organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5-Bis(4-meth­oxy­phen­yl)-2,8-bis­­[3-(tri­fluoro­meth­yl)phen­yl]-5H-cyclo­penta­[2,1-b:3,4-b']di­pyridine

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 27 September 2008; accepted 20 October 2008; online 25 October 2008)

The title compound, C39H26F6N2O2, showed two melting transitions 477.4 and 506.5 K in a differential scanning calorimetry (DSC) study. The first of these can be attributed to a melting phase transition arising from the rotation of two trifluoro­methyl groups. In the crystal structure, both trifluoro­methyl groups are disordered over two sites with occupancy factors of 0.660 (17) and 0.340 (17) for the major and minor orientations, respectively. The introduction of trifluoro­methyl groups inhibits π-stacking between the diaza­fluorene (cyclo­penta­[2,1-b:3,4-b']dipyridine) units. Three short F⋯O contacts between 2.80 (3) and 2.95 (1) Å are observed in the crystal structure.

Related literature

The synthesis and thermal properties of the title compound were reported by Ono et al. (2007[Ono, K., Nagano, K., Suto, M. & Saito, K. (2007). Heterocycles, 71, 799-804.]). For related literature on mol­ecular and crystal structures, including the 4,5-diaza­fluorene system, see: Ono & Saito (2008[Ono, K. & Saito, K. (2008). Heterocycles, 75, 2381-2413.]).

[Scheme 1]

Experimental

Crystal data
  • C39H26F6N2O2

  • Mr = 668.62

  • Orthorhombic, P 21 21 21

  • a = 9.283 (2) Å

  • b = 12.357 (3) Å

  • c = 26.941 (6) Å

  • V = 3090.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 (1) K

  • 0.38 × 0.30 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 20599 measured reflections

  • 3171 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.146

  • S = 1.05

  • 3171 reflections

  • 498 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), was prepared as a new electron-transporting material in the study of organic electroluminescent (EL) devices (Ono et al., 2007). A differential scanning calorimetry (DSC) study of (I) revealed novel thermal behavior (Fig. 1). The first heating profile showed a first melting point of 477.4 K and a crystallization temperature of 479.7 K. After cooling, the second heating profile exhibited a second melting point of 506.5 K. Furthermore, the third heating profile displayed only a glass transition temperature of 369.3 K. The first melting point can be attributed to a phase transition arising from rotation of two trifluoromethyl groups.

The molecular structure of (I) is shown in Fig. 2. The 4,5-diazafluorene (cyclopenta[2,1-b:3,4-b']dipyridine) ring system is almost planar with an r.m.s. deviation of 0.052Å. The dihedral angles between the 4,5-diazafluorene ring system and the pendant trifluoromethylphenyl groups are 19.5 (1) ° and 62.3 (1) °. Both the trifluoromethyl groups are disordered over two sites with occupancy factors of 0.660 (17):0.340 (17). The crystal structure is characterized by an arrangement of the molecules along the c axis (Fig. 3). In the molecular arrangement, significant ππ overlapping between the 4,5-diazafluorene moieties is not found, although it was observed in the crystal of a 2,8-diphenyl derivative (Ono & Saito, 2008). Three short F···O contacts between 2.80 (3) and 2.95 (1) Å are observed in the crystal of (I).

Related literature top

The synthesis and thermal properties of the title compound were reported by Ono et al. (2007). For related literature on molecular and crystal structures, including the 4,5-diazafluorene system, see: Ono & Saito (2008).

Experimental top

The title compound (I) was synthesized by the direct arylation reaction of mono-substituted compound (II), which was also prepared by the direct arylation of 5,5-bis(4-methoxyphenyl)-5H-cyclopenta[2,1-b:3,4-b']dipyridine (III). The direct arylation of compound (II) was performed as follows: nBuLi in hexane (1.60 M, 3.3 ml, 5.2 mmol) was added dropwise to a solution of 3-bromobenzotrifluoride (0.66 ml, 4.8 mmol) in dry ether (20 ml) at 195 K under nitrogen. The solution was stirred at 195 K for 30 min and at 0 °C for 30 min. Compound (II) (1.52 g, 4.0 mmol) and dry toluene (30 ml) were added to the solution at 253 K. The reaction mixture was stirred at 253 K for 30 min and at room temperature overnight. The mixture was poured into water and dichloromethane was added. The organic layer was separated and aqueous layer was extracted with dichloromethane (× 2). Manganese(IV) oxide (MnO2) (10 g) was added to the combined organic solution and the mixture was stirred for 30 min. Further, anhydrous magnesium sulfate (MgSO4) (10 g) was added and the mixture was stirred for 30 min. After filtration and condensation, the residue was chromatographed on silica gel (hexane/ethyl acetate = 3:1 v/v) to afford the title compound as a white solid (1.28 g, 39%). Colorless prisms of (I) suitable for X-ray analysis were grown from an acetonitrile solution.

