organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­bromo-9-octyl-9H-carbazole

aDépartement de Chimie, Université of Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7, and bSolarisChem Inc., 598 Chaline Street, St-Lazare, Québec, Canada J7T 3E8
*Correspondence e-mail: eric.gagnon.2@umontreal.ca

(Received 2 October 2008; accepted 6 October 2008; online 22 October 2008)

In the crystal structure of the title compound, C20H23Br2N, the octyl chains are extended in an anti conformation and form a segregating bilayer, isolating rows of carbazole units. The carbazole moieties are engaged in offset ππ inter­actions; the smallest centroid-to-centroid distance is 4.2822 (11) Å. This offset packing motif allows the methyl­ene group attached directly to the N atom to be involved in two short C—H⋯π inter­actions (H⋯centroid distances = 2.96 and 2.99 Å) with an adjacent carbazole. One of the Br atoms also participates in a short contact [3.5475 (3) Å] with a symmetry-related (−x, 1 − y, −z) Br atom. This value is significantly smaller than the sum of the van der Waals radii for bromine (3.70 Å).

Related literature

For general background, see: Morin & Leclerc (2001[Morin, J.-F. & Leclerc, M. (2001). Macromolecules, 34, 4680-4682.]). For the structure of 3,6-dibromo-9-hexyl-9H-carbazole, see: Duan et al. (2005[Duan, X.-M., Huang, P.-M., Li, J.-S., Zheng, P.-W., Zeng, T. & Bai, G.-Y. (2005). Acta Cryst. E61, o3977-o3978.]). For the general use of 2,7-dihalogeno-9-alkyl-9H-carbazoles in synthesis, see: Blouin & Leclerc (2008[Blouin, N. & Leclerc, M. (2008). Acc. Chem. Res. 41, 1110-1119.]). For details of halogen⋯halogen inter­actions, see: Desiraju & Parthasarathy (1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]). The synthesis of the title compound was performed according to published procedures (Bouchard et al., 2004[Bouchard, J., Wakim, S. & Leclerc, M. (2004). J. Org. Chem. 69, 5705-5711.]; Dierschke et al., 2003[Dierschke, F., Grimsdale, A. C. & Müllen, K. (2003). Synthesis, pp. 2470-2472.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23Br2N

  • Mr = 437.21

  • Monoclinic, P 21 /c

  • a = 20.7256 (4) Å

  • b = 4.6578 (1) Å

  • c = 19.7236 (4) Å

  • β = 95.945 (1)°

  • V = 1893.79 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.40 mm−1

  • T = 150 K

  • 0.13 × 0.07 × 0.04 mm

Data collection
  • Bruker Microstar diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.806

  • 30701 measured reflections

  • 3301 independent reflections

  • 3158 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 3301 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C9–C12 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg1i 0.98 2.96 3.582 (2) 121
C13—H13ACg2i 0.98 2.99 3.566 (2) 119
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Material Studio (Accelrys, 2005[Accelrys (2005). Materials Studio. Accelrys Inc., Princeton, New Jersey, USA.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.]).

Supporting information


Comment top

The field of conjugated polymer chemistry is highly dependent on the efficient preparation of suitable monomers. Amongst them, substituted fluorenes, thiophenes and phenylenes are readily accessible, allowing the synthesis of polymers with tailored properties. Until 2001, highly conjugated poly(2,7-carbazoles) could not be prepared because potential precursors such as 2,7-dibromo-9-octyl-9H-carbazole were unavailable (Morin & Leclerc, 2001).

In such compounds, an alkyl group is useful because it increases the solubility and helps control molecular packing, which are important parameters in preparing devices such as organic light-emitting diodes and solar cells (Blouin & Leclerc, 2008).

Crystals of 2,7-dibromo-9-octyl-9H-carbazole belonging to the space group P21/c were grown by slowly cooling a saturated hot solution in hexanes. The octyl chain adopts a fully extended conformation, with torsion angles ranging from 174.47 (17)° to 179.9 (2)° (Fig. 1). The octyl groups are parallel and packed tightly, leading to the formation of a bilayered structure (Fig. 2).

The carbazole units pack together through the formation of offset intermolecular π-=π interactions. The smallest centroid···centroid distance is 4.2822 (11) Å and β = 39.81°, which is defined as the angle between the vector Cg1 Cg2 and the normal to the least-squares plane of Cg1. Cg1 and its plane are defined by N1/C9–C12 and Cg2 is the centroid of C5–C10. Additional stabilization is provided by C—H···π interactions involving H13A [2.96 Å] and H13B [2.99 Å] (Fig. 3 and Table 1) and short contacts [3.5475 (3) Å] between symmetry-related (-x, 1 - y, -z) bromine atoms (Desiraju & Parthasarathy, 1989). The structure of the related compound, 3,6-dibromo-9-hexyl-9H-carbazole, was reported by Duan et al. (2005).

Related literature top

For general background, see: Morin & Leclerc (2001). For the structure of 3,6-dibromo-9-hexyl-9H-carbazole, see: Duan et al. (2005). For the general use of 2,7-dihalogeno-9-alkyl-9H-carbazoles in synthesis, see: Blouin & Leclerc (2008). For details of halogen···halogen interactions, see: Desiraju & Parthasarathy (1989). The synthesis of the title compound was performed according to the published procedures (Bouchard et al., 2004; Dierschke et al., 2003).

Experimental top

The title compound was obtained by a two-step synthesis starting from 4,4'-dibromo-2-nitrobiphenyl. A reductive Cadogan ring-closure reaction was performed according to Dierschke et al. (2003) to afford 2,7-dibromocarbazole, which was alkylated with 1-bromooctane following a procedure reported by Bouchard et al. (2004). Crystallization of the title compound from hexanes afforded needles which were used in this study. Spectroscopic data proved to be consistent with the reported values.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.99 Å (methylene), 0.98 Å (methyl) and 0.95 Å (aromatic C—H), and with Uiso(H) of 1.2Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for terminal methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Material Studio (Accelrys, 2005); software used to prepare material for publication: UdMX (Maris, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of a 2 × 2 × 2 array of unit cells showing 2,7-dibromo-9-octyl-9H-carbazole molecules separated by a bilayer of linear octyl chains.
[Figure 3] Fig. 3. Br···Br contact and C—H···π interactions involving the title compound. All hydrogen atoms except H13A and H13B were removed for clarity.
2,7-Dibromo-9-octyl-9H-carbazole top
Crystal data top
C20H23Br2NF(000) = 880
Mr = 437.21Dx = 1.533 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 20371 reflections
a = 20.7256 (4) Åθ = 2.9–67.8°
b = 4.6578 (1) ŵ = 5.40 mm1
c = 19.7236 (4) ÅT = 150 K
β = 95.945 (1)°Needle, colourless
V = 1893.79 (7) Å30.13 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker Microstar
diffractometer
3301 independent reflections
Radiation source: Rotating anode3158 reflections with I > 2σ(I)
Helios optics monochromatorRint = 0.065
Detector resolution: 8.3 pixels mm-1θmax = 68.2°, θmin = 4.3°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 55
Tmin = 0.633, Tmax = 0.806l = 2223
30701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.9966P]
where P = (Fo2 + 2Fc2)/3
3301 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H23Br2NV = 1893.79 (7) Å3
Mr = 437.21Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.7256 (4) ŵ = 5.40 mm1
b = 4.6578 (1) ÅT = 150 K
c = 19.7236 (4) Å0.13 × 0.07 × 0.04 mm
β = 95.945 (1)°
Data collection top
Bruker Microstar
diffractometer
3301 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3158 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.806Rint = 0.065
30701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.51 e Å3
3301 reflectionsΔρmin = 0.39 e Å3
209 parameters
Special details top

Experimental. X-ray crystallographic data for the title compound were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Microstar diffractometer equipped with a Platinum 135 CCD Detector, Helios optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over three different parts of the reciprocal space (99 frames total).

Due to geometrical constraints of the instrument and the use of copper radiation, we consistently obtain a data completeness lower than 100% depending on the crystal system and the orientation of the mounted crystal, even with appropriate data collection routines. Typical values for data completeness range from 83–92% for triclinic, 85–97% for monoclinic and 85–98% for all other crystal systems.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.277870 (14)0.91023 (7)0.562136 (14)0.05940 (12)
Br20.056608 (12)0.45377 (7)0.073002 (13)0.05584 (12)
C10.23693 (9)0.8734 (4)0.42106 (11)0.0366 (5)
H10.26901.01550.41590.044*
C20.22615 (11)0.7662 (5)0.48414 (11)0.0411 (5)
C30.17985 (12)0.5585 (5)0.49381 (12)0.0452 (5)
H30.17440.49210.53840.054*
C40.14194 (11)0.4495 (4)0.43831 (12)0.0405 (5)
H40.11000.30800.44430.049*
C50.07350 (9)0.2906 (4)0.27976 (11)0.0368 (5)
H50.05330.16710.30960.044*
C60.05563 (9)0.2808 (4)0.21101 (12)0.0396 (5)
H60.02310.15020.19300.047*
C70.08542 (10)0.4637 (4)0.16739 (12)0.0377 (5)
C80.13427 (9)0.6544 (4)0.19041 (10)0.0340 (4)
H80.15470.77390.16000.041*
C90.15163 (8)0.6612 (4)0.26027 (10)0.0296 (4)
C100.12158 (9)0.4832 (4)0.30598 (11)0.0313 (4)
C110.15084 (9)0.5491 (4)0.37300 (11)0.0333 (4)
C120.19845 (9)0.7622 (4)0.36566 (10)0.0317 (4)
C130.24263 (9)1.0219 (4)0.26789 (10)0.0312 (4)
H13A0.25471.17950.30040.037*
H13B0.22081.10800.22570.037*
C140.30385 (9)0.8674 (4)0.25132 (11)0.0319 (4)
H14A0.32770.79760.29420.038*
H14B0.29140.69810.22260.038*
C150.34861 (9)1.0575 (4)0.21437 (11)0.0327 (4)
H15A0.32411.13620.17280.039*
H15B0.36311.22120.24420.039*
C160.40776 (9)0.8980 (4)0.19451 (11)0.0341 (4)
H16A0.39310.72540.16800.041*
H16B0.43390.83250.23650.041*
C170.45074 (10)1.0767 (4)0.15261 (12)0.0364 (5)
H17A0.42411.15150.11190.044*
H17B0.46761.24340.18010.044*
C180.50750 (10)0.9090 (4)0.12985 (12)0.0396 (5)
H18A0.53310.82880.17060.048*
H18B0.49040.74570.10130.048*
C190.55238 (10)1.0841 (5)0.08983 (13)0.0442 (5)
H19A0.56981.24730.11820.053*
H19B0.52701.16380.04880.053*
C200.60875 (12)0.9104 (6)0.06785 (16)0.0586 (7)
H20A0.63500.83660.10830.088*
H20B0.63561.03340.04180.088*
H20C0.59200.74940.03930.088*
N10.19774 (7)0.8298 (3)0.29719 (8)0.0309 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06460 (19)0.0781 (2)0.03306 (19)0.00348 (13)0.00678 (13)0.00578 (11)
Br20.04915 (17)0.0795 (2)0.03734 (19)0.00033 (11)0.00278 (13)0.01405 (11)
C10.0320 (9)0.0419 (10)0.0357 (12)0.0036 (8)0.0031 (9)0.0021 (8)
C20.0427 (11)0.0501 (12)0.0298 (12)0.0099 (9)0.0008 (9)0.0031 (9)
C30.0529 (13)0.0517 (12)0.0328 (13)0.0090 (10)0.0138 (11)0.0056 (9)
C40.0428 (11)0.0422 (11)0.0385 (13)0.0019 (8)0.0140 (10)0.0047 (9)
C50.0302 (9)0.0356 (9)0.0458 (13)0.0001 (8)0.0101 (9)0.0009 (9)
C60.0286 (9)0.0395 (10)0.0507 (14)0.0002 (8)0.0045 (9)0.0085 (9)
C70.0311 (10)0.0460 (11)0.0356 (12)0.0081 (8)0.0019 (9)0.0082 (9)
C80.0297 (9)0.0389 (10)0.0338 (12)0.0039 (8)0.0049 (8)0.0005 (8)
C90.0255 (8)0.0324 (9)0.0315 (11)0.0041 (7)0.0052 (8)0.0006 (7)
C100.0269 (9)0.0334 (9)0.0346 (12)0.0049 (7)0.0077 (8)0.0008 (8)
C110.0301 (9)0.0351 (9)0.0359 (12)0.0045 (7)0.0097 (9)0.0015 (8)
C120.0295 (9)0.0358 (9)0.0305 (11)0.0055 (7)0.0068 (8)0.0014 (8)
C130.0302 (9)0.0325 (9)0.0314 (11)0.0002 (7)0.0051 (8)0.0018 (8)
C140.0293 (9)0.0334 (9)0.0333 (11)0.0014 (7)0.0045 (8)0.0037 (8)
C150.0301 (9)0.0332 (9)0.0352 (12)0.0004 (7)0.0051 (9)0.0032 (8)
C160.0297 (9)0.0367 (9)0.0362 (12)0.0016 (7)0.0049 (9)0.0038 (8)
C170.0316 (9)0.0381 (10)0.0401 (13)0.0006 (8)0.0067 (9)0.0032 (8)
C180.0344 (10)0.0407 (10)0.0450 (14)0.0008 (8)0.0103 (10)0.0030 (9)
C190.0365 (11)0.0469 (12)0.0509 (15)0.0043 (9)0.0133 (10)0.0010 (10)
C200.0441 (13)0.0647 (15)0.071 (2)0.0028 (11)0.0275 (13)0.0028 (13)
N10.0282 (7)0.0360 (8)0.0289 (9)0.0009 (6)0.0050 (7)0.0017 (7)
Geometric parameters (Å, º) top
Br1—C21.904 (2)C13—C141.523 (2)
Br2—C71.896 (2)C13—H13A0.9900
C1—C21.380 (3)C13—H13B0.9900
C1—C121.385 (3)C14—C151.522 (2)
C1—H10.9500C14—H14A0.9900
C2—C31.390 (3)C14—H14B0.9900
C3—C41.376 (4)C15—C161.519 (3)
C3—H30.9500C15—H15A0.9900
C4—C111.399 (3)C15—H15B0.9900
C4—H40.9500C16—C171.524 (3)
C5—C61.369 (3)C16—H16A0.9900
C5—C101.399 (3)C16—H16B0.9900
C5—H50.9500C17—C181.518 (3)
C6—C71.399 (3)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.387 (3)C18—C191.518 (3)
C8—C91.388 (3)C18—H18A0.9900
C8—H80.9500C18—H18B0.9900
C9—N11.384 (3)C19—C201.520 (3)
C9—C101.416 (3)C19—H19A0.9900
C10—C111.429 (3)C19—H19B0.9900
C11—C121.417 (3)C20—H20A0.9800
C12—N11.385 (2)C20—H20B0.9800
C13—N11.453 (2)C20—H20C0.9800
C2—C1—C12116.24 (19)C13—C14—H14A109.0
C2—C1—H1121.9C15—C14—H14B109.0
C12—C1—H1121.9C13—C14—H14B109.0
C1—C2—C3123.7 (2)H14A—C14—H14B107.8
C1—C2—Br1118.09 (17)C16—C15—C14112.77 (15)
C3—C2—Br1118.25 (17)C16—C15—H15A109.0
C4—C3—C2119.5 (2)C14—C15—H15A109.0
C4—C3—H3120.2C16—C15—H15B109.0
C2—C3—H3120.2C14—C15—H15B109.0
C3—C4—C11119.4 (2)H15A—C15—H15B107.8
C3—C4—H4120.3C15—C16—C17113.92 (16)
C11—C4—H4120.3C15—C16—H16A108.8
C6—C5—C10119.78 (18)C17—C16—H16A108.8
C6—C5—H5120.1C15—C16—H16B108.8
C10—C5—H5120.1C17—C16—H16B108.8
C5—C6—C7119.84 (19)H16A—C16—H16B107.7
C5—C6—H6120.1C18—C17—C16113.20 (16)
C7—C6—H6120.1C18—C17—H17A108.9
C8—C7—C6122.8 (2)C16—C17—H17A108.9
C8—C7—Br2118.81 (16)C18—C17—H17B108.9
C6—C7—Br2118.36 (16)C16—C17—H17B108.9
C7—C8—C9116.41 (18)H17A—C17—H17B107.8
C7—C8—H8121.8C19—C18—C17114.38 (17)
C9—C8—H8121.8C19—C18—H18A108.7
N1—C9—C8128.98 (17)C17—C18—H18A108.7
N1—C9—C10108.81 (17)C19—C18—H18B108.7
C8—C9—C10122.21 (18)C17—C18—H18B108.7
C5—C10—C9118.90 (19)H18A—C18—H18B107.6
C5—C10—C11134.20 (18)C18—C19—C20113.13 (19)
C9—C10—C11106.90 (17)C18—C19—H19A109.0
C4—C11—C12119.1 (2)C20—C19—H19A109.0
C4—C11—C10134.14 (19)C18—C19—H19B109.0
C12—C11—C10106.81 (17)C20—C19—H19B109.0
C1—C12—N1129.14 (18)H19A—C19—H19B107.8
C1—C12—C11122.11 (18)C19—C20—H20A109.5
N1—C12—C11108.76 (18)C19—C20—H20B109.5
N1—C13—C14112.13 (15)H20A—C20—H20B109.5
N1—C13—H13A109.2C19—C20—H20C109.5
C14—C13—H13A109.2H20A—C20—H20C109.5
N1—C13—H13B109.2H20B—C20—H20C109.5
C14—C13—H13B109.2C9—N1—C12108.71 (15)
H13A—C13—H13B107.9C9—N1—C13125.15 (16)
C15—C14—C13113.00 (15)C12—N1—C13125.82 (17)
C15—C14—H14A109.0
C12—C1—C2—C30.0 (3)C9—C10—C11—C120.84 (19)
C12—C1—C2—Br1179.77 (14)C2—C1—C12—N1179.21 (18)
C1—C2—C3—C40.0 (3)C2—C1—C12—C110.4 (3)
Br1—C2—C3—C4179.72 (16)C4—C11—C12—C10.6 (3)
C2—C3—C4—C110.3 (3)C10—C11—C12—C1179.15 (17)
C10—C5—C6—C70.1 (3)C4—C11—C12—N1179.03 (16)
C5—C6—C7—C81.5 (3)C10—C11—C12—N11.2 (2)
C5—C6—C7—Br2177.43 (14)N1—C13—C14—C15174.47 (17)
C6—C7—C8—C91.5 (3)C13—C14—C15—C16176.84 (18)
Br2—C7—C8—C9177.42 (13)C14—C15—C16—C17175.50 (18)
C7—C8—C9—N1179.35 (17)C15—C16—C17—C18176.75 (19)
C7—C8—C9—C100.2 (3)C16—C17—C18—C19178.2 (2)
C6—C5—C10—C91.1 (3)C17—C18—C19—C20179.9 (2)
C6—C5—C10—C11179.62 (19)C8—C9—N1—C12179.81 (18)
N1—C9—C10—C5179.27 (16)C10—C9—N1—C120.58 (19)
C8—C9—C10—C51.1 (3)C8—C9—N1—C136.1 (3)
N1—C9—C10—C110.18 (19)C10—C9—N1—C13174.33 (16)
C8—C9—C10—C11179.46 (16)C1—C12—N1—C9179.27 (18)
C3—C4—C11—C120.5 (3)C11—C12—N1—C91.12 (19)
C3—C4—C11—C10179.1 (2)C1—C12—N1—C135.6 (3)
C5—C10—C11—C41.2 (4)C11—C12—N1—C13174.82 (16)
C9—C10—C11—C4179.4 (2)C14—C13—N1—C986.0 (2)
C5—C10—C11—C12178.5 (2)C14—C13—N1—C1286.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.982.963.582 (2)121
C13—H13A···Cg2i0.982.993.566 (2)119
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H23Br2N
Mr437.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.7256 (4), 4.6578 (1), 19.7236 (4)
β (°) 95.945 (1)
V3)1893.79 (7)
Z4
Radiation typeCu Kα
µ (mm1)5.40
Crystal size (mm)0.13 × 0.07 × 0.04
Data collection
DiffractometerBruker Microstar
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.633, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
30701, 3301, 3158
Rint0.065
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections3301
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.39

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Material Studio (Accelrys, 2005), UdMX (Maris, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.982.963.582 (2)121
C13—H13A···Cg2i0.982.993.566 (2)119
Symmetry code: (i) x, y+1, z.
 

Footnotes

Fellow of the Natural Sciences and Engineering Research Council of Canada, 2003–2008.

Acknowledgements

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation. Dr Thierry Maris and Professor James D. Wuest are gratefully acknowledged for their help in preparing the manuscript. EG also thanks the Natural Sciences and Engineering Research Council of Canada and the Université de Montréal for graduate scholarships.

References

First citationAccelrys (2005). Materials Studio. Accelrys Inc., Princeton, New Jersey, USA.  Google Scholar
First citationBlouin, N. & Leclerc, M. (2008). Acc. Chem. Res. 41, 1110–1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBouchard, J., Wakim, S. & Leclerc, M. (2004). J. Org. Chem. 69, 5705–5711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationDierschke, F., Grimsdale, A. C. & Müllen, K. (2003). Synthesis, pp. 2470–2472.  Google Scholar
First citationDuan, X.-M., Huang, P.-M., Li, J.-S., Zheng, P.-W., Zeng, T. & Bai, G.-Y. (2005). Acta Cryst. E61, o3977–o3978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.  Google Scholar
First citationMorin, J.-F. & Leclerc, M. (2001). Macromolecules, 34, 4680–4682.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds