132.34 (6)	C11—C15—H15	125.8
C14—Mo1—P13	97.26 (6)	Mo1—C15—H15	120.6
C15 - Mo1 - P13	84.17 (5)	012—C17—Mo1	176.13 (18)
C12—Mo1—P13	140.93 (5)	P13—C32—H32A	109.5
C11—Mo1—P13	107 38 (6)	P13_C32_H32B	109.5
$P12_{0} = M_0 1_{0} = P13$	130342(16)	$H_{32}A = C_{32} = H_{32}B$	109.5
042 - 84 - 041	115 43 (10)	P13_C32_H32C	109.5
042 - 84 - 043	115 41 (9)	$H_{32} = C_{32} = H_{32} C_{32}$	109.5
$041 \ 84 \ 043$	113.41(0) 114.40(10)	H32R C32 H32C	109.5
$042 \ 84 \ C41$	102.81(10)	1132D - C32 - 1132C	109.5 177.70(17)
042 - 54 - 041	102.01(10) 102.07(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1//./9(1/)
041 - 34 - 041	103.07(10) 102.04(10)	$\mathbf{F}_{12} = \mathbf{C}_{22} = \mathbf{H}_{22} \mathbf{R}$	109.5
043 - 54 - 041	103.04(10) 104.02(11)	P12 - C22 - D22D	109.5
C_{21} P12 C_{22}	104.03(11) 102.48(11)	H22A—C22—H22B	109.5
C_{21} P12 $-C_{23}$	103.48 (11)	P12—C22—H22C	109.5
C_{22} —P12—C23	101.91 (10)	H22A—C22—H22C	109.5
C21—P12—Mo1	112.96 (7)	H22B—C22—H22C	109.5
C22—P12—Mo1	116.01 (7)	P13—C33—H33A	109.5
C23—P12—Mo1	116.75 (8)	Р13—С33—Н33В	109.5
C31—P13—C32	103.58 (10)	Н33А—С33—Н33В	109.5
C31—P13—C33	103.56 (11)	Р13—С33—Н33С	109.5
C32—P13—C33	103.05 (10)	H33A—C33—H33C	109.5
C31—P13—Mo1	113.33 (7)	H33B—C33—H33C	109.5
C32—P13—Mo1	116.40 (7)	C14—C13—C12	108.3 (2)
C33—P13—Mo1	115.32 (8)	C14—C13—Mo1	72.45 (12)
C13—C14—C15	107.8 (2)	C12-C13-Mo1	73.35 (11)
C13—C14—Mo1	72.33 (11)	C14—C13—H13	125.9
C15-C14-Mo1	73.24 (12)	C12—C13—H13	125.9
C13—C14—H14	126.1	Mo1—C13—H13	120.1
C15—C14—H14	126.1	P12—C23—H23A	109.5
Mo1—C14—H14	120.2	P12—C23—H23B	109.5

C13—C12—C11	108.2 (2)	H23A—C23—H23B	109.5
C13—C12—Mo1	71.59 (11)	P12—C23—H23C	109.5
C11-C12-Mo1	73.63 (11)	H23A—C23—H23C	109.5
C13—C12—H12	125.9	H23B—C23—H23C	109.5
C17—Mo1—P12—C21	-57.17 (11)	C13—Mo1—C12—C11	116.16 (19)
C16—Mo1—P12—C21	56.73 (11)	C14—Mo1—C12—C11	78.67 (15)
C13—Mo1—P12—C21	-156.44 (11)	C15—Mo1—C12—C11	37.08 (14)
C14—Mo1—P12—C21	-143.76 (12)	P12-Mo1-C12-C11	-146.07 (14)
C15—Mo1—P12—C21	173.54 (15)	P13—Mo1—C12—C11	20.12 (18)
C12—Mo1—P12—C21	168.84 (11)	C13—C12—C11—C15	0.8 (2)
C11—Mo1—P12—C21	148.08 (11)	Mo1-C12-C11-C15	-62.93 (14)
P13—Mo1—P12—C21	0.23 (10)	C13—C12—C11—Mo1	63.70 (14)
C17—Mo1—P12—C22	62.81 (10)	C17—Mo1—C11—C15	44.2 (2)
C16—Mo1—P12—C22	176.71 (10)	C16—Mo1—C11—C15	-127.59 (13)
C13—Mo1—P12—C22	-36.45 (10)	C13—Mo1—C11—C15	79.01 (14)
C14—Mo1—P12—C22	-23.77 (11)	C14—Mo1—C11—C15	37.34 (13)
C15—Mo1—P12—C22	-66.48 (14)	C12—Mo1—C11—C15	116.36 (19)
C12—Mo1—P12—C22	-71.18 (10)	P12—Mo1—C11—C15	154.64 (11)
C11—Mo1—P12—C22	-91.94 (10)	P13—Mo1—C11—C15	-50.51 (13)
P13—Mo1—P12—C22	120.21 (8)	C17—Mo1—C11—C12	-72.2 (2)
C17—Mo1—P12—C23	-176.98(11)	C16—Mo1—C11—C12	116.05 (14)
C16—Mo1—P12—C23	-63.08(11)	C13—Mo1—C11—C12	-37.35(13)
C13—Mo1—P12—C23	83.76 (11)	C14—Mo1—C11—C12	-79.02(15)
C14—Mo1—P12—C23	96.44 (12)	C15-Mo1-C11-C12	-116.36(19)
C_{15} Mo1 P_{12} C_{23}	53 74 (15)	P12-Mo1-C11-C12	38 28 (15)
C_{12} Mo1 P12 C23	49.03 (11)	P13 - Mo1 - C11 - C12	-166.87(12)
C11—Mo1—P12—C23	28 27 (11)	042 - 84 - C41 - F41	-56.27(18)
P13—Mo1—P12—C23	-11958(9)	O41 - S4 - C41 - F41	64.05(18)
C17—Mo1—P13—C31	51 37 (10)	043 - 84 - C41 - F41	-17657(16)
$C_{16} M_{01} P_{13} C_{31}$	-62.19(10)	042 - 84 - C41 - F42	64 33 (18)
C_{13} Mo1 P13 C_{31}	142 04 (11)	O41 - S4 - C41 - F42	-17535(16)
C_{14} Mo1 P13 C31	145 55 (11)	043 - 54 - C41 - F42	-55.97(18)
C_{15} Mo1 P13 C31	178 23 (11)	043 - 54 - C41 - F43	$-176\ 21\ (16)$
C_{12} Mo1 P13 C_{31}	-167.35(12)	O41 S4 C41 F43	-55 89 (18)
C_{11} Mo1 P13 C_{31}	-15546(10)	043 - 84 - C41 - F43	63 49 (18)
$P_{12} = M_{01} = P_{13} = C_{31}$	-558(9)	C_{13} C_{14} C_{15} C_{11}	0.4(2)
C_{17} Mo1 P13 C32	171 34 (10)	M_{01} $-C_{14}$ $-C_{15}$ $-C_{11}$	65.00(14)
C_{16}^{-16} Mol Pl3 C32	57 78 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-64.55(14)
$C_{10} = M_{01} = 113 = C_{32}$	-07.00(10)	$C_{13} = C_{14} = C_{15} = M_{01}$	-0.8(2)
C14 Mo1 P13 C32	-94.48(10)	$M_{01} = C_{11} = C_{15} = C_{14}$	-63.68(14)
$C_{14} = M_{01} = 13 = C_{32}$	-61.70 (10)	$C_{12} = C_{11} = C_{15} = C_{14}$	62.03(14)
$C_{13} = M_{01} = 1_{13} = C_{32}$	-47.38(12)	C_{12} C_{13} C_{15} C_{14}	-42.02(14)
C_{12} Mo1 -1_{13} $-C_{32}$	-35.40(12)	C17 - M01 - C15 - C14	42.02(10)
11 - 101 - 13 - 032	-33.49(10)	C10 Wi01 $-C15$ $-C14$	1//.93(13) 27.69(14)
Γ_{12} V_{101} Γ_{13} C_{32}	114.37(0) -67.75(10)	C_{13} Mol C_{15} C_{14}	57.08(14)
C_{1} = Wi01 = P13 = C33	-07.73(10)	C_{12} Mol C_{15} C_{14}	/9.19 (15) 116 20 (10)
C_{10} Mol P_{13} C_{33}	1/8.09 (10)	11 - 101 - 15 - 14	110.29 (19)
C13-M01-P13-C33	22.92 (11)	P12-M01-C15-C14	/3.65 (19)

C14—Mo1—P13—C33	26.43 (10)	P13—Mo1—C15—C14	-111.46 (14)
C15—Mo1—P13—C33	59.12 (10)	C17—Mo1—C15—C11	-158.31 (13)
C12—Mo1—P13—C33	73.53 (12)	C16—Mo1—C15—C11	61.66 (14)
C11—Mo1—P13—C33	85.42 (10)	C13—Mo1—C15—C11	-78.61 (14)
P12-Mo1-P13-C33	-124.70 (8)	C14—Mo1—C15—C11	-116.29 (19)
C17—Mo1—C14—C13	-98.44 (15)	C12—Mo1—C15—C11	-37.11 (13)
C16—Mo1—C14—C13	111.66 (19)	P12-Mo1-C15-C11	-42.64 (19)
C15—Mo1—C14—C13	115.5 (2)	P13—Mo1—C15—C11	132.24 (13)
C12—Mo1—C14—C13	37.32 (13)	C15—C14—C13—C12	0.0 (2)
C11—Mo1—C14—C13	78.53 (15)	Mo1-C14-C13-C12	-65.11 (14)
P12-Mo1-C14-C13	-22.36 (17)	C15-C14-C13-Mo1	65.15 (14)
P13-Mo1-C14-C13	-175.50 (13)	C11—C12—C13—C14	-0.5 (2)
C17—Mo1—C14—C15	146.02 (14)	Mo1-C12-C13-C14	64.52 (14)
C16—Mo1—C14—C15	-3.9 (2)	C11-C12-C13-Mo1	-65.03 (14)
C13—Mo1—C14—C15	-115.5 (2)	C17—Mo1—C13—C14	86.41 (15)
C12—Mo1—C14—C15	-78.22 (15)	C16—Mo1—C13—C14	-129.86 (16)
C11—Mo1—C14—C15	-37.02 (13)	C15—Mo1—C13—C14	-37.60 (14)
P12—Mo1—C14—C15	-137.90 (12)	C12—Mo1—C13—C14	-115.95 (19)
P13—Mo1—C14—C15	68.96 (13)	C11—Mo1—C13—C14	-78.82 (15)
C17—Mo1—C12—C13	29.95 (16)	P12-Mo1-C13-C14	161.94 (14)
C16—Mo1—C12—C13	171.56 (12)	P13-Mo1-C13-C14	6.05 (18)
C14—Mo1—C12—C13	-37.49 (13)	C17—Mo1—C13—C12	-157.63 (12)
C15—Mo1—C12—C13	-79.07 (14)	C16—Mo1—C13—C12	-13.9 (2)
C11—Mo1—C12—C13	-116.16 (19)	C14—Mo1—C13—C12	115.95 (19)
P12—Mo1—C12—C13	97.78 (12)	C15—Mo1—C13—C12	78.35 (14)
P13-Mo1-C12-C13	-96.03 (14)	C11—Mo1—C13—C12	37.13 (13)
C17—Mo1—C12—C11	146.11 (14)	P12—Mo1—C13—C12	-82.11 (12)
C16—Mo1—C12—C11	-72.28 (15)	P13—Mo1—C13—C12	122.01 (12)