metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tricarbonylbis(tricyclohexylphosphineκP)ruthenium(0) toluene solvate

Andreas Nader, Helmar Görls and Wolfgang Imhof*

Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, August-Bebel-Strasse 2, 07743 Jena, Germany Correspondence e-mail: Wolfgang.Imhof@uni-jena.de

Received 16 October 2008; accepted 20 October 2008

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.010 Å; disorder in solvent or counterion; R factor = 0.082; wR factor = 0.243; data-to-parameter ratio = 24.4.

The title compound, $[Ru(C_{18}H_{33}P)_2(CO)_3]\cdot C_7H_8$, shows a distorted trigonal-bipyramdial coordination around the central Ru atom, with the two phosphine ligands occupying the axial positions. Two toluene molecules per asymmetric unit with site-occupation factors of 0.5 are observed. One of them forces two of the CO ligands to enclose a wider C-Ru-C bond angle [127.5 (3)°] than in the solvent-free crystal structure of [Ru(PCy_3)_2(CO)_3] (Cy is cyclohexyl).

Related literature

For background, see: Berger & Imhof (1999), Dönnecke & Imhof (2003), Chaudret & Poilblanc (1985), Song & Trogler (1992). For the solvent-free structure, see: Dunne *et al.* (2004).

Experimental

Crystal data $[Ru(C_{18}H_{33}P)_2(CO)_3] \cdot C_7H_8$ $M_r = 838.06$

Triclinic, $P\overline{1}$ a = 12.4367 (6) Å

b = 12.4980 (4) Å c = 16.2970 (7) Å $\alpha = 92.685 (2)^{\circ}$ $\beta = 103.594 (2)^{\circ}$ $\gamma = 103.500 (2)^{\circ}$ $V = 2380 2 (2) \text{ Å}^{3}$	Z = 2 Mo K\alpha radiation μ = 0.43 mm ⁻¹ T = 183 (2) K 0.08 × 0.06 × 0.05 mm
Data collection Nonius KappaCCD diffractometer Absorption correction: none 16605 measured reflections	10678 independent reflections 7032 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.082$ $wR(F^2) = 0.243$ S = 1.05 10678 reflections	438 parameters H-atom parameters constrained $\Delta \rho_{max} = 3.45$ e Å ⁻³ $\Delta \rho_{min} = -0.64$ e Å ⁻³

Table 1	
Selected geometric parameters (Å, °).	

Ru1-C1	1.903 (6)	Ru1-P1	2.3777 (15)
Ru1-C3	1.915 (6)	Ru1-P2	2.3780 (15)
Ru1-C2	1.919 (7)		
P1-Ru1-P2	176.22 (5)		

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Siemens, 1990); software used to prepare material for publication: *XP*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2822).

References

- Berger, D. & Imhof, W. (1999). Chem. Commun. pp. 1457-1458.
- Chaudret, B. & Poilblanc, R. (1985). Organometallics, 4, 1722-1726.
- Dönnecke, D. & Imhof, W. (2003). Tetrahedron, 59, 8499-8507.
- Dunne, J. P., Blazina, D., Aiken, S., Carteret, H. A., Duckett, S. B., Jones, J. A., Poli, R. & Whitwood, A. C. (2004). *Dalton Trans.* pp. 3616–3628.
- Nonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Song, L. & Trogler, W. C. (1992). J. Am. Chem. Soc. 114, 3355-3361.

supporting information

Acta Cryst. (2008). E64, m1454 [doi:10.1107/S1600536808034211]

Tricarbonylbis(tricyclohexylphosphine-κP)ruthenium(0) toluene solvate

Andreas Nader, Helmar Görls and Wolfgang Imhof

S1. Comment

In the course of a study whether Ru(II) complexes might act as suitable pre-catalysts in the reaction of α,β -unsaturated imines with carbon monoxide and ethylene to produce chiral γ -lactams, which is originally catalyzed by Ru(0) compounds (Berger & Imhof, 1999; Dönnecke & Imhof, 2003), we intended to use the non-classical Ru(II) complex [Ru(PCy₃)₂(H₂)₂(H)₂] (Chaudret & Poilblanc, 1985) as the precatalyst. After cooling down the autoclave a white precipitate of the title compound was collected. This means that obviously carbon monoxide has replaced all dihydrogen and hydride ligands and the ruthenium center has been reduced from Ru(II) to Ru(0).

The molecular structure of the title compound has been published before as a solvent free crystal structure ($P2_1/n$, Dunne *et al.*, 2004) with one disordered cyclohexyl ring. The synthesis at that time followed a literature procedure that used RuCl₃.H₂O, KOH, PCy₃ and formaldehyde as reducing agent and source of carbon monoxide (Song & Trogler, 1992). The bond lengths in both structures are identical within systematic errors. Nevertheless, the C—Ru—C bond angles in the Ru(CO)₃ plane are significantly different with 119.74 (9)°, 116.77 (9)° and 123.49 (9)° in the case of the structure reported by Dunne *et al.* whereas the corresponding angles in (I) measure to 109.3 (3)°, 123.2 (2)° and 127.5 (3)°. This difference is most probably caused by one of the disordered toluene solvent molecules being situated between two cyclohexyl rings of the phosphine ligands therefore leading to the highest observed bond angle of 127.6 (3)° (C2—Ru1—C3, Figure 1). In addition, one of the aromatic hydrogen atoms shows a weak C—H…O interaction towards one of the carbon monoxide ligands (H2TA…O2 = 2.09 (2) Å).

S2. Experimental

In an attempt to catalytically react methyl-(3-phenylallylidene)amine with carbon monoxide and ethylene, 1 mmol of the imine together with 0.03 mmol (20 mg) $[Ru(PCy_3)_2(H_2)_2(H)_2]$ were dissolved in 4 ml toluene and were heated to 413 K for 17 h in an autoclave pressurized with 8 bar ethylene and 12 bar carbon monoxide. After cooling down the autoclave a white precipitate had formed which was collected and recrystallized from toluene to give colourless prisms of (I) (yield based on Ru: 48%).