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement.

All the H atoms were placed in geometrically calculated positions, with C—H = 0.95 (phenyl) and 0.98 (methyl) Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) (phenyl) and 1.5Ueq(C) (methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The DSC profile of (I).
[Figure 2] Fig. 2. The molecular structure of (I), with 50% probability displacement elipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radius. The disordered fluorine atoms (F7–F12) of the two trifluoromethyl groups are omitted for clarity.
[Figure 3] Fig. 3. The packing diagram of (I).
9,9-Bis(4-methoxyphenyl)-3,6-bis[3-(trifluoromethyl)phenyl]-9H--4,5-diazafluorene top
Crystal data top
C39H26F6N2O2Dx = 1.437 Mg m3
Mr = 668.62Melting point: 483 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9363 reflections
a = 9.283 (2) Åθ = 3.0–27.5°
b = 12.357 (3) ŵ = 0.11 mm1
c = 26.941 (6) ÅT = 173 K
V = 3090.4 (12) Å3Prism, colorless
Z = 40.38 × 0.30 × 0.20 mm
F(000) = 1376
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2849 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.040
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 14.7059 pixels mm-1h = 1111
ϕ and ω scansk = 1513
20599 measured reflectionsl = 3034
3171 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.1005P)2 + 0.7722P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3171 reflectionsΔρmax = 0.28 e Å3
498 parametersΔρmin = 0.25 e Å3
24 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (15)
Crystal data top
C39H26F6N2O2V = 3090.4 (12) Å3
Mr = 668.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.283 (2) ŵ = 0.11 mm1
b = 12.357 (3) ÅT = 173 K
c = 26.941 (6) Å0.38 × 0.30 × 0.20 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2849 reflections with I > 2σ(I)
20599 measured reflectionsRint = 0.040
3171 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05624 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3171 reflectionsΔρmin = 0.25 e Å3
498 parameters
Special details top

Experimental. IR (KBr, cm-1): 1607, 1574, 1510, 1337, 1298, 1256, 1175, 1130, 1073, 1030, 837, 808, 700; 1H NMR (CDCl3, δ p.p.m): 3.78 (s, 6H), 6.81 (d, 4H, J = 8.8 Hz), 7.17 (d, 4H, J = 8.8 Hz), 7.62–7.73 (m, 4H), 7.79 (d, 2H, J = 8.1 Hz), 7.88 (d, 2H, J = 8.1 Hz), 8.45 (m, 4H). 13C NMR (CDCl3, δ p.p.m): 55.3, 59.9, 114.1, 121.1, 124.2 (q, J = 3.7 Hz), 124.2 (q, J = 272.5 Hz), 125.8 (q, J = 3.6 Hz), 128.9, 129.2, 130.8, 131.1 (q, J = 30.5 Hz), 134.6, 135.4, 139.7, 146.3, 156.6, 157.4, 158.9; MS (EI): m/z 668 (M+, 100). Anal. Calcd for C39H26F6N2O2: C, 70.06; H, 3.92; N, 4.19. Found: C, 70.32; H, 3.81; N, 4.24.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The fluorine atoms of the two trifluoromethyl groups are disordered over two sites (F1–F6 and F7–F12) with occupancies of 0.66 (2):0.34 (2). The values were determined by refining site occupancies.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0417 (4)0.0056 (3)0.68651 (14)0.0225 (8)
C20.1083 (4)0.0379 (3)0.73646 (14)0.0221 (8)
C30.2401 (4)0.0855 (3)0.74784 (15)0.0243 (8)
H30.30530.10650.72240.029*
C40.2729 (5)0.1013 (3)0.79725 (15)0.0274 (9)
H40.36010.13650.80610.033*
C50.1782 (4)0.0656 (3)0.83462 (14)0.0241 (8)
C60.0207 (4)0.0069 (3)0.77591 (14)0.0217 (8)
C70.1139 (4)0.0386 (3)0.75513 (14)0.0211 (8)
C80.3389 (4)0.1127 (3)0.75455 (15)0.0227 (8)
C90.3418 (5)0.1070 (3)0.70272 (16)0.0284 (9)
H90.42510.13070.68530.034*
C100.2246 (5)0.0673 (3)0.67642 (15)0.0264 (8)
H100.22560.06280.64120.032*
C110.1057 (4)0.0345 (3)0.70387 (14)0.0219 (8)
C120.0196 (5)0.2558 (3)0.57401 (15)0.0251 (8)
C130.0576 (4)0.2838 (3)0.62200 (15)0.0247 (8)
H130.08030.35680.62980.030*
C140.0625 (4)0.2046 (3)0.65879 (15)0.0237 (8)
H140.08880.22470.69160.028*
C150.0298 (4)0.0961 (3)0.64873 (14)0.0229 (8)
C160.0115 (4)0.0708 (3)0.59949 (15)0.0258 (9)
H160.03450.00190.59120.031*
C170.0190 (5)0.1496 (3)0.56326 (15)0.0266 (9)
H170.05070.13120.53080.032*
C180.3207 (4)0.2477 (3)0.62886 (15)0.0265 (9)
C190.3525 (4)0.1388 (3)0.62095 (15)0.0262 (9)
H190.43720.11900.60340.031*
C200.2610 (4)0.0602 (3)0.63860 (15)0.0256 (9)
H200.28360.01380.63310.031*
C210.1352 (4)0.0870 (3)0.66452 (14)0.0215 (8)
C220.1038 (5)0.1955 (3)0.67151 (15)0.0264 (9)
H220.01840.21530.68870.032*
C230.1952 (5)0.2765 (3)0.65377 (16)0.0296 (9)
H230.17190.35060.65870.036*
C240.0996 (6)0.4215 (4)0.53919 (18)0.0383 (11)
H24A0.08560.46650.50960.058*
H24B0.20130.40100.54180.058*
H24C0.07120.46240.56880.058*
C250.3891 (6)0.4316 (3)0.6160 (2)0.0477 (13)
H25A0.46910.47390.60220.072*
H25B0.30070.44810.59760.072*
H25C0.37600.45010.65100.072*
C260.2127 (4)0.0782 (3)0.88795 (14)0.0250 (8)
C270.2372 (5)0.1807 (4)0.90810 (15)0.0302 (9)
H270.23280.24280.88740.036*
C280.2681 (5)0.1925 (4)0.95836 (16)0.0336 (10)
C290.2793 (5)0.1024 (4)0.98864 (17)0.0384 (11)
H290.30240.11041.02280.046*
C300.2569 (5)0.0014 (4)0.96899 (17)0.0395 (11)
H300.26460.06060.98970.047*
C310.2231 (5)0.0109 (4)0.91903 (16)0.0325 (10)
H310.20700.08130.90600.039*
C320.4591 (4)0.1623 (3)0.78298 (14)0.0237 (8)
C330.4380 (4)0.1942 (3)0.83220 (16)0.0270 (9)
H330.34770.18140.84770.032*
C340.5474 (5)0.2441 (3)0.85863 (15)0.0274 (9)
C350.6800 (5)0.2636 (4)0.83707 (17)0.0366 (11)
H350.75410.29900.85520.044*
C360.7027 (5)0.2308 (4)0.78883 (18)0.0446 (13)
H360.79410.24240.77390.053*
C370.5943 (5)0.1811 (4)0.76177 (17)0.0346 (10)
H370.61200.15950.72850.041*
C380.2852 (7)0.3031 (4)0.97895 (19)0.0466 (12)
C390.5217 (5)0.2783 (4)0.91103 (17)0.0375 (10)
N10.0507 (4)0.0179 (3)0.82383 (12)0.0236 (7)
N20.2259 (4)0.0768 (3)0.78144 (12)0.0233 (7)
O10.0136 (4)0.3268 (2)0.53532 (11)0.0343 (7)
O20.4209 (3)0.3188 (2)0.61156 (12)0.0369 (8)
F10.3382 (15)0.3725 (10)0.9461 (4)0.071 (3)0.660 (17)
F20.3476 (14)0.3106 (8)1.0210 (3)0.075 (3)0.660 (17)
F30.1500 (9)0.3518 (9)0.9890 (5)0.075 (3)0.660 (17)
F40.4349 (13)0.2060 (11)0.9350 (2)0.090 (4)0.660 (17)
F50.6399 (7)0.2656 (8)0.9387 (4)0.056 (2)0.660 (17)
F60.4708 (16)0.3715 (9)0.9164 (3)0.107 (5)0.660 (17)
F70.422 (3)0.3074 (18)1.0018 (14)0.142 (12)0.340 (17)
F80.198 (4)0.3251 (18)1.0103 (10)0.116 (10)0.340 (17)
F90.307 (3)0.383 (2)0.9498 (6)0.074 (7)0.340 (17)
F100.559 (3)0.3875 (16)0.9153 (8)0.124 (9)0.340 (17)
F110.3896 (12)0.2861 (18)0.9235 (6)0.069 (6)0.340 (17)
F120.588 (4)0.238 (3)0.9431 (10)0.155 (13)0.340 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (19)0.0241 (19)0.0257 (19)0.0006 (15)0.0014 (16)0.0025 (15)
C20.0169 (19)0.0242 (19)0.0252 (19)0.0001 (15)0.0009 (16)0.0004 (14)
C30.020 (2)0.026 (2)0.0266 (19)0.0040 (15)0.0008 (16)0.0027 (15)
C40.023 (2)0.029 (2)0.031 (2)0.0062 (17)0.0011 (18)0.0025 (16)
C50.023 (2)0.0240 (19)0.025 (2)0.0035 (15)0.0013 (17)0.0006 (14)
C60.0180 (19)0.0228 (19)0.0243 (19)0.0001 (14)0.0018 (16)0.0020 (14)
C70.0155 (19)0.0203 (18)0.028 (2)0.0030 (14)0.0008 (16)0.0001 (14)
C80.016 (2)0.024 (2)0.028 (2)0.0032 (15)0.0003 (16)0.0022 (15)
C90.018 (2)0.032 (2)0.035 (2)0.0064 (16)0.0030 (18)0.0009 (17)
C100.024 (2)0.030 (2)0.0254 (19)0.0004 (16)0.0033 (17)0.0005 (16)
C110.0164 (19)0.0226 (19)0.027 (2)0.0007 (14)0.0007 (16)0.0011 (15)
C120.021 (2)0.028 (2)0.027 (2)0.0017 (16)0.0005 (17)0.0002 (15)
C130.023 (2)0.0229 (19)0.028 (2)0.0017 (15)0.0007 (17)0.0014 (15)
C140.017 (2)0.027 (2)0.028 (2)0.0008 (15)0.0004 (16)0.0043 (15)
C150.019 (2)0.0254 (19)0.0242 (19)0.0010 (15)0.0004 (16)0.0004 (14)
C160.022 (2)0.0231 (19)0.032 (2)0.0031 (16)0.0001 (17)0.0008 (15)
C170.029 (2)0.028 (2)0.024 (2)0.0024 (17)0.0002 (18)0.0028 (15)
C180.022 (2)0.029 (2)0.028 (2)0.0028 (16)0.0010 (17)0.0028 (16)
C190.018 (2)0.031 (2)0.029 (2)0.0016 (16)0.0050 (17)0.0021 (16)
C200.024 (2)0.027 (2)0.0256 (19)0.0003 (16)0.0009 (17)0.0011 (15)
C210.019 (2)0.0231 (19)0.0228 (19)0.0021 (15)0.0016 (15)0.0022 (14)
C220.023 (2)0.026 (2)0.030 (2)0.0011 (16)0.0051 (17)0.0005 (16)
C230.025 (2)0.026 (2)0.038 (2)0.0023 (16)0.0002 (19)0.0042 (17)
C240.044 (3)0.031 (2)0.040 (2)0.007 (2)0.000 (2)0.0066 (19)
C250.038 (3)0.029 (2)0.076 (4)0.004 (2)0.011 (3)0.013 (2)
C260.0163 (19)0.034 (2)0.025 (2)0.0038 (16)0.0030 (16)0.0009 (16)
C270.029 (2)0.034 (2)0.028 (2)0.0080 (17)0.0002 (18)0.0006 (16)
C280.031 (2)0.039 (2)0.031 (2)0.0077 (19)0.000 (2)0.0056 (18)
C290.038 (3)0.048 (3)0.029 (2)0.007 (2)0.006 (2)0.0015 (19)
C300.041 (3)0.041 (3)0.036 (2)0.005 (2)0.007 (2)0.007 (2)
C310.033 (2)0.033 (2)0.032 (2)0.0027 (19)0.0080 (19)0.0064 (18)
C320.018 (2)0.026 (2)0.027 (2)0.0035 (15)0.0008 (16)0.0011 (15)
C330.016 (2)0.030 (2)0.034 (2)0.0025 (15)0.0013 (17)0.0039 (16)
C340.021 (2)0.033 (2)0.027 (2)0.0036 (17)0.0029 (17)0.0030 (16)
C350.023 (2)0.052 (3)0.035 (2)0.013 (2)0.0026 (19)0.004 (2)
C360.024 (2)0.073 (4)0.036 (3)0.020 (2)0.002 (2)0.010 (2)
C370.023 (2)0.051 (3)0.029 (2)0.0058 (19)0.0029 (18)0.0136 (19)
C380.060 (3)0.046 (3)0.033 (2)0.008 (3)0.003 (2)0.013 (2)
C390.026 (2)0.055 (3)0.031 (2)0.004 (2)0.0031 (19)0.010 (2)
N10.0190 (17)0.0266 (17)0.0253 (17)0.0033 (13)0.0040 (14)0.0002 (13)
N20.0191 (17)0.0255 (17)0.0251 (16)0.0004 (13)0.0001 (14)0.0011 (12)
O10.043 (2)0.0291 (16)0.0307 (15)0.0046 (13)0.0021 (14)0.0048 (12)
O20.0261 (17)0.0336 (17)0.051 (2)0.0062 (13)0.0094 (15)0.0072 (14)
F10.103 (6)0.037 (4)0.072 (5)0.032 (4)0.048 (4)0.020 (3)
F20.122 (8)0.061 (4)0.041 (3)0.009 (6)0.028 (4)0.014 (3)
F30.065 (4)0.054 (5)0.107 (8)0.009 (3)0.020 (4)0.021 (5)
F40.100 (7)0.139 (8)0.031 (3)0.077 (7)0.024 (4)0.021 (4)
F50.025 (3)0.114 (5)0.030 (3)0.006 (3)0.007 (2)0.026 (3)
F60.190 (13)0.088 (6)0.042 (4)0.105 (7)0.025 (6)0.020 (4)
F70.137 (16)0.061 (9)0.23 (3)0.015 (13)0.144 (18)0.045 (15)
F80.18 (2)0.060 (12)0.108 (19)0.014 (15)0.081 (18)0.035 (11)
F90.16 (2)0.050 (8)0.016 (5)0.015 (9)0.021 (8)0.016 (4)
F100.17 (2)0.097 (10)0.102 (12)0.089 (13)0.058 (12)0.076 (9)
F110.031 (5)0.114 (15)0.061 (8)0.013 (6)0.023 (5)0.051 (9)
F120.18 (2)0.22 (2)0.057 (10)0.17 (2)0.014 (16)0.015 (15)
Geometric parameters (Å, º) top
C1—C151.516 (5)C24—O11.421 (5)
C1—C111.529 (5)C24—H24A0.9800
C1—C21.534 (5)C24—H24B0.9800
C1—C211.553 (5)C24—H24C0.9800
C2—C31.391 (5)C25—O21.430 (6)
C2—C61.392 (6)C25—H25A0.9800
C3—C41.379 (6)C25—H25B0.9800
C3—H30.9500C25—H25C0.9800
C4—C51.407 (6)C26—C311.387 (6)
C4—H40.9500C26—C271.396 (6)
C5—N11.354 (5)C27—C281.392 (6)
C5—C261.480 (5)C27—H270.9500
C6—N11.328 (5)C28—C291.385 (6)
C6—C71.480 (5)C28—C381.483 (7)
C7—N21.344 (5)C29—C301.371 (7)
C7—C111.384 (5)C29—H290.9500
C8—N21.350 (5)C30—C311.390 (7)
C8—C91.398 (6)C30—H300.9500
C8—C321.486 (5)C31—H310.9500
C9—C101.388 (6)C32—C371.398 (6)
C9—H90.9500C32—C331.397 (6)
C10—C111.389 (6)C33—C341.385 (6)
C10—H100.9500C33—H330.9500
C12—O11.364 (5)C34—C351.383 (6)
C12—C131.384 (6)C34—C391.493 (6)
C12—C171.391 (5)C35—C361.378 (7)
C13—C141.393 (6)C35—H350.9500
C13—H130.9500C36—C371.387 (6)
C14—C151.401 (5)C36—H360.9500
C14—H140.9500C37—H370.9500
C15—C161.416 (6)C38—F81.20 (2)
C16—C171.380 (5)C38—F91.28 (2)
C16—H160.9500C38—F21.275 (10)
C17—H170.9500C38—F11.328 (11)
C18—O21.362 (5)C38—F31.418 (10)
C18—C231.391 (6)C38—F71.417 (19)
C18—C191.393 (6)C39—F121.17 (2)
C19—C201.376 (6)C39—F111.275 (11)
C19—H190.9500C39—F61.253 (8)
C20—C211.401 (6)C39—F51.336 (9)
C20—H200.9500C39—F101.399 (16)
C21—C221.385 (5)C39—F41.366 (8)
C22—C231.396 (6)F5—O1i2.953 (11)
C22—H220.9500F8—O2ii2.94 (3)
C23—H230.9500F12—O1i2.80 (3)
C15—C1—C11112.3 (3)C18—C23—H23120.3
C15—C1—C2115.2 (3)C22—C23—H23120.3
C11—C1—C2100.2 (3)O1—C24—H24A109.5
C15—C1—C21109.2 (3)O1—C24—H24B109.5
C11—C1—C21112.2 (3)H24A—C24—H24B109.5
C2—C1—C21107.5 (3)O1—C24—H24C109.5
C3—C2—C6117.5 (4)H24A—C24—H24C109.5
C3—C2—C1131.1 (4)H24B—C24—H24C109.5
C6—C2—C1111.3 (3)O2—C25—H25A109.5
C4—C3—C2117.8 (4)O2—C25—H25B109.5
C4—C3—H3121.1H25A—C25—H25B109.5
C2—C3—H3121.1O2—C25—H25C109.5
C3—C4—C5120.6 (4)H25A—C25—H25C109.5
C3—C4—H4119.7H25B—C25—H25C109.5
C5—C4—H4119.7C31—C26—C27118.3 (4)
N1—C5—C4121.9 (4)C31—C26—C5121.1 (4)
N1—C5—C26116.3 (3)C27—C26—C5120.6 (4)
C4—C5—C26121.7 (4)C28—C27—C26120.5 (4)
N1—C6—C2126.3 (4)C28—C27—H27119.8
N1—C6—C7125.7 (3)C26—C27—H27119.8
C2—C6—C7108.0 (3)C29—C28—C27120.3 (4)
N2—C7—C11125.6 (4)C29—C28—C38120.9 (4)
N2—C7—C6125.9 (3)C27—C28—C38118.8 (4)
C11—C7—C6108.5 (3)C30—C29—C28119.6 (4)
N2—C8—C9122.3 (4)C30—C29—H29120.2
N2—C8—C32116.3 (3)C28—C29—H29120.2
C9—C8—C32121.4 (4)C29—C30—C31120.5 (4)
C10—C9—C8120.8 (4)C29—C30—H30119.8
C10—C9—H9119.6C31—C30—H30119.8
C8—C9—H9119.6C26—C31—C30120.9 (4)
C11—C10—C9117.0 (4)C26—C31—H31119.6
C11—C10—H10121.5C30—C31—H31119.6
C9—C10—H10121.5C37—C32—C33117.8 (4)
C7—C11—C10118.5 (4)C37—C32—C8122.1 (4)
C7—C11—C1111.5 (3)C33—C32—C8120.0 (4)
C10—C11—C1130.0 (4)C34—C33—C32120.7 (4)
O1—C12—C13124.3 (4)C34—C33—H33119.6
O1—C12—C17115.9 (4)C32—C33—H33119.6
C13—C12—C17119.7 (4)C35—C34—C33121.0 (4)
C12—C13—C14119.8 (4)C35—C34—C39119.4 (4)
C12—C13—H13120.1C33—C34—C39119.7 (4)
C14—C13—H13120.1C36—C35—C34118.8 (4)
C13—C14—C15121.8 (4)C36—C35—H35120.6
C13—C14—H14119.1C34—C35—H35120.6
C15—C14—H14119.1C35—C36—C37121.0 (4)
C14—C15—C16116.8 (4)C35—C36—H36119.5
C14—C15—C1124.1 (3)C37—C36—H36119.5
C16—C15—C1119.1 (3)C36—C37—C32120.7 (4)
C17—C16—C15121.3 (4)C36—C37—H37119.7
C17—C16—H16119.3C32—C37—H37119.7
C15—C16—H16119.3F2—C38—F1112.1 (8)
C16—C17—C12120.3 (4)F2—C38—F3101.7 (7)
C16—C17—H17119.8F1—C38—F3100.5 (8)
C12—C17—H17119.8F9—C38—C28119.8 (10)
O2—C18—C23124.9 (4)F2—C38—C28116.6 (7)
O2—C18—C19115.2 (4)F1—C38—C28112.6 (6)
C23—C18—C19119.9 (4)F3—C38—C28111.6 (7)
C20—C19—C18119.9 (4)C28—C38—F7107.0 (10)
C20—C19—H19120.1F6—C39—F5110.7 (7)
C18—C19—H19120.1F6—C39—F4109.0 (8)
C19—C20—C21121.3 (4)F5—C39—F498.3 (7)
C19—C20—H20119.3F11—C39—C34115.1 (7)
C21—C20—H20119.3F6—C39—C34115.4 (5)
C22—C21—C20118.2 (4)F5—C39—C34111.3 (6)
C22—C21—C1122.9 (4)F10—C39—C34108.1 (9)
C20—C21—C1118.8 (3)F4—C39—C34110.9 (5)
C21—C22—C23121.3 (4)C6—N1—C5115.9 (3)
C21—C22—H22119.4C7—N2—C8115.7 (3)
C23—C22—H22119.4C12—O1—C24116.8 (3)
C18—C23—C22119.4 (4)C18—O2—C25117.4 (4)
C15—C1—C2—C356.1 (6)C11—C1—C21—C20168.0 (3)
C11—C1—C2—C3176.8 (4)C2—C1—C21—C2082.8 (4)
C21—C1—C2—C365.9 (5)C20—C21—C22—C230.6 (6)
C15—C1—C2—C6127.9 (4)C1—C21—C22—C23176.0 (4)
C11—C1—C2—C67.2 (4)O2—C18—C23—C22177.3 (4)
C21—C1—C2—C6110.1 (4)C19—C18—C23—C221.3 (6)
C6—C2—C3—C41.7 (6)C21—C22—C23—C180.4 (6)
C1—C2—C3—C4177.5 (4)N1—C5—C26—C3159.9 (5)
C2—C3—C4—C52.8 (6)C4—C5—C26—C31120.1 (5)
C3—C4—C5—N12.0 (6)N1—C5—C26—C27120.8 (4)
C3—C4—C5—C26178.0 (4)C4—C5—C26—C2759.2 (6)
C3—C2—C6—N10.3 (6)C31—C26—C27—C281.4 (6)
C1—C2—C6—N1176.3 (4)C5—C26—C27—C28179.3 (4)
C3—C2—C6—C7178.5 (3)C26—C27—C28—C292.0 (7)
C1—C2—C6—C74.9 (4)C26—C27—C28—C38176.5 (5)
N1—C6—C7—N20.7 (6)C27—C28—C29—C301.3 (7)
C2—C6—C7—N2179.5 (4)C38—C28—C29—C30177.2 (5)
N1—C6—C7—C11178.8 (4)C28—C29—C30—C310.0 (8)
C2—C6—C7—C110.0 (4)C27—C26—C31—C300.1 (6)
N2—C8—C9—C102.4 (6)C5—C26—C31—C30179.4 (4)
C32—C8—C9—C10175.5 (4)C29—C30—C31—C260.6 (7)
C8—C9—C10—C110.3 (6)N2—C8—C32—C37165.7 (4)
N2—C7—C11—C103.3 (6)C9—C8—C32—C3716.2 (6)
C6—C7—C11—C10176.2 (3)N2—C8—C32—C3315.8 (6)
N2—C7—C11—C1175.6 (3)C9—C8—C32—C33162.3 (4)
C6—C7—C11—C14.9 (4)C37—C32—C33—C341.0 (6)
C9—C10—C11—C73.0 (6)C8—C32—C33—C34177.6 (4)
C9—C10—C11—C1175.7 (4)C32—C33—C34—C350.1 (7)
C15—C1—C11—C7130.0 (3)C32—C33—C34—C39179.4 (4)
C2—C1—C11—C77.3 (4)C33—C34—C35—C361.0 (7)
C21—C1—C11—C7106.6 (4)C39—C34—C35—C36179.4 (5)
C15—C1—C11—C1051.2 (5)C34—C35—C36—C371.3 (8)
C2—C1—C11—C10174.0 (4)C35—C36—C37—C320.4 (8)
C21—C1—C11—C1072.1 (5)C33—C32—C37—C360.7 (7)
O1—C12—C13—C14179.1 (4)C8—C32—C37—C36177.8 (4)
C17—C12—C13—C142.6 (6)C29—C28—C38—F218.5 (10)
C12—C13—C14—C150.0 (6)C27—C28—C38—F2163.0 (8)
C13—C14—C15—C161.2 (6)C29—C28—C38—F1150.2 (9)
C13—C14—C15—C1176.3 (4)C27—C28—C38—F131.3 (10)
C11—C1—C15—C14107.7 (4)C29—C28—C38—F397.7 (8)
C2—C1—C15—C146.1 (6)C27—C28—C38—F380.8 (8)
C21—C1—C15—C14127.2 (4)C35—C34—C39—F691.0 (10)
C11—C1—C15—C1674.9 (5)C33—C34—C39—F688.6 (10)
C2—C1—C15—C16171.3 (4)C35—C34—C39—F536.2 (7)
C21—C1—C15—C1650.2 (5)C33—C34—C39—F5144.2 (6)
C14—C15—C16—C170.0 (6)C35—C34—C39—F4144.6 (8)
C1—C15—C16—C17177.7 (4)C33—C34—C39—F435.9 (10)
C15—C16—C17—C122.6 (7)C2—C6—N1—C51.1 (6)
O1—C12—C17—C16177.7 (4)C7—C6—N1—C5177.5 (3)
C13—C12—C17—C163.8 (7)C4—C5—N1—C60.0 (5)
O2—C18—C19—C20177.6 (4)C26—C5—N1—C6180.0 (3)
C23—C18—C19—C201.2 (6)C11—C7—N2—C80.7 (6)
C18—C19—C20—C210.1 (6)C6—C7—N2—C8178.8 (3)
C19—C20—C21—C220.8 (6)C9—C8—N2—C72.2 (6)
C19—C20—C21—C1176.0 (4)C32—C8—N2—C7175.8 (3)
C15—C1—C21—C22140.5 (4)C13—C12—O1—C2424.3 (6)
C11—C1—C21—C2215.4 (5)C17—C12—O1—C24157.3 (4)
C2—C1—C21—C2293.8 (4)C23—C18—O2—C255.1 (6)
C15—C1—C21—C2042.9 (5)C19—C18—O2—C25176.2 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC39H26F6N2O2
Mr668.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.283 (2), 12.357 (3), 26.941 (6)
V3)3090.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.30 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20599, 3171, 2849
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.05
No. of reflections3171
No. of parameters498
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOno, K., Nagano, K., Suto, M. & Saito, K. (2007). Heterocycles, 71, 799–804.  CrossRef CAS Google Scholar
First citationOno, K. & Saito, K. (2008). Heterocycles, 75, 2381–2413.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds