Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 N^{\prime}-(But-2-enylidene)isonicotinohydrazide

Zhi-Gang Yin, ${ }^{\text {a* }}$ Shu-Mian Li, ${ }^{\text {b }}$ Heng-Yu Qian ${ }^{\text {a }}$ and Yu-Zhen Chen ${ }^{\text {a }}$

${ }^{\text {a K Key Laboratory of Surface and Interface Science of Henan, School of Materials and }}$ Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China Correspondence e-mail: yinck@263.net

Received 10 October 2008; accepted 13 October 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.034 ; w R$ factor $=0.101$; data-to-parameter ratio $=9.9$.

In the title Schiff base compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, the pyridine ring is twisted with respect to the mean plane containing the hydrazine chain, making a dihedral angle of 31.40 (9) ${ }^{\circ}$. The NH group interacts with the N atom of the pyridine ring through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to build up a zigzag chain developing parallel to the ($\overline{1} 01$) plane.

Related literature

For general background, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=189.22 \\
& \text { Monoclinic, } C c \\
& a=9.5779(8) \AA \\
& b=12.6191(11) \AA \\
& c=9.2095(8) \AA \\
& \beta=113.511(1)^{\circ}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector 4639 measured reflections diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998) 1264 independent reflections 1225 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$
$T_{\text {min }}=0.969, T_{\text {max }}=0.974$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
2 restraints
$w R\left(F^{2}\right)=0.101$
H -atom parameters constrained
$S=1.08$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
1264 reflections
128 parameters
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{3}{ }^{\mathrm{i}}$	0.86	2.17	$2.991(2)$	160

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).; software used to prepare material for publication: SHELXL97.

The authors express their deep appreciation to the Outstanding Youth Fund for Henan Natural Scientific Research (grant No. 0512001100) and the Fund for Scientific and Technical Emphasis (grant No. 072102270006)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2392).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o2150 [doi:10.1107/S1600536808033266]

N^{\prime}-(But-2-enylidene)isonicotinohydrazide

Zhi-Gang Yin, Shu-Mian Li, Heng-Yu Qian and Yu-Zhen Chen

S1. Comment

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes(Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the study of the coordination chemistry of Schiff bases, we have synthesized the title compound (I) and reported its cyrstal structure.
In the title compound. the pyridine ring is twisted with respect to the mean plane containing the hydrazine chain making a dihedral angle of $31.40(9)^{\circ}$ (Fig. 1). The NH interacts with the nitrogen atom of the pyridine ring through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond to build up a zig-zag chain developing parallel to the (-101) plane (Table 1, Fig. 2).

S2. Experimental

Pyridine-4-carboxylic acid hydrazide ($1 \mathrm{mmol}, 0.137 \mathrm{~g}$) was dissolved in anhydrous methanol, $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \% 0.5 \mathrm{ml})$ was added to this, the mixture was stirred for several minitutes at $351 \mathrm{~K}, 3$, 4 -dichlorobenzyaldehyde (1 mmol 0.070 g) in methanol $(8 \mathrm{ml})$ was added dropwise and the mixture was stirred at refluxing temperature for 2 h . The product was isolated and recrystallized in dichloromethane, brown single crystals of (I) was obtained after 5 d .

S3. Refinement

H atoms were placed in calculated position and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methyl) and $\mathrm{N}-\mathrm{H}=$ $0.86 \backslash \%$ A with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl).
In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

$$
P_{\text {c.a }}
$$

Figure 1

Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.

Figure 2
Partial packing view showing the formation of the zig-zag chain through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.[Symmetry code: (i) x-1/2, $y+3 / 2, z-1 / 2]$

N^{\prime}-(But-2-enylidene)isonicotinohydrazide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=189.22$
Monoclinic, $C c$
Hall symbol: C-2yc
$a=9.5779$ (8) \AA
$b=12.6191$ (11) \AA
$c=9.2095$ (8) \AA
$\beta=113.511(1)^{\circ}$
$V=1020.70(15) \AA^{3}$
$Z=4$
$F(000)=400$
$D_{\mathrm{x}}=1.231 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2994 reflections
$\theta=2.4-23.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, brown
$0.25 \times 0.23 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.969, T_{\text {max }}=0.974$

> 4639 measured reflections
> 1264 independent reflections
> 1225 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=28.3^{\circ}, \theta_{\min }=2.8^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-16 \rightarrow 16$
> $l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.101$
$S=1.08$
1264 reflections
128 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
N1	$0.12133(17)$	$1.06196(12)$	$0.79852(17)$	$0.0441(3)$
N2	$0.21940(16)$	$0.98057(11)$	$0.87720(16)$	$0.0398(3)$
H2	0.2126	0.9200	0.8322	0.048^{*}
N3	$0.6220(2)$	$0.73212(13)$	$1.2278(2)$	$0.0512(4)$
O1	$0.33989(17)$	$1.07888(10)$	$1.10035(17)$	$0.0542(4)$
C1	$-0.2651(3)$	$1.1633(3)$	$0.2819(3)$	$0.0800(8)$
H1A	-0.2643	1.2313	0.3292	0.120^{*}
H1B	-0.3661	1.1344	0.2431	0.120^{*}
H1C	-0.2337	1.1712	0.1957	0.120^{*}
C2	$-0.1590(3)$	$1.0910(2)$	$0.4019(3)$	$0.0625(5)$
H2A	-0.1514	1.0222	0.3696	0.075^{*}
C3	$-0.0728(2)$	$1.11582(19)$	$0.5528(2)$	$0.0546(5)$
H3	-0.0819	1.1824	0.5913	0.066^{*}
C4	$0.0338(2)$	$1.04042(16)$	$0.6560(2)$	$0.0475(4)$
H4	0.0388	0.9732	0.6170	0.057^{*}
C5	$0.32562(18)$	$0.99674(12)$	$1.02479(18)$	$0.0366(3)$

C6	$0.42972(17)$	$0.90326(12)$	$1.09198(17)$	$0.0362(3)$
C7	$0.4905(3)$	$0.88762(17)$	$1.2543(2)$	$0.0529(5)$
H7	0.4696	0.9347	1.3208	0.064^{*}
C8	$0.5828(3)$	$0.80039(19)$	$1.3153(2)$	$0.0584(5)$
H8	0.6198	0.7887	1.4239	0.070^{*}
C9	$0.5679(2)$	$0.75022(15)$	$1.0721(2)$	$0.0477(4)$
H9	0.5965	0.7046	1.0096	0.057^{*}
C10	$0.47069(19)$	$0.83399(13)$	$0.99866(19)$	$0.0411(3)$
H10	0.4341	0.8433	0.8896	0.049^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
N1	$0.0439(8)$	$0.0368(7)$	$0.0431(8)$	$0.0086(6)$	$0.0081(6)$	$0.0041(6)$
N2	$0.0428(7)$	$0.0303(6)$	$0.0381(7)$	$0.0045(5)$	$0.0075(5)$	$-0.0011(5)$
N3	$0.0596(9)$	$0.0426(8)$	$0.0425(8)$	$0.0149(7)$	$0.0108(7)$	$0.0071(6)$
O1	$0.0604(8)$	$0.0401(7)$	$0.0468(7)$	$0.0119(6)$	$0.0055(6)$	$-0.0113(5)$
C1	$0.0650(15)$	$0.099(2)$	$0.0570(13)$	$0.0146(14)$	$0.0046(11)$	$0.0212(14)$
C2	$0.0564(11)$	$0.0683(14)$	$0.0532(12)$	$0.0083(10)$	$0.0116(9)$	$0.0077(10)$
C3	$0.0481(9)$	$0.0564(11)$	$0.0491(10)$	$0.0114(8)$	$0.0086(8)$	$0.0117(8)$
C4	$0.0453(9)$	$0.0441(9)$	$0.0445(9)$	$0.0048(7)$	$0.0088(7)$	$0.0027(7)$
C5	$0.0387(7)$	$0.0320(7)$	$0.0351(7)$	$0.0046(5)$	$0.0104(6)$	$-0.0001(5)$
C6	$0.0381(7)$	$0.0322(7)$	$0.0338(7)$	$0.0025(5)$	$0.0096(6)$	$-0.0003(6)$
C7	$0.0662(12)$	$0.0525(11)$	$0.0334(8)$	$0.0194(9)$	$0.0128(8)$	$-0.0008(7)$
C8	$0.0720(12)$	$0.0601(12)$	$0.0334(8)$	$0.0204(10)$	$0.0108(8)$	$0.0074(8)$
C9	$0.0585(10)$	$0.0395(8)$	$0.0423(8)$	$0.0146(7)$	$0.0173(8)$	$0.0013(6)$
C10	$0.0494(8)$	$0.0366(8)$	$0.0332(7)$	$0.0088(6)$	$0.0122(6)$	$0.0014(6)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

N1-C4	1.273 (2)	C3-C4	1.441 (3)
N1-N2	1.3853 (18)	C3-H3	0.9300
N2-C5	1.349 (2)	C4-H4	0.9300
N2-H2	0.8600	C5-C6	1.509 (2)
N3-C8	1.332 (3)	C6-C7	1.385 (2)
N3-C9	1.335 (2)	C6-C10	1.388 (2)
O1-C5	1.225 (2)	C7-C8	1.383 (3)
C1-C2	1.480 (3)	C7-H7	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	C8-H8	0.9300
C1-H1B	0.9600	C9-C10	1.392 (2)
C1-H1C	0.9600	C9—H9	0.9300
C2-C3	1.340 (3)	C10-H10	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300		
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	114.28 (15)	C3-C4-H4	118.6
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 1$	119.75 (13)	O1-C5-N2	124.64 (15)
C5-N2-H2	120.1	O1-C5-C6	121.51 (15)
N1—N2—H2	120.1	N2-C5-C6	113.84 (13)

$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$	$117.17(16)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 10$	$118.54(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.58(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 10-\mathrm{C} 6-\mathrm{C} 5$	$122.85(14)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$118.48(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.8
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.8
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{~N} 3-\mathrm{C} 8-\mathrm{C} 7$	$123.92(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$125.9(2)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{H} 8$	118.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.1	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	118.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.1	$\mathrm{~N} 3-\mathrm{C} 9-\mathrm{C} 10$	$123.32(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.8(2)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	118.3
$\mathrm{C} 2-\mathrm{H} 3-\mathrm{H} 3$	119.6	$\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 9$	118.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6	$\mathrm{C} 6-\mathrm{C} 10-\mathrm{H} 10$	$118.48(15)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$122.76(18)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	120.8
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4$	118.6	120.8	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.86	2.17	$2.991(2)$	160

Symmetry code: (i) $x-1 / 2,-y+3 / 2, z-1 / 2$.