S3. Refinement

The two solvent toluene molecules have been refined isotropically with sof's of 0.5 and have been constrained to be regular hexagons by AFIX 66 instructions in SHELXL. Hydrogen atoms were placed in idealized positions and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

Molecular structure of (I) with isplacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Tricarbonylbis(tricyclohexylphosphine-κP)ruthenium(0) toluene solvate

Crystal data	
$[Ru(C_{18}H_{33}P)_2(CO)_3] \cdot C_7H_8$	Z = 2
$M_r = 838.06$	F(000) = 896
Triclinic, P1	$D_{\rm x} = 1.169 { m Mg} { m m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.4367 (6) Å	Cell parameters from 16612 reflections
b = 12.4980 (4) Å	$\theta = 2.2 - 27.5^{\circ}$
c = 16.2970 (7) Å	$\mu = 0.43 \text{ mm}^{-1}$
$\alpha = 92.685 \ (2)^{\circ}$	T = 183 K
$\beta = 103.594 \ (2)^{\circ}$	Prism, colourless
$\gamma = 103.500 \ (2)^{\circ}$	$0.08 \times 0.06 \times 0.05 \text{ mm}$
$V = 2380.2 (2) Å^3$	

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 16605 measured reflections 10678 independent reflections	7032 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -16 \rightarrow 15$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.082$ $wR(F^2) = 0.243$ S = 1.05 10678 reflections 438 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.123P)^2 + 7.5629P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 3.45$ e Å ⁻³ $\Delta\rho_{min} = -0.64$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.13721 (4)	0.23221 (4)	0.23002 (3)	0.01644 (16)	
P1	-0.01593 (12)	0.08021 (12)	0.23565 (9)	0.0150 (3)	
P2	0.29082 (12)	0.38833 (12)	0.23373 (9)	0.0155 (3)	
01	-0.0288 (5)	0.3806 (4)	0.1972 (3)	0.0409 (13)	
O2	0.2609 (5)	0.1948 (4)	0.4093 (3)	0.0409 (13)	
03	0.1465 (4)	0.1397 (4)	0.0545 (3)	0.0308 (11)	
C1	0.0340 (5)	0.3249 (5)	0.2116 (4)	0.0233 (13)	
C2	0.2164 (5)	0.2079 (5)	0.3409 (4)	0.0233 (13)	
C3	0.1466 (5)	0.1712 (5)	0.1227 (4)	0.0219 (13)	
C4	-0.0556 (5)	0.0908 (5)	0.3394 (4)	0.0200 (12)	
H4A	0.0151	0.0920	0.3843	0.024*	
C5	-0.0852 (6)	0.2003 (5)	0.3570 (4)	0.0263 (14)	
H5A	-0.1539	0.2045	0.3132	0.032*	
H5B	-0.0212	0.2624	0.3530	0.032*	
C6	-0.1078 (7)	0.2126 (6)	0.4456 (4)	0.0357 (17)	
H6A	-0.0364	0.2176	0.4897	0.043*	
H6B	-0.1317	0.2819	0.4530	0.043*	

C7	-0.1996 (7)	0.1160 (6)	0.4570 (5)	0.0383 (18)
H7A	-0.2729	0.1147	0.4163	0.046*
H7B	-0.2099	0.1245	0.5152	0.046*
C8	-0.1670(7)	0.0065 (7)	0.4425 (5)	0.0410 (19)
H8A	-0.0962	0.0058	0.4854	0.049*
H8B	-0.2287	-0.0563	0.4489	0.049*
С9	-0.1485 (6)	-0.0064 (6)	0.3538 (4)	0.0320 (16)
H9A	-0.2212	-0.0110	0.3111	0.038*
H9B	-0.1261	-0.0763	0.3456	0.038*
C10	-0.1535 (5)	0.0670 (5)	0.1531 (4)	0.0205 (12)
H10A	-0.1949	0.1151	0.1774	0.025*
C11	-0.1395 (6)	0.1110 (5)	0.0687 (4)	0.0230(13)
H11A	-0.0894	0.1872	0.0799	0.028*
H11B	-0.1030	0.0637	0.0396	0.028*
C12	-0.2566 (6)	0.1113 (6)	0.0115 (4)	0.0292 (15)
H12A	-0.2891	0.1642	0.0388	0.035*
H12B	-0.2463	0.1374	-0.0433	0.035*
C13	-0.3400(6)	-0.0013(6)	-0.0056(4)	0.0316 (15)
H13A	-0.4155	0.0045	-0.0392	0.038*
H13B	-0.3127	-0.0527	-0.0390	0.038*
C14	-0.3518(5)	-0.0462(6)	0.0773 (4)	0.0301 (15)
H14A	-0.4032	-0.1217	0.0654	0.036*
H14B	-0.3869	0.0012	0.1077	0.036*
C15	-0.2352(5)	-0.0500(5)	0.1343 (4)	0.0263 (14)
H15A	-0.2017	-0.1005	0.1055	0.032*
H15B	-0.2456	-0.0788	0.1882	0.032*
C16	0.0086 (5)	-0.0600(4)	0.2290 (4)	0.0175 (12)
H16A	-0.0650	-0.1132	0.2294	0.021*
C17	0.0376 (6)	-0.0909(5)	0.1457 (4)	0.0226 (13)
H17A	0.1146	-0.0460	0.1457	0.027*
H17B	-0.0183	-0.0742	0.0970	0.027*
C18	0.0350 (6)	-0.2138 (5)	0.1360 (4)	0.0295 (15)
H18A	-0.0433	-0.2587	0.1322	0.035*
H18B	0.0555	-0.2319	0.0828	0.035*
C19	0.1188 (7)	-0.2425 (6)	0.2115 (5)	0.0390 (18)
H19A	0.1092	-0.3236	0.2072	0.047*
H19B	0.1979	-0.2073	0.2093	0.047*
C20	0.1012 (7)	-0.2042(6)	0.2962 (5)	0.0384 (18)
H20A	0.1632	-0.2161	0.3427	0.046*
H20B	0.0278	-0.2497	0.3032	0.046*
C21	0.0998 (6)	-0.0801(5)	0.3039 (4)	0.0292 (15)
H21A	0.0826	-0.0602	0.3580	0.035*
H21B	0.1758	-0.0333	0.3035	0.035*
C22	0.2621 (5)	0.4827 (5)	0.1498 (4)	0.0196 (12)
H22A	0.2237	0.5349	0.1728	0.024*
C23	0.3703 (6)	0.5562 (5)	0.1305 (4)	0.0287 (15)
H23A	0.4093	0.5091	0.1038	0.034*
H23B	0.4238	0.5952	0.1842	0.034*

