organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[Propane-1,2-diyl­bis­(nitrilo­methyl­­idyne)]­dibenzo­nitrile–4,4′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]dibenzo­nitrile [0.796 (2)/0.204 (2)]

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 28 August 2008; accepted 25 September 2008; online 18 October 2008)

The title cocrystal, 0.796C19H16N4·0.204C18H14N4, is a disordered mixture of two potentially bidentate Schiff base ligands. The difference in the two components of the cocrystal is the replacement of the methyl group in the linkage between the imine N atoms in the major component of the Schiff base ligand by an H atom. The imino (C=N) functional groups are coplanar with the benzene rings (only the major component) and extend in opposite directions (both components). Inter­molecular ππ inter­actions with a centroid-to-centroid distance of 3.7371 (8) Å are observed in the crystal packing.

Related literature

For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]).

[Scheme 1]

Experimental

Crystal data
  • 0.796C19H16N4·0.204C18H14N4

  • Mr = 297.68

  • Triclinic, [P \overline 1]

  • a = 9.2370 (2) Å

  • b = 9.7769 (2) Å

  • c = 9.8169 (2) Å

  • α = 81.846 (1)°

  • β = 75.098 (1)°

  • γ = 67.421 (1)°

  • V = 790.15 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.38 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.979

  • 17295 measured reflections

  • 4628 independent reflections

  • 3746 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 1.04

  • 4628 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of catalysts and enzymatic reactions, magnetic materials and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported recently (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008).

The title cocrystal consists of two bidentate Schiff base ligands. The bond lengths and angles in the two molecules (I, Fig. 1) are within normal ranges (Allen et al., 1987). In the major component, the imino (C=N) functional groups are coplanar with the benzene rings. The difference in the two components of the co-crystal, which are disordered over two sites, is the replacement of the methyl group in the major component by a hydrogen atom in the linkage between the imino N atoms. The ratio of the refined site occupancy factors of the major and minor components is 0.796 (2)/0.204 (2). The short distance between the centroids of the six-membered rings indicates the existence of π-π interactions (Fig. 2), with a Cg1···Cg1 distance of 3.7371 (8) Å (symmetry code: -x, -y, 2 - z; Cg1 is the centroid of the C11–C16 benzene ring).

Related literature top

For values of bond lengths, see: Allen et al. (1987). For related structures, see, for example: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun, Kia & Kargar (2008); Fun, Kargar & Kia (2008).

Experimental top

The synthetic method has been described previously (Fun, Kargar & Kia, 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating-group model was used for the methyl groups. Incorrect bond lengths of the methylene bridge, plus the presence of large peaks in the difference Fourier map near to the methylene bridge, led us to suspect positional disorder of this segment of the title compound. The refined ratio of the site-occupany factors for the disorder parts is 0.796 (2)/0.204 (2).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title cocrystal, with atom labels and 50% probability ellipsoids for non-H atoms. Open bonds indicate the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the b-axis.
4,4'-[propane-1,2-diylbis(nitrilomethylidyne)]dibenzonitrile– 4,4'-[ethane-1,2-diylbis(nitrilomethylidyne)]dibenzonitrile [0.796 (2)/0.204 (2)] top
Crystal data top
0.796C19H16N4·0.204C18H14N4Z = 2
Mr = 297.68F(000) = 313
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2370 (2) ÅCell parameters from 6569 reflections
b = 9.7769 (2) Åθ = 3.2–30.8°
c = 9.8169 (2) ŵ = 0.08 mm1
α = 81.846 (1)°T = 100 K
β = 75.098 (1)°Block, colourless
γ = 67.421 (1)°0.39 × 0.38 × 0.27 mm
V = 790.15 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4628 independent reflections
Radiation source: fine-focus sealed tube3746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.890, Tmax = 0.979k = 1313
17295 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.2311P]
where P = (Fo2 + 2Fc2)/3
4628 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
0.796C19H16N4·0.204C18H14N4γ = 67.421 (1)°
Mr = 297.68V = 790.15 (3) Å3
Triclinic, P1Z = 2
a = 9.2370 (2) ÅMo Kα radiation
b = 9.7769 (2) ŵ = 0.08 mm1
c = 9.8169 (2) ÅT = 100 K
α = 81.846 (1)°0.39 × 0.38 × 0.27 mm
β = 75.098 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3746 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.979Rint = 0.020
17295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
4628 reflectionsΔρmin = 0.48 e Å3
230 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.44472 (19)0.58449 (16)0.76563 (18)0.0277 (3)0.796 (2)
N2A0.31537 (17)0.28586 (16)0.96983 (15)0.0294 (3)0.796 (2)
C8A0.41965 (19)0.44248 (17)0.78683 (17)0.0276 (3)0.796 (2)
H8AA0.52350.36020.76750.033*0.796 (2)
C9A0.3328 (2)0.42957 (19)0.93985 (17)0.0311 (4)0.796 (2)
H9AA0.39330.44091.00210.037*0.796 (2)
H9AB0.22750.50790.95690.037*0.796 (2)
C19A0.3162 (2)0.44326 (18)0.68371 (15)0.0302 (4)0.796 (2)
H19A0.37700.44260.58830.045*0.796 (2)
H19B0.22040.53080.69540.045*0.796 (2)
H19C0.28730.35690.70390.045*0.796 (2)
N1B0.4751 (7)0.5817 (7)0.8069 (6)0.0236 (13)*0.204 (2)
N2B0.2894 (7)0.2948 (6)0.8959 (6)0.0294 (3)0.204 (2)
C8B0.4619 (7)0.4375 (6)0.8536 (6)0.0225 (11)*0.204 (2)
H8BA0.47260.41440.95080.027*0.204 (2)
H8BB0.54780.36120.79590.027*0.204 (2)
C9B0.2974 (6)0.4397 (6)0.8414 (6)0.0203 (10)0.204 (2)
H9BA0.21060.51790.89620.024*0.204 (2)
H9BB0.28810.45710.74370.024*0.204 (2)
N30.77232 (14)1.20704 (14)0.53274 (13)0.0356 (3)
N40.04293 (17)0.36229 (15)1.22228 (16)0.0481 (4)
C10.77783 (15)0.70764 (15)0.59144 (14)0.0310 (3)
H1A0.85520.61560.56520.037*
C20.81727 (15)0.83368 (15)0.55783 (13)0.0301 (3)
H2A0.92070.82630.51010.036*
C30.70001 (14)0.97147 (14)0.59648 (12)0.0250 (2)
C40.54475 (14)0.98285 (14)0.66949 (13)0.0281 (3)
H4A0.46711.07490.69570.034*
C50.50763 (14)0.85626 (14)0.70243 (13)0.0274 (3)
H5A0.40430.86350.75070.033*
C60.62345 (14)0.71778 (14)0.66410 (12)0.0248 (2)
C70.58542 (16)0.58172 (14)0.69901 (14)0.0302 (3)
H7A0.66820.48820.67130.036*0.796 (2)
H7B0.64270.49710.64190.036*0.204 (2)
C100.18277 (17)0.28390 (16)1.04041 (17)0.0379 (3)
H10A0.09790.37541.07110.045*0.796 (2)
H10B0.13890.36311.10420.045*0.204 (2)
C110.15451 (14)0.14439 (14)1.07915 (13)0.0269 (3)
C120.00891 (15)0.14545 (14)1.16669 (14)0.0309 (3)
H12A0.06910.23451.20050.037*
C130.02034 (15)0.01501 (14)1.20368 (13)0.0285 (3)
H13A0.11740.01611.26250.034*
C140.09638 (15)0.11766 (14)1.15229 (13)0.0269 (3)
C150.24291 (15)0.12015 (15)1.06462 (14)0.0316 (3)
H15A0.32050.20921.03030.038*
C160.27163 (14)0.01010 (14)1.02930 (13)0.0283 (3)
H16A0.36950.00860.97200.034*
C170.73983 (15)1.10277 (15)0.56153 (13)0.0281 (3)
C180.06622 (17)0.25355 (16)1.19090 (15)0.0348 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0290 (7)0.0270 (7)0.0282 (7)0.0139 (5)0.0013 (6)0.0031 (5)
N2A0.0304 (6)0.0287 (6)0.0298 (7)0.0149 (5)0.0010 (5)0.0024 (5)
C8A0.0276 (7)0.0234 (7)0.0311 (8)0.0119 (6)0.0002 (6)0.0034 (6)
C9A0.0340 (8)0.0303 (8)0.0313 (8)0.0176 (6)0.0008 (6)0.0062 (6)
C19A0.0537 (10)0.0276 (7)0.0222 (7)0.0273 (7)0.0126 (6)0.0023 (5)
N2B0.0304 (6)0.0287 (6)0.0298 (7)0.0149 (5)0.0010 (5)0.0024 (5)
C9B0.024 (2)0.016 (2)0.021 (2)0.0076 (19)0.0053 (18)0.0005 (18)
N30.0337 (6)0.0363 (6)0.0387 (6)0.0187 (5)0.0002 (5)0.0055 (5)
N40.0457 (7)0.0340 (7)0.0585 (8)0.0165 (6)0.0000 (6)0.0008 (6)
C10.0258 (6)0.0283 (6)0.0341 (6)0.0090 (5)0.0027 (5)0.0060 (5)
C20.0239 (5)0.0335 (7)0.0312 (6)0.0127 (5)0.0020 (4)0.0046 (5)
C30.0253 (5)0.0294 (6)0.0229 (5)0.0134 (5)0.0033 (4)0.0031 (4)
C40.0235 (5)0.0265 (6)0.0325 (6)0.0096 (4)0.0006 (4)0.0051 (5)
C50.0225 (5)0.0294 (6)0.0298 (6)0.0116 (5)0.0006 (4)0.0036 (5)
C60.0252 (5)0.0268 (6)0.0219 (5)0.0112 (4)0.0011 (4)0.0029 (4)
C70.0304 (6)0.0258 (6)0.0308 (6)0.0108 (5)0.0010 (5)0.0025 (5)
C100.0293 (6)0.0273 (6)0.0558 (9)0.0129 (5)0.0018 (6)0.0112 (6)
C110.0248 (5)0.0261 (6)0.0312 (6)0.0105 (4)0.0043 (4)0.0055 (4)
C120.0260 (6)0.0257 (6)0.0360 (6)0.0066 (5)0.0000 (5)0.0066 (5)
C130.0236 (5)0.0305 (6)0.0283 (6)0.0094 (5)0.0015 (4)0.0008 (5)
C140.0269 (6)0.0263 (6)0.0263 (5)0.0094 (5)0.0046 (4)0.0005 (4)
C150.0271 (6)0.0265 (6)0.0358 (6)0.0072 (5)0.0004 (5)0.0057 (5)
C160.0232 (5)0.0299 (6)0.0303 (6)0.0100 (5)0.0006 (4)0.0054 (5)
C170.0256 (5)0.0330 (6)0.0269 (6)0.0134 (5)0.0013 (4)0.0054 (5)
C180.0326 (6)0.0304 (7)0.0372 (7)0.0113 (5)0.0012 (5)0.0005 (5)
Geometric parameters (Å, º) top
N1A—C71.2878 (18)C2—C31.3947 (18)
N1A—C8A1.4714 (19)C2—H2A0.9300
N2A—C101.2484 (18)C3—C41.3979 (16)
N2A—C9A1.455 (2)C3—C171.4400 (16)
C8A—C9A1.523 (2)C4—C51.3818 (16)
C8A—C19A1.558 (2)C4—H4A0.9300
C8A—H8AA0.9800C5—C61.3944 (17)
C9A—H9AA0.9700C5—H5A0.9300
C9A—H9AB0.9700C6—C71.4758 (16)
C19A—H19A0.9600C7—H7A0.9600
C19A—H19B0.9600C7—H7B0.9600
C19A—H19C0.9600C10—C111.4658 (17)
N1B—C71.267 (6)C10—H10A0.9600
N1B—C8B1.460 (8)C10—H10B0.9600
N2B—C9B1.464 (7)C11—C121.3945 (17)
N2B—C101.521 (6)C11—C161.3975 (17)
C8B—C9B1.546 (8)C12—C131.3834 (17)
C8B—H8BA0.9700C12—H12A0.9300
C8B—H8BB0.9700C13—C141.3897 (17)
C9B—H9BA0.9700C13—H13A0.9300
C9B—H9BB0.9700C14—C151.3982 (17)
N3—C171.1484 (17)C14—C181.4400 (18)
N4—C181.1489 (19)C15—C161.3781 (17)
C1—C21.3883 (17)C15—H15A0.9300
C1—C61.3930 (16)C16—H16A0.9300
C1—H1A0.9300
C7—N1A—C8A116.77 (13)C1—C6—C5119.43 (11)
C10—N2A—C9A117.17 (13)C1—C6—C7119.38 (11)
N1A—C8A—C9A107.68 (13)C5—C6—C7121.19 (10)
N1A—C8A—C19A108.24 (13)N1B—C7—N1A24.5 (2)
C9A—C8A—C19A111.02 (13)N1B—C7—C6117.3 (3)
N1A—C8A—H8AA110.0N1A—C7—C6122.07 (12)
C9A—C8A—H8AA110.0N1B—C7—H7A117.8
C19A—C8A—H8AA110.0N1A—C7—H7A119.0
N2A—C9A—C8A110.09 (13)C6—C7—H7A119.0
N2A—C9A—H9AA109.6N1B—C7—H7B121.9
C8A—C9A—H9AA109.6N1A—C7—H7B111.9
N2A—C9A—H9AB109.6C6—C7—H7B120.8
C8A—C9A—H9AB109.6H7A—C7—H7B23.9
H9AA—C9A—H9AB108.2N2A—C10—C11121.33 (13)
C7—N1B—C8B115.5 (5)N2A—C10—N2B31.9 (2)
C9B—N2B—C10118.6 (4)C11—C10—N2B116.6 (2)
N1B—C8B—C9B110.0 (5)N2A—C10—H10A119.5
N1B—C8B—H8BA109.7C11—C10—H10A119.2
C9B—C8B—H8BA109.7N2B—C10—H10A114.8
N1B—C8B—H8BB109.7N2A—C10—H10B107.4
C9B—C8B—H8BB109.7C11—C10—H10B121.7
H8BA—C8B—H8BB108.2N2B—C10—H10B121.8
N2B—C9B—C8B107.0 (4)H10A—C10—H10B32.0
N2B—C9B—H9BA110.3C12—C11—C16119.49 (11)
C8B—C9B—H9BA110.3C12—C11—C10119.68 (11)
N2B—C9B—H9BB110.3C16—C11—C10120.83 (11)
C8B—C9B—H9BB110.3C13—C12—C11120.51 (11)
H9BA—C9B—H9BB108.6C13—C12—H12A119.7
C2—C1—C6120.64 (11)C11—C12—H12A119.7
C2—C1—H1A119.7C12—C13—C14119.49 (11)
C6—C1—H1A119.7C12—C13—H13A120.3
C1—C2—C3119.28 (11)C14—C13—H13A120.3
C1—C2—H2A120.4C13—C14—C15120.52 (12)
C3—C2—H2A120.4C13—C14—C18119.56 (11)
C2—C3—C4120.53 (11)C15—C14—C18119.92 (11)
C2—C3—C17119.61 (10)C16—C15—C14119.61 (11)
C4—C3—C17119.86 (11)C16—C15—H15A120.2
C5—C4—C3119.44 (11)C14—C15—H15A120.2
C5—C4—H4A120.3C15—C16—C11120.37 (11)
C3—C4—H4A120.3C15—C16—H16A119.8
C4—C5—C6120.68 (11)C11—C16—H16A119.8
C4—C5—H5A119.7N3—C17—C3179.50 (14)
C6—C5—H5A119.7N4—C18—C14179.53 (16)
C7—N1A—C8A—C9A134.28 (16)C1—C6—C7—N1B152.5 (3)
C7—N1A—C8A—C19A105.62 (18)C5—C6—C7—N1B27.5 (4)
C10—N2A—C9A—C8A136.91 (16)C1—C6—C7—N1A179.80 (14)
N1A—C8A—C9A—N2A175.76 (13)C5—C6—C7—N1A0.2 (2)
C19A—C8A—C9A—N2A65.92 (17)C9A—N2A—C10—C11178.46 (13)
C7—N1B—C8B—C9B116.7 (5)C9A—N2A—C10—N2B90.8 (4)
C10—N2B—C9B—C8B105.6 (5)C9B—N2B—C10—N2A83.9 (6)
N1B—C8B—C9B—N2B177.4 (5)C9B—N2B—C10—C11168.8 (4)
C6—C1—C2—C30.6 (2)N2A—C10—C11—C12175.33 (15)
C1—C2—C3—C40.61 (19)N2B—C10—C11—C12148.5 (3)
C1—C2—C3—C17179.77 (11)N2A—C10—C11—C164.8 (2)
C2—C3—C4—C50.45 (19)N2B—C10—C11—C1631.4 (3)
C17—C3—C4—C5179.94 (11)C16—C11—C12—C130.31 (19)
C3—C4—C5—C60.25 (19)C10—C11—C12—C13179.60 (12)
C2—C1—C6—C50.38 (19)C11—C12—C13—C140.35 (19)
C2—C1—C6—C7179.66 (11)C12—C13—C14—C150.44 (19)
C4—C5—C6—C10.22 (19)C12—C13—C14—C18179.89 (12)
C4—C5—C6—C7179.83 (11)C13—C14—C15—C160.1 (2)
C8B—N1B—C7—N1A83.2 (8)C18—C14—C15—C16179.31 (12)
C8B—N1B—C7—C6168.7 (4)C14—C15—C16—C110.8 (2)
C8A—N1A—C7—N1B97.6 (8)C12—C11—C16—C150.90 (19)
C8A—N1A—C7—C6176.59 (13)C10—C11—C16—C15179.01 (12)

Experimental details

Crystal data
Chemical formula0.796C19H16N4·0.204C18H14N4
Mr297.68
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2370 (2), 9.7769 (2), 9.8169 (2)
α, β, γ (°)81.846 (1), 75.098 (1), 67.421 (1)
V3)790.15 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.38 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.890, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17295, 4628, 3746
Rint0.020
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 1.05
No. of reflections4628
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Footnotes

Additional correspondence author: e-mail: zsrkk@yahoo.com.

Acknowledgements

H-KF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds