

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[aqua(pyridine-2,6-dicarboxylato N-oxide- $\kappa^2 O^1, O^2$)cobalt(II)]- μ -1,3-di-4-pyridylpropane- $\kappa^2 N:N'$] dihydrate]

Li-Jin Wang

Department of Chemistry, Lishui University, Lishui 323000, Zhejiang, People's Republic of China

Correspondence e-mail: lswlj2008@yahoo.cn

Received 4 October 2008; accepted 10 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.059; wR factor = 0.175; data-to-parameter ratio = 13.4.

In the title compound, $\{[Co(C_7H_3NO_5)(C_{13}H_{14}N_2)(H_2O)]$. $2H_2O_{ln}$, the Co^{II} atom is coordinated by two O atoms from a pyridine-2,6-dicarboxylate N-oxide ligand, two N atoms from two 1,3-di-4-pyridylpropane ligands and one water molecule, and displays a distorted square-pyramidal coordination geometry. The 1,3-di-4-pyridylpropane ligands link the Co^{II} atoms into an infinite zigzag chain parallel to [010]. The chains are further linked through $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds, forming a three-dimensional supramolecular network.

Related literature

For related literature on metal complexes with pyridine-2,6dicarboxylate N-oxide, see: Nathan et al. (1985); Wen et al. (2005, 2006); Wu et al. (2007). For related literature on metal complexes with 1,3-di-4-pyridylpropane, see: Konar et al. (2003); Lai & Tiekink (2004); Li et al. (2004).

 $\beta = 90.521 \ (2)^{\circ}$

Z = 4

V = 2167.3 (4) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.29 \times 0.25 \text{ mm}$

10818 measured reflections

3897 independent reflections

2170 reflections with $I > 2\sigma(I)$

2.000(4)

2.184 (4)

 $\mu = 0.84 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.064$

Co1-N3ⁱ

Co1 - O1W

Experimental

Crystal data

[Co(C7H3NO5)(C13H14N2)- $(H_2O)]\cdot 2H_2O$ $M_r = 492.34$ Monoclinic, $P2_1/c$ a = 10.2712 (12) Åb = 11.5251 (13) Åc = 18.309 (2) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.751,\;T_{\rm max}=0.817$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	9 restraints
$wR(F^2) = 0.175$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
3897 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
290 parameters	

Table 1

Selected bond lengths (Å).

Co1-O1 1.927 (4) Co1-O5 1.932 (3) Co1-N2 1.994 (4)

Symmetry code: (i) x, y - 1, z.

Table 2			
Hydrogen-bond	geometry	y (Å,	°).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W···O3 ⁱⁱ	0.82	1.83	2.635 (5)	165
$O1W - H2W \cdots O2W$	0.82	1.99	2.732 (6)	150
O2W−H3W···O3W ⁱⁱⁱ	0.84	2.55	3.018 (9)	117
O2W−H4W···O3	0.84	1.98	2.778 (6)	157
$O3W - H5W \cdots O2$	0.84	2.01	2.828 (7)	166
O3W−H6W···O4 ^{iv}	0.82	2.19	2.935 (7)	150
$C3-H3\cdots O4^{v}$	0.93	2.46	3.364 (8)	165
C9−H9···O5 ^{vi}	0.93	2.46	3.366 (7)	164
$C15-H15A\cdots O2^{vii}$	0.97	2.57	3.492 (7)	159
$C18-H18\cdots O3W^{vi}$	0.93	2.55	3.369 (7)	149

Symmetry codes: (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x, y + 1, z; (v) -x + 1, -y, -z + 1; (vi) $-x, y + \frac{1}{2}, -z + \frac{1}{2};$ (vii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author is grateful to Lishui University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2158).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Konar, S., Zangrando, E., Drew, M. G. B., Mallah, T., Ribas, J. & Chaudhuri, N. R. (2003). Inorg. Chem. 42, 5966-5973.
- Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.
- Li, X., Cao, R., Sun, D., Bi, W., Wang, Y., Li, X. & Hong, M. (2004). Cryst. Growth Des. 4, 775-780.
- Nathan, L. C., Doyle, C. A., Mooring, A. M., Zapien, D. C., Larsen, S. K. & Pierpont, C. G. (1985). Inorg. Chem. 24, 2763-2766.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7170.
- Wen, L.-L., Tian, Z.-F., Lin, J.-G., Zhu, H.-Z. & Meng, Q.-J. (2006). Z. Anorg. Allg. Chem. 632, 689-694.
- Wu, W.-P., Wang, Y.-Y., Wu, Y.-P., Liu, J.-Q., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2007). CrystEngComm, 9, 753-757.

supporting information

Acta Cryst. (2008). E64, m1415-m1416 [doi:10.1107/S1600536808032741]

catena-Poly[[[aqua(pyridine-2,6-dicarboxylato *N*-oxide- $\kappa^2 O^1, O^2$)cobalt(II)]- μ -1,3-di-4-pyridylpropane- $\kappa^2 N$:*N'*] dihydrate]

Li-Jin Wang

S1. Comment

In the structural investigation of metal complexes with pyridine-2,6-dicarboxylate-N-oxide (pdco), it has been found that pdco functions as a multidentate ligand with versatile coordination modes (Nathan *et al.*, 1985; Wen *et al.*, 2005, 2006; Wu *et al.*, 2007). As is well known, 1,3-di-4-pyridylpropane may act in bidentate bridging or monodentate terminal modes, leading to the formation of one-, two- or three-dimensional network (Konar *et al.*, 2003; Lai & Tiekink, 2004; Li *et al.*, 2004). On the basis of these observations, we utilize pdco, 1,3-di-4-pyridylpropane and Co^{II} ion as building blocks. A new one-dimensional coordination framework has been obtained from the hydrothermal treatment in an alkaline aqueous solution.

As illustrated in Fig. 1, the Co^{II} atom exists in a distorted square-pyramidal environment, defined by two O atoms from one pdco ligand, two N atoms from two 1,3-di-4-pyridylpropane ligands and one water molecule (Table 1). The O1, O5, N2, N3ⁱ atoms (i = x, -1 + y, z) in the basal plane are alomst coplanar, and a water molecule lies at the apical position. The 1,3-di-4-pyridylpropane ligand in a bidentate bridging mode links the Co^{II} atoms into an infinite zigzag chain, with the shortest Co^{...}Co separation of 11.525 (3)Å and a Co–C13–Coⁱⁱ angle (ii = x, 1 + y, z) of 100.06 (4)°. The chains are further self-assembled into a three-dimensional supramolecular network through O–H...O and C–H...O hydrogen bonds (Table 2; Fig. 2).

S2. Experimental

A mixture of cobalt chloride (0.238 g, 1 mmol), pyridine-2,6-dicarboxylic acid N-oxide (0.181 g, 1 mmol), 1,3-di-4pyridylpropane (0.198 g, 1 mmol), NaOH (0.06 g, 1.5 mmol) and H_2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h⁻¹. The crystals obtained were washed with water and dryed in air.

S3. Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH) and 0.97(CH₂) Å and with U_{iso} (H) = $1.2U_{eq}$ (C). H atoms of water molecules were located on a difference Fourier map and fixed in the refinements, with U_{iso} (H) = $1.5U_{eq}$ (O).

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x, -1 + y, z.]

Figure 2

A packing view of the title compound. Hydrogen bonds are shown as dashed lines.

catena-Poly[[[aqua(pyridine-2,6-dicarboxylato N-oxide- $\kappa^2 O^1, O^2$)cobalt(II)]- μ -1,3-di-4-pyridylpropane- $\kappa^2 N:N'$] dihydrate]

Crystal data	
$[Co(C_7H_3NO_5)(C_{13}H_{14}N_2)(H_2O)]$ ·2H ₂ O	V = 2167.3 (4) Å ³
$M_r = 492.34$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 1020
Hall symbol: -P 2ybc	$D_{\rm x} = 1.509 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.2712 (12) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.5251 (13) Å	Cell parameters from 5837 reflections
c = 18.309 (2) Å	$\theta = 2.8 - 27.9^{\circ}$
$\beta = 90.521 \ (2)^{\circ}$	$\mu=0.84~\mathrm{mm^{-1}}$

T = 296 KBlock, colorless

Data collection

Dura concerion	
Bruker SMART APEXII CCD area-detector diffractometer	10818 measured reflections 3897 independent reflections
Radiation source: fine-focus sealed tube	2170 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.064$
φ and ω scans	$\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.751, \ T_{\max} = 0.817$	$l = -20 \rightarrow 21$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.175$	$w = 1/[\sigma^2(F_o^2) + (0.0828P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
3897 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
290 parameters	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
9 restraints	$\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheld

direct methods Secondary atom site location: difference Fourier map

 $0.35 \times 0.29 \times 0.25 \text{ mm}$

lrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0030 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	0.3287 (4)	-0.0221 (4)	0.4108 (2)	0.0776 (13)	
N3	0.2102 (4)	1.1756 (4)	0.1902 (2)	0.0519 (11)	
C19	0.2965 (6)	1.0894 (5)	0.1927 (3)	0.0622 (16)	
H19	0.3729	1.1009	0.2194	0.075*	
C20	0.2794 (6)	0.9841 (5)	0.1583 (3)	0.0609 (15)	
H20	0.3432	0.9272	0.1621	0.073*	
C18	0.1003 (5)	1.1549 (5)	0.1514 (3)	0.0568 (15)	
H18	0.0376	1.2129	0.1486	0.068*	
C17	0.0769 (6)	1.0515 (5)	0.1159 (3)	0.0597 (15)	
H17	-0.0007	1.0411	0.0902	0.072*	
C16	0.1677 (5)	0.9631 (5)	0.1180 (3)	0.0565 (14)	
C15	0.1470 (6)	0.8479 (5)	0.0794 (3)	0.0647 (16)	
H15A	0.1842	0.8532	0.0310	0.078*	
H15B	0.1948	0.7885	0.1059	0.078*	
Col	0.24328 (6)	0.32149 (5)	0.24652 (3)	0.0423 (3)	
05	0.2788 (4)	0.2215 (3)	0.32898 (19)	0.0565 (10)	
N2	0.1568 (4)	0.4237 (4)	0.1728 (2)	0.0522 (11)	
O2	0.2658 (5)	0.5550 (4)	0.4120 (2)	0.0892 (15)	
01	0.2384 (4)	0.4531 (3)	0.3113 (2)	0.0777 (13)	
03	0.4937 (4)	0.0354 (3)	0.3417 (2)	0.0761 (12)	
C6	0.3381 (5)	0.3644 (5)	0.4174 (3)	0.0513 (14)	

C12	0.1618 (6)	0.5381 (5)	0.0652 (3)	0.0593 (15)
H12	0.2043	0.5575	0.0223	0.071*
N1	0.3424 (4)	0.2545 (4)	0.3900 (2)	0.0494 (11)
C3	0.4691 (6)	0.1910 (6)	0.4901 (3)	0.0702 (18)
Н3	0.5156	0.1326	0.5137	0.084*
C7	0.2755 (6)	0.4653 (5)	0.3766 (3)	0.0607 (15)
C2	0.4082 (5)	0.1683 (5)	0.4248 (3)	0.0496 (13)
C13	-0.0066 (6)	0.6897 (4)	0.0347 (3)	0.0660 (17)
H13A	-0.0981	0.6750	0.0252	0.079*
H13B	0.0381	0.6903	-0.0117	0.079*
C10	0.0487 (5)	0.5928 (5)	0.0824 (3)	0.0540 (14)
C1	0.4076 (6)	0.0499 (5)	0.3885 (3)	0.0559 (14)
C5	0.3971 (6)	0.3843 (5)	0.4831 (3)	0.0664 (16)
Н5	0.3931	0.4585	0.5029	0.080*
C11	0.2145 (5)	0.4541 (5)	0.1107 (3)	0.0547 (14)
H11	0.2918	0.4180	0.0976	0.066*
C8	0.0451 (6)	0.4774 (5)	0.1890 (3)	0.0675 (17)
H8	0.0037	0.4577	0.2322	0.081*
C4	0.4619 (6)	0.2997 (6)	0.5211 (3)	0.0730 (18)
H4	0.4999	0.3150	0.5663	0.088*
C9	-0.0109 (6)	0.5589 (5)	0.1456 (3)	0.0653 (16)
H9	-0.0899	0.5918	0.1587	0.078*
C14	0.0088 (6)	0.8095 (4)	0.0717 (3)	0.0641 (17)
H14A	-0.0387	0.8667	0.0432	0.077*
H14B	-0.0299	0.8064	0.1198	0.077*
O1W	0.4465 (4)	0.3311 (4)	0.2130 (3)	0.0969 (16)
H1W	0.4767	0.3944	0.2011	0.145*
H2W	0.4891	0.3034	0.2471	0.145*
O2W	0.6417 (5)	0.2145 (5)	0.2840 (3)	0.1170 (19)
H3W	0.6669	0.1724	0.2494	0.175*
H4W	0.5887	0.1753	0.3084	0.175*
O3W	0.2003 (5)	0.7719 (5)	0.3494 (4)	0.141 (2)
H5W	0.2281	0.7061	0.3618	0.212*
H6W	0.2190	0.8220	0.3795	0.212*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.089 (3)	0.053 (3)	0.091 (3)	-0.012 (2)	0.005 (2)	0.013 (2)
N3	0.058 (3)	0.044 (3)	0.053 (3)	0.005 (2)	-0.012 (2)	0.000 (2)
C19	0.074 (4)	0.043 (4)	0.069 (4)	0.008 (3)	-0.015 (3)	-0.002 (3)
C20	0.066 (4)	0.045 (4)	0.071 (4)	0.008 (3)	-0.010 (3)	-0.005 (3)
C18	0.061 (4)	0.038 (3)	0.071 (4)	0.006 (3)	-0.012 (3)	0.002 (3)
C17	0.070 (4)	0.038 (3)	0.071 (4)	-0.008(3)	-0.014 (3)	-0.004 (3)
C16	0.067 (4)	0.043 (3)	0.059 (3)	0.003 (3)	-0.002(3)	-0.003 (3)
C15	0.080 (4)	0.045 (4)	0.069 (4)	-0.005 (3)	-0.003 (3)	-0.004 (3)
Col	0.0543 (5)	0.0245 (4)	0.0478 (4)	0.0021 (3)	-0.0085 (3)	0.0006 (3)
05	0.075 (3)	0.040 (2)	0.054 (2)	0.0000 (19)	-0.0150 (19)	-0.0013 (18)

N2	0.059 (3)	0.042 (3)	0.056 (3)	0.001 (2)	-0.002 (2)	-0.003 (2)
02	0.133 (4)	0.046 (3)	0.088 (3)	0.019 (3)	-0.033 (3)	-0.024 (2)
01	0.121 (4)	0.039 (2)	0.072 (3)	0.010 (2)	-0.026 (3)	-0.005 (2)
03	0.074 (3)	0.048 (3)	0.107 (3)	0.005 (2)	0.022 (3)	-0.008 (2)
C6	0.055 (3)	0.040 (3)	0.059 (3)	0.007 (3)	-0.009 (3)	-0.008 (3)
C12	0.080 (4)	0.048 (4)	0.050 (3)	-0.005 (3)	-0.001 (3)	0.002 (3)
N1	0.055 (3)	0.040 (3)	0.053 (3)	0.001 (2)	-0.007 (2)	0.002 (2)
C3	0.076 (4)	0.066 (5)	0.068 (4)	0.010 (3)	-0.018 (3)	0.010 (3)
C7	0.071 (4)	0.045 (4)	0.066 (4)	0.009 (3)	-0.011 (3)	-0.013 (3)
C2	0.050 (3)	0.044 (3)	0.055 (3)	0.004 (3)	-0.001 (3)	0.004 (3)
C13	0.087 (4)	0.042 (3)	0.069 (4)	0.003 (3)	-0.027 (3)	0.003 (3)
C10	0.059 (3)	0.037 (3)	0.066 (4)	0.001 (3)	-0.013 (3)	-0.003 (3)
C1	0.064 (4)	0.041 (4)	0.062 (4)	0.007 (3)	-0.013 (3)	0.008 (3)
C5	0.086 (4)	0.047 (4)	0.066 (4)	0.006 (3)	-0.014 (3)	-0.008 (3)
C11	0.058 (3)	0.048 (4)	0.058 (3)	0.008 (3)	0.000 (3)	-0.003 (3)
C8	0.068 (4)	0.065 (4)	0.070 (4)	0.015 (3)	0.008 (3)	0.009 (3)
C4	0.088 (5)	0.065 (4)	0.066 (4)	-0.001 (4)	-0.029 (3)	-0.004 (3)
C9	0.068 (4)	0.056 (4)	0.072 (4)	0.015 (3)	0.006 (3)	0.012 (3)
C14	0.078 (4)	0.033 (3)	0.081 (4)	-0.004 (3)	-0.027 (3)	0.005 (3)
O1W	0.074 (3)	0.070 (3)	0.147 (4)	-0.008 (2)	-0.002 (3)	0.047 (3)
O2W	0.116 (4)	0.098 (4)	0.136 (5)	-0.009 (3)	-0.017 (3)	0.034 (4)
O3W	0.115 (4)	0.075 (4)	0.233 (7)	-0.015 (3)	-0.046 (4)	0.024 (4)

Geometric parameters (Å, °)

O4—C1	1.232 (7)	C12—C10	1.361 (7)
N3—C19	1.332 (6)	C12—C11	1.384 (7)
N3—C18	1.348 (6)	C12—H12	0.9300
N3—Co1 ⁱ	2.000 (4)	N1—C2	1.358 (6)
C19—C20	1.378 (7)	C3—C2	1.370 (7)
С19—Н19	0.9300	C3—C4	1.377 (8)
C20—C16	1.379 (7)	С3—Н3	0.9300
С20—Н20	0.9300	C2—C1	1.518 (7)
C18—C17	1.378 (7)	C13—C10	1.524 (7)
C18—H18	0.9300	C13—C14	1.545 (7)
C17—C16	1.381 (7)	C13—H13A	0.9700
С17—Н17	0.9300	C13—H13B	0.9700
C16—C15	1.519 (7)	C10—C9	1.371 (7)
C15—C14	1.492 (7)	C5—C4	1.368 (8)
C15—H15A	0.9700	С5—Н5	0.9300
C15—H15B	0.9700	C11—H11	0.9300
Co101	1.927 (4)	C8—C9	1.354 (7)
Co1—O5	1.932 (3)	C8—H8	0.9300
Co1—N2	1.994 (4)	C4—H4	0.9300
Co1—N3 ⁱⁱ	2.000 (4)	С9—Н9	0.9300
Col—O1W	2.184 (4)	C14—H14A	0.9700
O5—N1	1.344 (5)	C14—H14B	0.9700
N2-C11	1.334 (6)	O1W—H1W	0.8200

N2—C8	1.339 (6)	O1W—H2W	0.8200
O2—C7	1.224 (6)	O2W—H3W	0.8400
O1—C7	1.259 (6)	O2W—H4W	0.8400
O3—C1	1.248 (7)	O3W—H6W	0.8200
C6—C5	1.361 (7)	O3W—H5W	0.8400
C6—N1	1.363 (6)	O3W—H6W	0.8200
C6—C7	1.522 (7)		
C19—N3—C18	116.1 (5)	C2—C3—C4	120.5 (6)
C19—N3—Co1 ⁱ	119.9 (4)	С2—С3—Н3	119.7
C18—N3—Co1 ⁱ	123.9 (4)	С4—С3—Н3	119.7
N3—C19—C20	123.9 (5)	O2C7O1	124.8 (6)
N3—C19—H19	118.0	O2—C7—C6	115.0 (5)
С20—С19—Н19	118.0	O1—C7—C6	120.2 (5)
C16—C20—C19	120.1 (5)	N1—C2—C3	119.4 (5)
С16—С20—Н20	119.9	N1-C2-C1	116.9 (4)
C19—C20—H20	119.9	C3—C2—C1	123.7 (5)
N3—C18—C17	122.9 (5)	C10-C13-C14	111.6 (4)
N3—C18—H18	118.5	C10-C13-H13A	109.3
C17—C18—H18	118.5	C14—C13—H13A	109.3
C18—C17—C16	120.6 (5)	C10-C13-H13B	109.3
С18—С17—Н17	119.7	C14—C13—H13B	109.3
С16—С17—Н17	119.7	H13A—C13—H13B	108.0
C20—C16—C17	116.3 (5)	C12—C10—C9	116.8 (5)
C20—C16—C15	121.0 (5)	C12—C10—C13	121.4 (5)
C17—C16—C15	122.7 (5)	C9—C10—C13	121.8 (5)
C14—C15—C16	115.6 (5)	O4—C1—O3	127.6 (6)
C14—C15—H15A	108	O4—C1—C2	117.4 (6)
C16—C15—H15A	108	O3—C1—C2	114.9 (5)
C14—C15—H15B	108	C6—C5—C4	122.7 (6)
C16—C15—H15B	108	С6—С5—Н5	118.7
H15A—C15—H15B	107	С4—С5—Н5	118.7
O1—Co1—O5	89.67 (16)	N2-C11-C12	121.5 (5)
O1—Co1—N2	86.43 (16)	N2—C11—H11	119.3
O5—Co1—N2	164.02 (17)	C12—C11—H11	119.3
O1—Co1—N3 ⁱⁱ	166.97 (19)	N2—C8—C9	123.4 (6)
O5—Co1—N3 ⁱⁱ	86.08 (16)	N2—C8—H8	118.3
N2—Co1—N3 ⁱⁱ	94.30 (16)	С9—С8—Н8	118.3
O1—Co1—O1W	99.39 (19)	C5—C4—C3	117.8 (5)
O5—Co1—O1W	94.32 (16)	C5—C4—H4	121.1
N2—Co1—O1W	101.61 (17)	C3—C4—H4	121.1
N3 ⁱⁱ —Co1—O1W	93.21 (18)	C8—C9—C10	120.2 (6)
N1	124.5 (3)	С8—С9—Н9	119.9
C11—N2—C8	117.0 (5)	С10—С9—Н9	119.9
C11—N2—Co1	122.3 (4)	C15—C14—C13	113.6 (5)
C8—N2—Co1	120.1 (4)	C15—C14—H14A	108.9
C7—O1—Co1	131.5 (4)	C13—C14—H14A	108.9
C5—C6—N1	117.8 (5)	C15—C14—H14B	108.9

C5—C6—C7	119.1 (5)	C13—C14—H14B	108.9	
N1—C6—C7	123.0 (4)	H14A—C14—H14B	107.7	
C10-C12-C11	121.0 (5)	Co1—O1W—H1W	118.8	
C10-C12-H12	119.5	Co1—O1W—H2W	105.7	
C11—C12—H12	119.5	H1W—O1W—H2W	110	
O5—N1—C2	114.7 (4)	H3W—O2W—H4W	107	
O5—N1—C6	123.5 (4)	H5W—O3W—H6W	112	
C2—N1—C6	121.7 (4)			

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O1 <i>W</i> —H1 <i>W</i> ····O3 ⁱⁱⁱ	0.82	1.83	2.635 (5)	165
O1 <i>W</i> —H2 <i>W</i> ···O2 <i>W</i>	0.82	1.99	2.732 (6)	150
O2W—H3 W ···O3 W ^{iv}	0.84	2.55	3.018 (9)	117
O2 <i>W</i> —H4 <i>W</i> ···O3	0.84	1.98	2.778 (6)	157
O3 <i>W</i> —H5 <i>W</i> ···O2	0.84	2.01	2.828 (7)	166
O3W—H6 W ···O4 ⁱ	0.82	2.19	2.935 (7)	150
C3—H3…O4 ^v	0.93	2.46	3.364 (8)	165
C9—H9…O5 ^{vi}	0.93	2.46	3.366 (7)	164
C15—H15A····O2 ^{vii}	0.97	2.57	3.492 (7)	159
C18—H18…O3 <i>W</i> ^{vi}	0.93	2.55	3.369 (7)	149

Symmetry codes: (i) x, y+1, z; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, y-1/2, -z+1/2; (v) -x+1, -y, -z+1; (vi) -x, y+1/2, -z+1/2; (vii) x, -y+3/2, z-1/2.