C24	0.3370 (6)	0.6416 (5)	0.0703 (4)	0.0334 (16)	
H24A	0.3012	0.6907	0.0983	0.040*	
H24B	0.4067	0.6879	0.0583	0.040*	
C25	0.2547 (6)	0.5848 (6)	-0.0122 (4)	0.0321 (16)	
H25A	0.2926	0.5407	-0.0427	0.039*	
H25B	0.2323	0.6412	-0.0487	0.039*	
C26	0.1487 (6)	0.5097 (6)	0.0043 (5)	0.0330 (16)	
H26A	0.0982	0.4700	-0.0502	0.040*	
H26B	0.1063	0.5552	0.0289	0.040*	
C27	0.1789 (5)	0.4252 (5)	0.0652 (4)	0.0234 (13)	
H27A	0.2142	0.3747	0.0382	0.028*	
H27B	0.1081	0.3803	0.0765	0.028*	
C28	0.3294(5)	0.4788(5)	0.3363(4)	0.0203(12)	
H28A	0.3492	0.4305	0.3818	0.024*	
C29	0.4342(6)	0.5777 (5)	0.3506 (4)	0.0299(15)	
H29A	0.5005	0.5513	0.3425	0.036*	
H29R	0.4186	0.6299	0.3082	0.036*	
C30	0.4633 (6)	0.6376 (6)	0.4396 (5)	0.0376 (18)	
H30A	0.5303	0.7015	0.4466	0.045*	
H30R	0.4839	0.5869	0.4820	0.045*	
C31	0.4639 0.3628 (7)	0.6782 (6)	0.4553(5)	0.045	
H31A	0.3825	0.7141	0.5142	0.046*	
H31R	0.3460	0.7336	0.3142	0.046*	
C32	0.3400	0.7550	0.4100	0.040	
С32 Н32 Л	0.2399 (7)	0.5852 (0)	0.4417 (5)	0.0302 (17)	
1132A 1132B	0.1942	0.5323	0.4454	0.043*	
1152D C22	0.2744 0.2202(6)	0.5525	0.4654	0.043°	
U22 A	0.2292 (0)	0.5190(0)	0.3334 (4)	0.0288 (15)	
1133A 1122D	0.2037	0.3074	0.3098	0.035*	
ПЭЭД	0.1033	0.4340 0.2614 (5)	0.3469	0.033°	
U34 1124 A	0.4301(3)	0.3014(3)	0.2278 (4)	0.0203 (12)	
п 34А С 25	0.4852	0.4548	0.2271	0.024°	
U35 A	0.4209 (3)	0.2904 (3)	0.1439 (4)	0.0239 (14)	
пээд	0.3834	0.3229	0.0962	0.031*	
ПЭЭВ	0.5730	0.2148	0.1288 (4)	0.031^{+}	
	0.5405 (6)	0.2840 (0)	0.1388 (4)	0.0337 (10)	
HJOA	0.5555	0.2509	0.0800	0.040*	
H36B	0.5857	0.3596	0.1345	0.040*	
C3/	0.6021 (6)	0.2384 (7)	0.2154 (5)	0.0399 (18)	
H3/A	0.6815	0.2428	0.2120	0.048*	
H3/B	0.5633	0.1595	0.2146	0.048*	
C38	0.6047(6)	0.3024 (6)	0.2994 (4)	0.0308 (15)	
H38A	0.6383	0.2651	0.3476	0.03/*	
H38B	0.6542	0.3781	0.3043	0.03/*	
C39	0.4861 (6)	0.3095 (6)	0.3051 (4)	0.02/4 (14)	
H39A	0.4920	0.3552	0.3580	0.033*	
H39B	0.4384	0.2346	0.3065	0.033*	0.50
CITA	0.4931 (7)	-0.0455 (6)	0.3912 (4)	0.014 (2)*	0.50
C2TA	0.4173 (7)	0.0083 (7)	0.3442 (5)	0.032 (3)*	0.50

H2TA	0.3851	0.0562	0.3723	0.038*	0.50
C3TA	0.3887 (8)	-0.0082 (8)	0.2560 (5)	0.053 (4)*	0.50
H3TA	0.3369	0.0285	0.2238	0.063*	0.50
C4TA	0.4358 (8)	-0.0784 (8)	0.2148 (4)	0.025 (3)*	0.50
H4TA	0.4162	-0.0896	0.1546	0.030*	0.50
C5TA	0.5116 (8)	-0.1322 (7)	0.2619 (5)	0.045 (4)*	0.50
H5TA	0.5438	-0.1801	0.2338	0.054*	0.50
C6TA	0.5402 (7)	-0.1157 (7)	0.3501 (5)	0.024 (3)*	0.50
H6TA	0.5920	-0.1524	0.3823	0.028*	0.50
C7TA	0.5189 (9)	-0.0327 (9)	0.4744 (6)	0.012 (2)*	0.50
H7TA	0.4794	0.0192	0.4935	0.017*	0.50
H7TB	0.6017	-0.0034	0.4964	0.017*	0.50
H7TC	0.4949	-0.1043	0.4954	0.017*	0.50
C1TB	0.2465 (7)	0.3731 (7)	-0.2461 (4)	0.030 (3)*	0.50
C2TB	0.1736 (7)	0.4430 (7)	-0.2509 (4)	0.022 (2)*	0.50
H2TB	0.1634	0.4756	-0.2004	0.026*	0.50
C3TB	0.1159 (7)	0.4651 (7)	-0.3297 (5)	0.032 (3)*	0.50
H3TB	0.0661	0.5129	-0.3330	0.038*	0.50
C4TB	0.1309 (8)	0.4173 (8)	-0.4035 (4)	0.047 (4)*	0.50
H4TB	0.0914	0.4324	-0.4574	0.056*	0.50
C5TB	0.2038 (8)	0.3474 (8)	-0.3987 (4)	0.031 (3)*	0.50
H5TB	0.2141	0.3148	-0.4492	0.038*	0.50
C6TB	0.2615 (8)	0.3253 (7)	-0.3199 (5)	0.041 (4)*	0.50
H6TB	0.3113	0.2776	-0.3166	0.049*	0.50
C7TB	0.3013 (13)	0.3540 (12)	-0.1693 (9)	0.035 (3)*	0.50
H7TD	0.2796	0.3945	-0.1254	0.053*	0.50
H7TE	0.3840	0.3791	-0.1624	0.053*	0.50
H7TF	0.2806	0.2746	-0.1638	0.053*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0155 (3)	0.0161 (2)	0.0170 (3)	0.00294 (18)	0.00400 (18)	0.00047 (17)
P1	0.0145 (8)	0.0157 (7)	0.0146 (7)	0.0036 (6)	0.0033 (6)	0.0013 (6)
P2	0.0138 (7)	0.0156 (7)	0.0160 (7)	0.0030 (6)	0.0026 (6)	0.0011 (6)
01	0.039 (3)	0.042 (3)	0.047 (3)	0.025 (3)	0.006 (3)	0.006 (2)
O2	0.036 (3)	0.050 (3)	0.026 (3)	0.003 (2)	-0.005 (2)	0.008 (2)
03	0.035 (3)	0.033 (3)	0.024 (2)	0.005 (2)	0.011 (2)	-0.005 (2)
C1	0.021 (3)	0.028 (3)	0.021 (3)	0.005 (3)	0.006 (3)	0.003 (3)
C2	0.019 (3)	0.024 (3)	0.023 (3)	-0.001 (3)	0.003 (3)	0.001 (3)
C3	0.020 (3)	0.021 (3)	0.023 (3)	0.002 (2)	0.003 (3)	0.003 (3)
C4	0.016 (3)	0.028 (3)	0.017 (3)	0.007 (2)	0.004 (2)	0.003 (2)
C5	0.031 (4)	0.021 (3)	0.031 (4)	0.006 (3)	0.015 (3)	0.006 (3)
C6	0.039 (4)	0.043 (4)	0.029 (4)	0.012 (3)	0.017 (3)	-0.007 (3)
C7	0.045 (5)	0.056 (5)	0.024 (4)	0.022 (4)	0.017 (3)	0.009 (3)
C8	0.049 (5)	0.051 (5)	0.039 (4)	0.022 (4)	0.029 (4)	0.022 (4)
C9	0.037 (4)	0.031 (4)	0.033 (4)	0.006 (3)	0.021 (3)	0.008 (3)
C10	0.019 (3)	0.019 (3)	0.023 (3)	0.005 (2)	0.005 (2)	0.002 (2)

C11	0.028 (4)	0.022 (3)	0.016 (3)	0.005 (3)	0.001 (3)	0.006 (2)
C12	0.030 (4)	0.032 (3)	0.023 (3)	0.011 (3)	-0.001 (3)	0.002 (3)
C13	0.022 (4)	0.037 (4)	0.033 (4)	0.009 (3)	0.001 (3)	-0.001 (3)
C14	0.015 (3)	0.037 (4)	0.030 (4)	-0.002 (3)	0.001 (3)	-0.002 (3)
C15	0.018 (3)	0.026 (3)	0.028 (3)	-0.003 (3)	0.001 (3)	0.001 (3)
C16	0.017 (3)	0.014 (3)	0.019 (3)	0.002 (2)	0.001 (2)	0.001 (2)
C17	0.027 (3)	0.021 (3)	0.023 (3)	0.012 (3)	0.006 (3)	0.003 (2)
C18	0.034 (4)	0.022 (3)	0.037 (4)	0.013 (3)	0.011 (3)	0.001 (3)
C19	0.048 (5)	0.030 (4)	0.047 (5)	0.025 (3)	0.013 (4)	0.002 (3)
C20	0.048 (5)	0.035 (4)	0.034 (4)	0.024 (4)	0.002 (3)	0.005 (3)
C21	0.035 (4)	0.027 (3)	0.027 (3)	0.016 (3)	0.003 (3)	0.003 (3)
C22	0.020 (3)	0.015 (3)	0.023 (3)	0.001 (2)	0.007 (2)	0.004 (2)
C23	0.024 (4)	0.028 (3)	0.027 (3)	-0.004 (3)	0.003 (3)	0.003 (3)
C24	0.038 (4)	0.023 (3)	0.032 (4)	-0.001 (3)	0.002 (3)	0.012 (3)
C25	0.041 (4)	0.029 (3)	0.022 (3)	0.006 (3)	0.003 (3)	0.010 (3)
C26	0.029 (4)	0.038 (4)	0.031 (4)	0.007 (3)	0.004 (3)	0.008 (3)
C27	0.024 (3)	0.020 (3)	0.025 (3)	0.003 (3)	0.007 (3)	0.007 (3)
C28	0.024 (3)	0.022 (3)	0.013 (3)	0.007 (3)	0.000 (2)	0.002 (2)
C29	0.024 (4)	0.023 (3)	0.036 (4)	-0.001 (3)	0.005 (3)	-0.011 (3)
C30	0.035 (4)	0.030 (4)	0.038 (4)	0.005 (3)	-0.004 (3)	-0.014 (3)
C31	0.047 (5)	0.033 (4)	0.030 (4)	0.013 (3)	0.003 (3)	-0.010 (3)
C32	0.050 (5)	0.033 (4)	0.031 (4)	0.015 (3)	0.019 (3)	-0.002 (3)
C33	0.029 (4)	0.030 (3)	0.027 (3)	0.010 (3)	0.006 (3)	-0.006 (3)
C34	0.016 (3)	0.021 (3)	0.023 (3)	0.003 (2)	0.005 (2)	0.000(2)
C35	0.022 (3)	0.032 (3)	0.026 (3)	0.009 (3)	0.010 (3)	-0.003 (3)
C36	0.026 (4)	0.045 (4)	0.031 (4)	0.012 (3)	0.006 (3)	-0.004 (3)
C37	0.027 (4)	0.055 (5)	0.048 (5)	0.025 (4)	0.015 (3)	0.011 (4)
C38	0.022 (4)	0.046 (4)	0.027 (4)	0.017 (3)	0.001 (3)	0.011 (3)
C39	0.027 (4)	0.039 (4)	0.022 (3)	0.018 (3)	0.007 (3)	0.008 (3)

Geometric parameters (Å, °)

Ru1—C1	1.903 (6)	C24—H24B	0.9900
Ru1—C3	1.915 (6)	C25—C26	1.518 (10)
Ru1—C2	1.919 (7)	C25—H25A	0.9900
Ru1—P1	2.3777 (15)	С25—Н25В	0.9900
Ru1—P2	2.3780 (15)	C26—C27	1.532 (9)
P1—C16	1.849 (6)	C26—H26A	0.9900
P1—C4	1.877 (6)	C26—H26B	0.9900
P1—C10	1.878 (6)	C27—H27A	0.9900
P2—C34	1.862 (6)	С27—Н27В	0.9900
P2—C28	1.869 (6)	C28—C33	1.527 (9)
P2—C22	1.873 (6)	C28—C29	1.536 (9)
O1—C1	1.155 (8)	C28—H28A	1.0000
O2—C2	1.160 (8)	C29—C30	1.523 (9)
O3—C3	1.161 (7)	С29—Н29А	0.9900
C4—C5	1.529 (8)	С29—Н29В	0.9900
C4—C9	1.537 (9)	C30—C31	1.523 (10)

C4—H4A	1.0000	С30—Н30А	0.9900
C5—C6	1.543 (8)	С30—Н30В	0.9900
C5—H5A	0.9900	C31—C32	1.493 (11)
С5—Н5В	0.9900	C31—H31A	0.9900
C6—C7	1.507 (11)	C31—H31B	0.9900
C6—H6A	0.9900	C32—C33	1.533 (9)
C6—H6B	0.9900	C32—H32A	0.9900
C7—C8	1.538 (10)	C32—H32B	0.9900
C7—H7A	0.9900	C33—H33A	0.9900
C7—H7B	0.9900	C33—H33B	0.9900
C8—C9	1 523 (9)	C_{34} C_{35}	1 535 (8)
C8—H8A	0.9900	C34—C39	1 538 (9)
C8—H8B	0.9900	C34—H34A	1.0000
C9—H9A	0.9900	C_{35} C_{36}	1.536 (9)
C9—H9B	0.9900	C35—H35A	0.9900
C10-C11	1 538 (8)	C35—H35B	0.9900
C10-C15	1 544 (8)	C36_C37	1.517(11)
C10—H10A	1,0000	C36—H36A	0.9900
C_{11} C_{12}	1.535 (0)	C36 H36R	0.9900
C11_U11A	0.0000	C37 C38	1.542(10)
	0.9900	$C_{37} = C_{38}$	0.0000
C_{12} C_{12}	1,510 (10)	C_{27} H_{27} H_{27}	0.9900
C12—C13	0.0000	C_{3}^{2} C_{3}^{2} C_{3}^{2}	0.9900
C12—H12A	0.9900	C_{28} U_{28}	1.322 (9)
C12—H12B	0.9900	C38—H38A	0.9900
C13—C14	1.512 (10)	C30_H38B	0.9900
C13—H13A	0.9900	С39—Н39А	0.9900
С13—Н13В	0.9900	С39—Н39В	0.9900
C14—C15	1.540 (9)	CITA—C/IA	1.310 (12)
CI4—HI4A	0.9900	CITA—C2TA	1.3900
CI4—HI4B	0.9900	CITA—C6IA	1.3900
CI5—HI5A	0.9900	C21A—C31A	1.3900
CI5—HI5B	0.9900	C2IA—H2IA	0.9500
C16—C21	1.534 (9)	C31A—C41A	1.3900
C16—C17	1.539 (8)	СЗТА—НЗТА	0.9500
C16—H16A	1.0000	C4TA—C5TA	1.3900
C17—C18	1.529 (8)	С4ТА—Н4ТА	0.9500
С17—Н17А	0.9900	С5ТА—С6ТА	1.3900
C17—H17B	0.9900	С5ТА—Н5ТА	0.9500
C18—C19	1.531 (10)	С6ТА—Н6ТА	0.9500
C18—H18A	0.9900	С7ТА—Н7ТА	0.9800
C18—H18B	0.9900	С7ТА—Н7ТВ	0.9800
C19—C20	1.520 (10)	С7ТА—Н7ТС	0.9800
С19—Н19А	0.9900	C1TB—C7TB	1.338 (16)
C19—H19B	0.9900	C1TB—C2TB	1.3900
C20—C21	1.554 (9)	C1TB—C6TB	1.3900
C20—H20A	0.9900	C2TB—C3TB	1.3900
C20—H20B	0.9900	C2TB—H2TB	0.9500
C21—H21A	0.9900	C3TB—C4TB	1.3900

C21—H21B	0.9900	СЗТВ—НЗТВ	0.9500
C22—C27	1.543 (8)	C4TB—C5TB	1.3900
C22—C23	1.549 (8)	С4ТВ—Н4ТВ	0.9500
C22—H22A	1.0000	С5ТВ—С6ТВ	1.3900
C23—C24	1.545 (9)	С5ТВ—Н5ТВ	0.9500
С23—Н23А	0.9900	С6ТВ—Н6ТВ	0.9500
С23—Н23В	0.9900	C7TB—H7TD	0.9800
C24—C25	1.512 (9)	С7ТВ—Н7ТЕ	0.9800
C24—H24A	0.9900	C7TB—H7TF	0.9800
C1—Ru1—C3	109.3 (3)	C25—C24—C23	111.1 (5)
C1—Ru1—C2	123.2 (3)	C25—C24—H24A	109.4
C3—Ru1—C2	127.5 (3)	C23—C24—H24A	109.4
C1—Ru1—P1	89.69 (19)	C25—C24—H24B	109.4
C3—Ru1—P1	92.00 (18)	C23—C24—H24B	109.4
C2—Ru1—P1	88.51 (18)	H24A—C24—H24B	108.0
C1—Ru1—P2	89.56 (19)	C24—C25—C26	110.6 (6)
C3—Ru1—P2	91.75 (18)	С24—С25—Н25А	109.5
C2—Ru1—P2	88.80 (18)	C26—C25—H25A	109.5
P1—Ru1—P2	176.22 (5)	C24—C25—H25B	109.5
C16—P1—C4	102.8 (3)	C26—C25—H25B	109.5
C16—P1—C10	103.9 (3)	H25A—C25—H25B	108.1
C4—P1—C10	104.3 (3)	C25—C26—C27	111.8 (6)
C16—P1—Ru1	117.59 (19)	C25—C26—H26A	109.3
C4—P1—Ru1	111.03 (19)	C27—C26—H26A	109.3
C10—P1—Ru1	115.62 (19)	C25—C26—H26B	109.3
C34—P2—C28	102.7 (3)	C27—C26—H26B	109.3
C34—P2—C22	104.2 (3)	H26A—C26—H26B	107.9
C28—P2—C22	104.7 (3)	C26—C27—C22	111.4 (5)
C34—P2—Ru1	117.4 (2)	С26—С27—Н27А	109.4
C28—P2—Ru1	110.9 (2)	С22—С27—Н27А	109.4
C22—P2—Ru1	115.46 (19)	С26—С27—Н27В	109.4
O1—C1—Ru1	177.3 (6)	С22—С27—Н27В	109.4
O2—C2—Ru1	177.1 (6)	H27A—C27—H27B	108.0
O3—C3—Ru1	174.3 (6)	C33—C28—C29	109.2 (5)
C5—C4—C9	110.1 (5)	C33—C28—P2	113.0 (4)
C5—C4—P1	112.2 (4)	C29—C28—P2	116.6 (4)
C9—C4—P1	116.4 (4)	C33—C28—H28A	105.7
С5—С4—Н4А	105.8	C29—C28—H28A	105.7
C9—C4—H4A	105.8	P2-C28-H28A	105.7
P1C4H4A	105.8	C30—C29—C28	111.3 (6)
C4—C5—C6	111.9 (5)	С30—С29—Н29А	109.4
C4—C5—H5A	109.2	C28—C29—H29A	109.4
С6—С5—Н5А	109.2	C30—C29—H29B	109.4
C4—C5—H5B	109.2	C28—C29—H29B	109.4
C6—C5—H5B	109.2	H29A—C29—H29B	108.0
H5A—C5—H5B	107.9	C29—C30—C31	111.1 (6)
C7—C6—C5	111.4 (6)	С29—С30—Н30А	109.4

С7—С6—Н6А	109.4	С31—С30—Н30А	109.4
С5—С6—Н6А	109.4	С29—С30—Н30В	109.4
С7—С6—Н6В	109.4	C31—C30—H30B	109.4
С5—С6—Н6В	109.4	H30A—C30—H30B	108.0
H6A—C6—H6B	108.0	C32—C31—C30	110.0 (6)
C6-C7-C8	110.5 (6)	С32—С31—Н31А	109.7
С6—С7—Н7А	109.5	С30—С31—Н31А	109.7
С8—С7—Н7А	109.5	С32—С31—Н31В	109.7
С6—С7—Н7В	109.5	C30—C31—H31B	109.7
C8—C7—H7B	109.5	H31A—C31—H31B	108.2
H7A—C7—H7B	108.1	C31—C32—C33	112.4 (6)
C9—C8—C7	110.0 (6)	С31—С32—Н32А	109.1
C9—C8—H8A	109.7	C33—C32—H32A	109.1
C7—C8—H8A	109.7	C31—C32—H32B	109.1
C9—C8—H8B	109.7	C33—C32—H32B	109.1
C7—C8—H8B	109.7	H32A—C32—H32B	107.9
H8A—C8—H8B	108.2	C_{28} C_{33} C_{32}	111.8 (6)
C8-C9-C4	111.9 (6)	C28—C33—H33A	109.3
C8—C9—H9A	109.2	C32—C33—H33A	109.3
C4—C9—H9A	109.2	C28—C33—H33B	109.3
C8—C9—H9B	109.2	C32—C33—H33B	109.3
C4—C9—H9B	109.2	H33A—C33—H33B	107.9
H9A—C9—H9B	107.9	C_{35} C_{34} C_{39}	109.6 (5)
$C_{11} - C_{10} - C_{15}$	108.9 (5)	C35—C34—P2	112.6 (4)
C11—C10—P1	114.9 (4)	C39—C34—P2	113.5 (4)
C15—C10—P1	115.1 (4)	С35—С34—Н34А	106.9
C11—C10—H10A	105.7	С39—С34—Н34А	106.9
C15—C10—H10A	105.7	P2-C34-H34A	106.9
Р1—С10—Н10А	105.7	C34—C35—C36	110.1 (5)
C12—C11—C10	110.1 (5)	C34—C35—H35A	109.6
C12—C11—H11A	109.6	С36—С35—Н35А	109.6
C10—C11—H11A	109.6	С34—С35—Н35В	109.6
C12—C11—H11B	109.6	С36—С35—Н35В	109.6
C10—C11—H11B	109.6	H35A—C35—H35B	108.2
H11A—C11—H11B	108.2	C37—C36—C35	111.1 (6)
C13—C12—C11	113.0 (6)	С37—С36—Н36А	109.4
C13—C12—H12A	109.0	С35—С36—Н36А	109.4
C11—C12—H12A	109.0	С37—С36—Н36В	109.4
C13—C12—H12B	109.0	С35—С36—Н36В	109.4
C11—C12—H12B	109.0	H36A—C36—H36B	108.0
H12A—C12—H12B	107.8	C36—C37—C38	111.7 (6)
C12—C13—C14	110.1 (6)	С36—С37—Н37А	109.3
C12—C13—H13A	109.6	С38—С37—Н37А	109.3
C14—C13—H13A	109.6	С36—С37—Н37В	109.3
C12—C13—H13B	109.6	С38—С37—Н37В	109.3
C14—C13—H13B	109.6	H37A—C37—H37B	107.9
H13A—C13—H13B	108.2	C39—C38—C37	112.3 (6)
C13—C14—C15	111.6 (5)	C39—C38—H38A	109.1
	× /		

C13—C14—H14A	109.3	C37—C38—H38A	109.1
C15—C14—H14A	109.3	C39—C38—H38B	109.1
C13—C14—H14B	109.3	С37—С38—Н38В	109.1
C15—C14—H14B	109.3	H38A—C38—H38B	107.9
H14A—C14—H14B	108.0	C38—C39—C34	109.7 (5)
C14—C15—C10	110.1 (5)	С38—С39—Н39А	109.7
C14—C15—H15A	109.6	С34—С39—Н39А	109.7
C10—C15—H15A	109.6	С38—С39—Н39В	109.7
C14—C15—H15B	109.6	С34—С39—Н39В	109.7
C10—C15—H15B	109.6	H39A—C39—H39B	108.2
H15A—C15—H15B	108.2	С7ТА—С1ТА—С2ТА	120.6 (7)
C21—C16—C17	108.8 (5)	С7ТА—С1ТА—С6ТА	119.3 (7)
$C_{21} - C_{16} - P_{1}$	114.6 (4)	C2TA— $C1TA$ — $C6TA$	120.0
C17—C16—P1	112.8 (4)	C3TA - C2TA - C1TA	120.0
C21—C16—H16A	106.7	СЗТА—С2ТА—Н2ТА	120.0
C17—C16—H16A	106.7	C1TA - C2TA - H2TA	120.0
P1—C16—H16A	106.7	C2TA - C3TA - C4TA	120.0
C18 - C17 - C16	110.5 (5)	C2TA - C3TA - H3TA	120.0
C18 - C17 - H17A	109.5	C4TA - C3TA - H3TA	120.0
$C_{16} - C_{17} - H_{17A}$	109.5	C3TA - C4TA - C5TA	120.0
C18 - C17 - H17B	109.5	C3TA - C4TA - H4TA	120.0
C16—C17—H17B	109.5	C5TA - C4TA - H4TA	120.0
H17A—C17—H17B	108.1	C4TA - C5TA - C6TA	120.0
C17 - C18 - C19	110.6 (6)	C4TA - C5TA - H5TA	120.0
C17—C18—H18A	109.5	С6ТА—С5ТА—Н5ТА	120.0
C19 - C18 - H18A	109.5	C5TA - C6TA - C1TA	120.0
C17—C18—H18B	109.5	С5ТА—С6ТА—Н6ТА	120.0
C19—C18—H18B	109.5	С1ТА—С6ТА—Н6ТА	120.0
H18A—C18—H18B	108.1	C1TA - C7TA - H7TA	109.5
C_{20} C_{19} C_{18}	112.4 (6)	C1TA - C7TA - H7TB	109.5
C20-C19-H19A	109.1	H7TA - C7TA - H7TB	109.5
C18—C19—H19A	109.1	C1TA - C7TA - H7TC	109.5
C20—C19—H19B	109.1	Н7ТА—С7ТА—Н7ТС	109.5
C18—C19—H19B	109.1	H7TB—C7TA—H7TC	109.5
H19A—C19—H19B	107.9	C7TB—C1TB—C2TB	118.5 (8)
C19—C20—C21	112.6 (6)	C7TB—C1TB—C6TB	121.5 (8)
C19—C20—H20A	109.1	C2TB—C1TB—C6TB	120.0
C_{21} C_{20} H_{20A}	109.1	C1TB—C2TB—C3TB	120.0
C19—C20—H20B	109.1	C1TB - C2TB - H2TB	120.0
C21—C20—H20B	109.1	C3TB—C2TB—H2TB	120.0
H20A—C20—H20B	107.8	C4TB—C3TB—C2TB	120.0
$C_{16} - C_{21} - C_{20}$	109.2 (5)	C4TB—C3TB—H3TB	120.0
C16—C21—H21A	109.8	C2TB—C3TB—H3TB	120.0
C20—C21—H21A	109.8	C3TB—C4TB—C5TB	120.0
C16—C21—H21B	109.8	C3TB—C4TB—H4TB	120.0
C20—C21—H21B	109.8	C5TB—C4TB—H4TB	120.0
H21A—C21—H21B	108.3	C4TB—C5TB—C6TB	120.0
C_{27} C_{22} C_{23}	108.6 (5)	C4TB—C5TB—H5TB	120.0

C27—C22—P2	114.9 (4)	C6TB—C5TB—H5TB	120.0
C23—C22—P2	114.9 (4)	C5TB—C6TB—C1TB	120.0
C27—C22—H22A	105.9	С5ТВ—С6ТВ—Н6ТВ	120.0
C23—C22—H22A	105.9	С1ТВ—С6ТВ—Н6ТВ	120.0
P2—C22—H22A	105.9	C1TB—C7TB—H7TD	109.5
$C_{24} - C_{23} - C_{22}$	110.1 (6)	C1TB - C7TB - H7TE	109.5
C24—C23—H23A	109.6	H7TD—C7TB—H7TE	109.5
C22—C23—H23A	109.6	C1TB-C7TB-H7TF	109.5
C24—C23—H23B	109.6	H7TD—C7TB—H7TF	109.5
C22-C23-H23B	109.6	H7TE—C7TB—H7TF	109.5
$H_{23A} - C_{23} - H_{23B}$	109.0		109.5
112577 025 11250	100.2		
C1—Ru1—P1—C16	166.5 (3)	C10—P1—C16—C17	68.9 (5)
C3—Ru1—P1—C16	57.2 (3)	Ru1—P1—C16—C17	-60.3(5)
C2—Ru1—P1—C16	-70.3(3)	C21—C16—C17—C18	62.4 (7)
P_{2} Ru1 P_{1} C16	-115.0(9)	P1-C16-C17-C18	-169.4(4)
C1 $Ru1$ $P1$ $C4$	-755(3)	C16-C17-C18-C19	-57.9(7)
$C_3 = R_{11} = P_1 = C_4$	175.2(3)	C17 - C18 - C19 - C20	52 4 (8)
$C_2 = R_{11} = P_1 = C_4$	47.7(3)	C18 - C19 - C20 - C21	-51.7(9)
$P_2 = R_{11} = P_1 = C_4$	$\frac{47.7}{30}$	C13 - C15 - C20 - C21 C17 - C16 - C21 - C20	-59.8(7)
12 - Ru1 - 11 - C4	3.0(10)	P1 C16 C21 C20	173.0(7)
$C_1 - Ru_1 - 1 - C_{10}$	-66.3(3)	$C_{10} = C_{20} = C_{21} = C_{20}$	55.4(8)
C_3 R_{u1} F_1 C_{10}	-00.3(3)	C19 - C20 - C21 - C10	33.4 (8) 00.1 (5)
C_2 —Ru1—P1—C10	100.5(3)	$C_{34} P_{2} C_{22} C_{27}$	99.1 (3)
P_2 —Ru1—P1—C10	121.0(9)	$C_{28} P_{2} C_{22} C_{27}$	-153.4(4)
C1 = Ru1 = P2 = C34	-10/.5(3)	Ru1 - P2 - C22 - C27	-31.1(5)
C_3 —Ru1—P2—C34	-58.0(3)	$C_{34} - P_{2} - C_{22} - C_{23}$	-28.0(5)
C2—Ru1—P2—C34	69.5 (3)	C28—P2—C22—C23	79.6 (5)
P1—Ru1—P2—C34	114.1 (9)	Ru1—P2—C22—C23	-158.2 (4)
C1—Ru1—P2—C28	75.1 (3)	C27—C22—C23—C24	57.9 (7)
C3—Ru1—P2—C28	-175.6 (3)	P2-C22-C23-C24	-172.0 (4)
C2—Ru1—P2—C28	-48.1 (3)	C22—C23—C24—C25	-59.0 (8)
P1—Ru1—P2—C28	-3.5 (10)	C23—C24—C25—C26	57.0 (8)
C1—Ru1—P2—C22	-43.7 (3)	C24—C25—C26—C27	-55.6 (8)
C3—Ru1—P2—C22	65.6 (3)	C25—C26—C27—C22	56.3 (7)
C2—Ru1—P2—C22	-167.0 (3)	C23—C22—C27—C26	-56.9 (7)
P1—Ru1—P2—C22	-122.3 (9)	P2-C22-C27-C26	173.0 (4)
C3—Ru1—C1—O1	-7 (12)	C34—P2—C28—C33	176.4 (5)
C2—Ru1—C1—O1	173 (12)	C22—P2—C28—C33	67.8 (5)
P1—Ru1—C1—O1	-99 (12)	Ru1—P2—C28—C33	-57.4 (5)
P2—Ru1—C1—O1	84 (12)	C34—P2—C28—C29	48.7 (5)
C1—Ru1—C2—O2	18 (11)	C22—P2—C28—C29	-59.9 (5)
C3—Ru1—C2—O2	-162 (11)	Ru1—P2—C28—C29	174.9 (4)
P1—Ru1—C2—O2	-70 (11)	C33—C28—C29—C30	56.1 (7)
P2—Ru1—C2—O2	107 (11)	P2-C28-C29-C30	-174.4 (5)
C1—Ru1—C3—O3	6 (5)	C28—C29—C30—C31	-58.2 (8)
C2—Ru1—C3—O3	-174 (5)	C29—C30—C31—C32	57.0 (9)
P1—Ru1—C3—O3	96 (5)	C30—C31—C32—C33	-55.6 (9)
P2—Ru1—C3—O3	-85 (5)	C29—C28—C33—C32	-54.3 (7)

C16—P1—C4—C5	-177.6 (4)	P2-C28-C33-C32	174.3 (5)
C10—P1—C4—C5	-69.4 (5)	C31—C32—C33—C28	55.6 (8)
Ru1—P1—C4—C5	55.8 (5)	C28—P2—C34—C35	-178.1 (4)
C16—P1—C4—C9	-49.5 (5)	C22—P2—C34—C35	-69.1 (5)
C10—P1—C4—C9	58.7 (5)	Ru1—P2—C34—C35	60.0 (5)
Ru1—P1—C4—C9	-176.1 (4)	C28—P2—C34—C39	56.6 (5)
C9—C4—C5—C6	53.4 (7)	C22—P2—C34—C39	165.6 (4)
P1C4C5C6	-175.2 (5)	Ru1—P2—C34—C39	-65.3 (5)
C4—C5—C6—C7	-55.3 (8)	C39—C34—C35—C36	-60.5 (7)
C5—C6—C7—C8	56.8 (8)	P2-C34-C35-C36	172.2 (5)
C6—C7—C8—C9	-58.1 (9)	C34—C35—C36—C37	57.5 (8)
C7—C8—C9—C4	57.7 (8)	C35—C36—C37—C38	-53.2 (8)
C5-C4-C9-C8	-55.5 (8)	C36—C37—C38—C39	53.0 (8)
P1C4C9C8	175.4 (5)	C37—C38—C39—C34	-55.7 (8)
C16—P1—C10—C11	-100.3 (4)	C35—C34—C39—C38	59.4 (7)
C4—P1—C10—C11	152.2 (4)	P2-C34-C39-C38	-173.8 (4)
Ru1—P1—C10—C11	30.0 (5)	C7TA—C1TA—C2TA—C3TA	-178.5 (9)
C16—P1—C10—C15	27.4 (5)	C6TA—C1TA—C2TA—C3TA	0.0
C4—P1—C10—C15	-80.0 (5)	C1TA—C2TA—C3TA—C4TA	0.0
Ru1—P1—C10—C15	157.8 (4)	С2ТА—С3ТА—С4ТА—С5ТА	0.0
C15—C10—C11—C12	57.3 (6)	СЗТА—С4ТА—С5ТА—С6ТА	0.0
P1-C10-C11-C12	-171.9 (4)	C4TA—C5TA—C6TA—C1TA	0.0
C10-C11-C12-C13	-56.8 (7)	С7ТА—С1ТА—С6ТА—С5ТА	178.5 (9)
C11—C12—C13—C14	55.3 (7)	C2TA—C1TA—C6TA—C5TA	0.0
C12—C13—C14—C15	-55.8 (7)	C7TB—C1TB—C2TB—C3TB	179.6 (11)
C13—C14—C15—C10	58.6 (7)	C6TB—C1TB—C2TB—C3TB	0.0
C11—C10—C15—C14	-58.6 (7)	C1TB—C2TB—C3TB—C4TB	0.0
P1-C10-C15-C14	170.7 (4)	C2TB—C3TB—C4TB—C5TB	0.0
C4—P1—C16—C21	-57.4 (5)	C3TB—C4TB—C5TB—C6TB	0.0
C10—P1—C16—C21	-166.0 (5)	C4TB—C5TB—C6TB—C1TB	0.0
Ru1—P1—C16—C21	64.9 (5)	C7TB—C1TB—C6TB—C5TB	-179.6 (11)
C4—P1—C16—C17	177.4 (4)	C2TB—C1TB—C6TB—C5TB	0.0