metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{μ-6,6′-dimeth­­oxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}(di­methyl sulfoxide)lead(II)zinc(II) N,N-di­methyl­formamide solvate

aSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: Zhanglf@sdu.edu.cn

(Received 8 October 2008; accepted 21 October 2008; online 25 October 2008)

In the heterodinuclear complex of the title compound, [PbZn(C22H18N2O4)Cl2(C2H6OS)]·C3H7NO, the ZnII atom is coordinated in a distorted square-pyramidal geometry by two N atoms and two O atoms from the diphenolate ligand, and one Cl atom which occupies the apical position. The PbII atom is coordinated in a distorted octa­hedral geometry by the four O atoms of the diphenolate ligand, one O atom from the dimethyl sulfoxide mol­ecule and one Cl atom. The dimethyl sulfoxide mol­ecule is disordered over two positions, with site occupancies of 0.576 (2) and 0.424 (2).

Related literature

For general background, see: Karlin (1993[Karlin, K. D. (1993). Science, 261, 701-708.]); Ni et al. (2005[Ni, Z. H., Kou, H.-Z., Zhao, Y.-H., Zheng, L., Wang, R.-J., Cui, A.-L. & Sato, O. (2005). Inorg. Chem. 44, 2050-2059.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]). For a related structure, see: Korupoju et al. (2000[Korupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845-2852.]). For related literature on the preparative method, see: Lo et al. (2004[Lo, W.-K., Wong, W.-K., Guo, J., Wong, W.-Y., Li, K.-F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510-4521.]); Sui et al. (2007[Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277-m2278.]).

[Scheme 1]

Experimental

Crystal data
  • [PbZn(C22H18N2O4)Cl2(C2H6OS)]·C3H7NO

  • Mr = 869.07

  • Monoclinic, P 21 /c

  • a = 15.2850 (7) Å

  • b = 18.8433 (8) Å

  • c = 10.7343 (5) Å

  • β = 94.771 (1)°

  • V = 3081.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.52 mm−1

  • T = 295 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.343, Tmax = 0.518

  • 18055 measured reflections

  • 6997 independent reflections

  • 4923 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.073

  • S = 0.99

  • 6997 reflections

  • 387 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.070 (4)
Zn1—N2 2.077 (3)
Zn1—O3 2.028 (3)
Zn1—O2 2.014 (3)
Zn1—Cl2 2.2686 (14)
Pb1—O1 2.791 (4)
Pb1—O2 2.476 (3)
Pb1—O3 2.420 (3)
Pb1—O4 2.667 (3)
Pb1—O5 2.741 (5)
Pb1—O5′ 2.746 (7)
Pb1—Cl1 2.6088 (15)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterometallic dinuclear complexes have been intensively studied owing to their unique physical and chemical properties (Ward, 2007; Ni et al., 2005). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Whereas, it is necessary to further widen the system of application of heterometallic compounds. Herein, a novel heterometallic binuclear ZnIIPbII compound has been obtained by step-by-step method and its structure is depicted.

As shown in Fig. 1, the title compound is a binuclear neutral complex with a slightly distorted planar configuration. Each ZnII atom is coordinated in a square-pyramidal geometry with the basal square formed by two N atoms and two O atoms from the L ligand, and with the apical position occupied by terminal Cl atom. The coordination environment of each PbII atom is in a distorted octahedral geometry composed of four O atoms from the ligand, one Cl atom and one O atom of the DMSO molecule. The ZnII atom and the PbII atom are connected via two bridging O atoms of the ligand. The bond lengths of Zn—O, Zn—N and Zn—Cl are normal (Korupoju et al., 2000).

Related literature top

For general background, see: Karlin (1993); Ni et al. (2005); Ward (2007). For a related structure, see: Korupoju et al. (2000). For related literature on the preparative method, see: Lo et al. (2004); Sui et al. (2007).

Experimental top

The H2L ligand and the complex ZnL were synthesized according to the previous literatures (Lo et al., 2004; Sui et al., 2007). The title compound was obtained by allowing the mixture of ZnL (0.088 g, 0.2 mmol) and PbCl2.2H2O (0.063 g, 0.2 mmol) being refluxed in a DMF and DMSO (1:1) solution, cooled down to room temperature, then filtered. Yellow single crystals suitable for X-ray diffraction were obtained via slow evaporation of the filtrate at room temperature.

Refinement top

All H atoms bound to C were refined using a riding model, with distance C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl atoms. The DMSO molecule was found to be disordered over two positions in a difference Fourier map. All the atoms were refined in two parts and the site occupancy factors were refined to 0.576 (2) (for atoms S1, O5, C26 and C27) and 0.424 (2) (for atoms S1', O5', C26' and C27'). The bonds S—O and S—C were restrained to 1.45 (1) and 1.82 (1) Å, respectively. The displacement parameters of each pair of disorder atoms were set to equal by the EADP instruction. The bond lengths C26—S1, C26'—S1', C27—S1 and C27'—C1' were restrained to be nearly equal by the SADI command with deviation 0.01 Å. The distances of S1—O5 and Zn1—O5 were also restrained nearly equal to that of S1'—O5' and Zn1—O5', respectively. The displacement parameter restraints (DELU) were applied to the disorder atoms (S1, C27, S1' and C27'). Additionally, atoms C27 and C27' were restrained to be approximately isotropic by the ISOR instruction.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, all hydrogen atoms are omitted for clarity. Only one conpoment of the disordered DMSO molecule is shown.
Dichlorido-1κCl,2κCl-{µ-6,6'-dimethoxy-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato- 1κ4O1,N,N',O1':2κ4O,O',O'',O''}(dimethyl sulfoxide-2κO)lead(II)zinc(II) N,N-dimethylformamide solvate top
Crystal data top
[PbZn(C22H18N2O4)Cl2(C2H6OS)]·C3H7NOF(000) = 1696
Mr = 869.07Dx = 1.874 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5739 reflections
a = 15.2850 (7) Åθ = 1.7–27.5°
b = 18.8433 (8) ŵ = 6.52 mm1
c = 10.7343 (5) ÅT = 295 K
β = 94.771 (1)°Block, yellow
V = 3081.0 (2) Å30.2 × 0.15 × 0.1 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
6997 independent reflections
Radiation source: fine-focus sealed tube4923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1915
Tmin = 0.343, Tmax = 0.518k = 2324
18055 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
6997 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.75 e Å3
28 restraintsΔρmin = 0.61 e Å3
Crystal data top
[PbZn(C22H18N2O4)Cl2(C2H6OS)]·C3H7NOV = 3081.0 (2) Å3
Mr = 869.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2850 (7) ŵ = 6.52 mm1
b = 18.8433 (8) ÅT = 295 K
c = 10.7343 (5) Å0.2 × 0.15 × 0.1 mm
β = 94.771 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6997 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4923 reflections with I > 2σ(I)
Tmin = 0.343, Tmax = 0.518Rint = 0.039
18055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03628 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 0.99Δρmax = 0.75 e Å3
6997 reflectionsΔρmin = 0.61 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9922 (4)0.5643 (3)0.2068 (8)0.092 (2)
H1A1.00470.60130.14640.138*
H1B0.98340.58480.28880.138*
H1C1.04060.53180.20410.138*
C20.8849 (3)0.4724 (3)0.2534 (5)0.0464 (12)
C30.9128 (4)0.4565 (3)0.3684 (5)0.0594 (15)
H30.95610.48410.40040.071*
C40.8775 (4)0.4007 (3)0.4364 (5)0.0615 (16)
H40.89660.39100.51470.074*
C50.8147 (3)0.3591 (3)0.3907 (5)0.0535 (14)
H50.79130.32120.43800.064*
C60.7850 (3)0.3730 (2)0.2721 (4)0.0384 (11)
C70.8183 (3)0.4316 (2)0.2022 (4)0.0396 (11)
C80.7195 (3)0.3250 (2)0.2308 (4)0.0387 (11)
H80.69660.29120.28760.046*
C90.6238 (3)0.2772 (2)0.0917 (4)0.0340 (10)
C100.6124 (3)0.2101 (2)0.1400 (4)0.0458 (12)
H100.65040.19290.19640.055*
C110.5449 (3)0.1680 (3)0.1049 (5)0.0503 (13)
H110.53700.12270.13860.060*
C120.4890 (3)0.1927 (3)0.0202 (5)0.0497 (13)
H120.44290.16430.00180.060*
C130.5009 (3)0.2587 (2)0.0317 (4)0.0440 (12)
H130.46360.27470.08980.053*
C140.5687 (3)0.3017 (2)0.0023 (4)0.0338 (10)
C150.5294 (3)0.4084 (2)0.0968 (4)0.0329 (10)
H150.47430.38830.10230.040*
C160.5433 (3)0.4791 (2)0.1456 (4)0.0333 (10)
C170.4754 (3)0.5081 (3)0.2123 (4)0.0414 (12)
H170.42620.48070.22410.050*
C180.4806 (3)0.5746 (3)0.2589 (5)0.0493 (13)
H180.43710.59160.30670.059*
C190.5518 (3)0.6180 (2)0.2349 (4)0.0429 (12)
H190.55420.66450.26380.051*
C200.6174 (3)0.5923 (2)0.1696 (4)0.0377 (11)
C250.7952 (4)0.5309 (4)0.3414 (6)0.0688 (17)
H250.77530.48770.30830.083*
C230.7891 (5)0.6193 (4)0.4986 (6)0.105 (3)
H23A0.75560.62920.56830.158*
H23B0.78220.65750.43950.158*
H23C0.85000.61450.52740.158*
C240.6895 (4)0.5155 (4)0.4933 (6)0.092 (2)
H24A0.67100.54100.56390.138*
H24B0.71090.46960.51970.138*
H24C0.64060.51010.43180.138*
C210.6168 (3)0.5213 (2)0.1249 (4)0.0343 (10)
C220.6974 (4)0.7029 (3)0.1830 (6)0.0630 (16)
H22A0.75040.72300.15650.095*
H22C0.69920.70410.27260.095*
H22B0.64790.72980.14830.095*
N10.6903 (2)0.32535 (18)0.1215 (3)0.0351 (9)
N20.5875 (2)0.37078 (18)0.0461 (3)0.0337 (8)
N30.7585 (3)0.5545 (3)0.4398 (5)0.0637 (13)
O30.6844 (2)0.49968 (15)0.0660 (3)0.0412 (8)
O20.7936 (2)0.45072 (16)0.0930 (3)0.0452 (8)
O10.9148 (2)0.52743 (19)0.1786 (4)0.0606 (10)
O60.8536 (3)0.5608 (3)0.2891 (5)0.0903 (15)
O40.6892 (2)0.63108 (17)0.1411 (3)0.0521 (9)
Zn10.71596 (3)0.39911 (3)0.01970 (5)0.03524 (13)
Pb10.805850 (13)0.569995 (10)0.003745 (18)0.04440 (7)
Cl10.70822 (10)0.63063 (8)0.17678 (14)0.0672 (4)
Cl20.80237 (8)0.34936 (7)0.17826 (12)0.0528 (3)
C270.9574 (13)0.7236 (9)0.2609 (7)0.098 (3)0.576 (2)
H27A0.91980.75480.30270.147*0.576 (2)
H27B1.01630.72710.29920.147*0.576 (2)
H27C0.93710.67560.26720.147*0.576 (2)
C261.0639 (6)0.7110 (7)0.087 (2)0.074 (3)0.576 (2)
H26A1.08060.71510.00310.111*0.576 (2)
H26B1.06320.66180.11040.111*0.576 (2)
H26C1.10550.73600.14290.111*0.576 (2)
S10.95576 (17)0.74864 (13)0.0961 (2)0.0599 (5)0.576 (2)
O50.8885 (11)0.6987 (5)0.0345 (17)0.073 (5)0.576 (2)
C27'0.9400 (18)0.7406 (10)0.2440 (14)0.098 (3)0.424 (2)
H27D0.91020.71370.30360.147*0.424 (2)
H27E0.89950.77310.20120.147*0.424 (2)
H27F0.98740.76670.28670.147*0.424 (2)
C26'1.0592 (10)0.7461 (8)0.080 (3)0.074 (3)0.424 (2)
H26D1.08440.72960.00620.111*0.424 (2)
H26E1.10500.75390.14520.111*0.424 (2)
H26F1.02820.78970.06180.111*0.424 (2)
S1'0.9837 (2)0.68004 (18)0.1302 (3)0.0599 (5)0.424 (2)
O5'0.9125 (17)0.6873 (8)0.027 (2)0.073 (5)0.424 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (5)0.080 (5)0.129 (7)0.032 (4)0.042 (4)0.012 (4)
C20.045 (3)0.039 (3)0.057 (3)0.002 (2)0.016 (3)0.007 (3)
C30.063 (4)0.057 (3)0.064 (4)0.002 (3)0.036 (3)0.008 (3)
C40.078 (4)0.063 (4)0.049 (3)0.003 (3)0.037 (3)0.001 (3)
C50.061 (4)0.057 (3)0.044 (3)0.004 (3)0.019 (3)0.004 (3)
C60.045 (3)0.036 (3)0.035 (3)0.005 (2)0.008 (2)0.002 (2)
C70.040 (3)0.041 (3)0.039 (3)0.010 (2)0.010 (2)0.007 (2)
C80.042 (3)0.035 (3)0.039 (3)0.006 (2)0.004 (2)0.003 (2)
C90.040 (3)0.029 (2)0.033 (3)0.005 (2)0.002 (2)0.0033 (19)
C100.065 (3)0.035 (3)0.039 (3)0.004 (2)0.010 (2)0.005 (2)
C110.077 (4)0.029 (3)0.045 (3)0.011 (3)0.004 (3)0.008 (2)
C120.057 (3)0.047 (3)0.046 (3)0.019 (3)0.008 (3)0.004 (2)
C130.052 (3)0.041 (3)0.040 (3)0.009 (2)0.010 (2)0.001 (2)
C140.038 (3)0.033 (2)0.031 (2)0.006 (2)0.004 (2)0.0015 (19)
C150.033 (3)0.035 (2)0.031 (2)0.0024 (19)0.0039 (19)0.0039 (19)
C160.040 (3)0.030 (2)0.030 (2)0.005 (2)0.003 (2)0.0005 (19)
C170.043 (3)0.045 (3)0.036 (3)0.007 (2)0.004 (2)0.001 (2)
C180.049 (3)0.050 (3)0.048 (3)0.015 (3)0.004 (2)0.010 (3)
C190.057 (3)0.033 (3)0.038 (3)0.011 (2)0.001 (2)0.004 (2)
C200.048 (3)0.030 (2)0.034 (3)0.001 (2)0.001 (2)0.000 (2)
C250.079 (5)0.074 (4)0.052 (4)0.005 (4)0.002 (3)0.002 (3)
C230.150 (7)0.088 (6)0.076 (5)0.002 (5)0.007 (5)0.013 (4)
C240.075 (5)0.100 (6)0.103 (6)0.013 (4)0.018 (4)0.044 (5)
C210.045 (3)0.032 (3)0.026 (2)0.004 (2)0.004 (2)0.0034 (19)
C220.073 (4)0.033 (3)0.083 (4)0.004 (3)0.004 (3)0.012 (3)
N10.039 (2)0.031 (2)0.036 (2)0.0011 (17)0.0061 (17)0.0043 (17)
N20.042 (2)0.029 (2)0.031 (2)0.0039 (17)0.0049 (17)0.0003 (16)
N30.074 (3)0.067 (3)0.050 (3)0.005 (3)0.003 (3)0.007 (3)
O30.045 (2)0.0313 (17)0.049 (2)0.0054 (14)0.0186 (15)0.0070 (15)
O20.057 (2)0.0389 (19)0.043 (2)0.0104 (15)0.0244 (16)0.0070 (15)
O10.052 (2)0.056 (2)0.077 (3)0.0158 (19)0.0308 (19)0.002 (2)
O60.084 (3)0.107 (4)0.084 (3)0.009 (3)0.027 (3)0.005 (3)
O40.066 (2)0.0349 (19)0.057 (2)0.0089 (17)0.0159 (18)0.0100 (17)
Zn10.0403 (3)0.0300 (3)0.0366 (3)0.0041 (2)0.0101 (2)0.0017 (2)
Pb10.04989 (13)0.04072 (11)0.04396 (12)0.01222 (9)0.01203 (8)0.00356 (9)
Cl10.0783 (10)0.0622 (9)0.0613 (9)0.0068 (8)0.0069 (7)0.0132 (7)
Cl20.0503 (8)0.0548 (8)0.0523 (8)0.0035 (6)0.0015 (6)0.0091 (6)
C270.103 (4)0.106 (4)0.083 (4)0.004 (3)0.006 (3)0.001 (3)
C260.058 (5)0.074 (11)0.085 (6)0.017 (7)0.017 (4)0.003 (11)
S10.0670 (14)0.0486 (11)0.0625 (13)0.0105 (10)0.0049 (10)0.0059 (10)
O50.057 (10)0.099 (5)0.063 (3)0.039 (6)0.007 (6)0.021 (4)
C27'0.103 (4)0.106 (4)0.083 (4)0.004 (3)0.006 (3)0.001 (3)
C26'0.058 (5)0.074 (11)0.085 (6)0.017 (7)0.017 (4)0.003 (11)
S1'0.0670 (14)0.0486 (11)0.0625 (13)0.0105 (10)0.0049 (10)0.0059 (10)
O5'0.057 (10)0.099 (5)0.063 (3)0.039 (6)0.007 (6)0.021 (4)
Geometric parameters (Å, º) top
C1—O11.427 (6)C25—H250.9300
C1—H1A0.9600C23—N31.436 (8)
C1—H1B0.9600C23—H23A0.9600
C1—H1C0.9600C23—H23B0.9600
C2—O11.367 (6)C23—H23C0.9600
C2—C31.372 (7)C24—N31.443 (7)
C2—C71.422 (6)C24—H24A0.9600
C3—C41.365 (8)C24—H24B0.9600
C3—H30.9300C24—H24C0.9600
C4—C51.362 (7)C21—O31.319 (5)
C4—H40.9300C22—O41.428 (5)
C5—C61.412 (6)C22—H22A0.9600
C5—H50.9300C22—H22C0.9600
C6—C71.406 (6)C22—H22B0.9600
C6—C81.446 (6)Zn1—N12.070 (4)
C7—O21.312 (5)Zn1—N22.077 (3)
C8—N11.290 (5)Zn1—O32.028 (3)
C8—H80.9300Zn1—O22.014 (3)
C9—C101.372 (6)Zn1—Cl22.2686 (14)
C9—C141.406 (6)Pb1—O12.791 (4)
C9—N11.419 (5)Pb1—O22.476 (3)
C10—C111.379 (6)Pb1—O32.420 (3)
C10—H100.9300Pb1—O42.667 (3)
C11—C121.379 (7)Pb1—O52.741 (5)
C11—H110.9300Pb1—O5'2.746 (7)
C12—C131.369 (6)Pb1—Cl12.6088 (15)
C12—H120.9300C27—S11.829 (6)
C13—C141.388 (6)C27—H27A0.9600
C13—H130.9300C27—H27B0.9600
C14—N21.422 (5)C27—H27C0.9600
C15—N21.292 (5)C26—S11.809 (6)
C15—C161.441 (6)C26—H26A0.9600
C15—H150.9300C26—H26B0.9600
C16—C211.409 (6)C26—H26C0.9600
C16—C171.418 (6)S1—O51.506 (5)
C17—C181.349 (6)C27'—S1'1.838 (7)
C17—H170.9300C27'—H27D0.9600
C18—C191.402 (7)C27'—H27E0.9600
C18—H180.9300C27'—H27F0.9600
C19—C201.359 (6)C26'—S1'1.809 (6)
C19—H190.9300C26'—H26D0.9600
C20—O41.375 (5)C26'—H26E0.9600
C20—C211.421 (6)C26'—H26F0.9600
C25—O61.230 (7)S1'—O5'1.492 (7)
C25—N31.314 (7)
O1—C1—H1A109.5H24A—C24—H24C109.5
O1—C1—H1B109.5H24B—C24—H24C109.5
H1A—C1—H1B109.5O3—C21—C16124.6 (4)
O1—C1—H1C109.5O3—C21—C20118.0 (4)
H1A—C1—H1C109.5C16—C21—C20117.4 (4)
H1B—C1—H1C109.5O4—C22—H22A109.5
O1—C2—C3125.5 (5)O4—C22—H22C109.5
O1—C2—C7113.5 (4)H22A—C22—H22C109.5
C3—C2—C7121.0 (5)O4—C22—H22B109.5
C4—C3—C2120.7 (5)H22A—C22—H22B109.5
C4—C3—H3119.6H22C—C22—H22B109.5
C2—C3—H3119.6C8—N1—C9120.7 (4)
C5—C4—C3120.6 (5)C8—N1—Zn1127.6 (3)
C5—C4—H4119.7C9—N1—Zn1111.1 (3)
C3—C4—H4119.7C15—N2—C14122.1 (4)
C4—C5—C6120.5 (5)C15—N2—Zn1127.4 (3)
C4—C5—H5119.8C14—N2—Zn1110.5 (3)
C6—C5—H5119.8C25—N3—C23119.7 (6)
C7—C6—C5119.8 (4)C25—N3—C24121.6 (6)
C7—C6—C8123.9 (4)C23—N3—C24118.7 (6)
C5—C6—C8116.3 (4)C21—O3—Zn1128.2 (3)
O2—C7—C6125.0 (4)C21—O3—Pb1127.8 (3)
O2—C7—C2117.8 (4)Zn1—O3—Pb1103.89 (12)
C6—C7—C2117.2 (4)C7—O2—Zn1129.2 (3)
N1—C8—C6125.2 (4)C7—O2—Pb1127.3 (3)
N1—C8—H8117.4Zn1—O2—Pb1102.38 (12)
C6—C8—H8117.4C2—O1—C1119.2 (4)
C10—C9—C14119.8 (4)C20—O4—C22118.9 (4)
C10—C9—N1125.1 (4)C20—O4—Pb1118.5 (3)
C14—C9—N1115.1 (4)C22—O4—Pb1122.6 (3)
C9—C10—C11120.0 (5)O2—Zn1—O381.97 (12)
C9—C10—H10120.0O2—Zn1—N188.26 (13)
C11—C10—H10120.0O3—Zn1—N1140.59 (14)
C10—C11—C12120.3 (4)O2—Zn1—N2144.80 (14)
C10—C11—H11119.8O3—Zn1—N287.68 (13)
C12—C11—H11119.8N1—Zn1—N278.68 (14)
C13—C12—C11120.4 (5)O2—Zn1—Cl2108.35 (10)
C13—C12—H12119.8O3—Zn1—Cl2109.75 (10)
C11—C12—H12119.8N1—Zn1—Cl2109.57 (11)
C12—C13—C14120.1 (4)N2—Zn1—Cl2106.82 (10)
C12—C13—H13120.0O3—Pb1—O265.53 (10)
C14—C13—H13120.0O3—Pb1—Cl192.31 (8)
C13—C14—C9119.3 (4)O2—Pb1—Cl193.86 (9)
C13—C14—N2124.8 (4)O3—Pb1—O461.32 (10)
C9—C14—N2115.8 (4)O2—Pb1—O4126.34 (10)
N2—C15—C16125.1 (4)Cl1—Pb1—O481.62 (8)
N2—C15—H15117.5O3—Pb1—O5143.8 (5)
C16—C15—H15117.5O2—Pb1—O5150.6 (5)
C21—C16—C17119.3 (4)Cl1—Pb1—O586.06 (18)
C21—C16—C15124.0 (4)O4—Pb1—O582.8 (5)
C17—C16—C15116.6 (4)O3—Pb1—O5'151.5 (8)
C18—C17—C16121.5 (5)O2—Pb1—O5'142.5 (8)
C18—C17—H17119.3Cl1—Pb1—O5'90.82 (17)
C16—C17—H17119.3O4—Pb1—O5'91.2 (8)
C17—C18—C19119.7 (5)O5—Pb1—O5'9.1 (12)
C17—C18—H18120.1O5—S1—C26109.0 (10)
C19—C18—H18120.1O5—S1—C27102.6 (9)
C20—C19—C18120.2 (4)C26—S1—C2790.6 (8)
C20—C19—H19119.9S1—O5—Pb1153.7 (5)
C18—C19—H19119.9S1'—C27'—H27D109.5
C19—C20—O4124.2 (4)S1'—C27'—H27E109.5
C19—C20—C21121.8 (4)H27D—C27'—H27E109.5
O4—C20—C21114.0 (4)S1'—C27'—H27F109.5
O6—C25—N3125.9 (6)H27D—C27'—H27F109.5
O6—C25—H25117.0H27E—C27'—H27F109.5
N3—C25—H25117.0S1'—C26'—H26D109.5
N3—C23—H23A109.5S1'—C26'—H26E109.5
N3—C23—H23B109.5H26D—C26'—H26E109.5
H23A—C23—H23B109.5S1'—C26'—H26F109.5
N3—C23—H23C109.5H26D—C26'—H26F109.5
H23A—C23—H23C109.5H26E—C26'—H26F109.5
H23B—C23—H23C109.5O5'—S1'—C26'99.2 (11)
N3—C24—H24A109.5O5'—S1'—C27'98.7 (16)
N3—C24—H24B109.5C26'—S1'—C27'92.7 (12)
H24A—C24—H24B109.5S1'—O5'—Pb1112.7 (5)
N3—C24—H24C109.5

Experimental details

Crystal data
Chemical formula[PbZn(C22H18N2O4)Cl2(C2H6OS)]·C3H7NO
Mr869.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.2850 (7), 18.8433 (8), 10.7343 (5)
β (°) 94.771 (1)
V3)3081.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.52
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.343, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
18055, 6997, 4923
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.073, 0.99
No. of reflections6997
No. of parameters387
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.070 (4)Pb1—O22.476 (3)
Zn1—N22.077 (3)Pb1—O32.420 (3)
Zn1—O32.028 (3)Pb1—O42.667 (3)
Zn1—O22.014 (3)Pb1—O52.741 (5)
Zn1—Cl22.2686 (14)Pb1—O5'2.746 (7)
Pb1—O12.791 (4)Pb1—Cl12.6088 (15)
 

Acknowledgements

This work was supported by the Natural Science Foundation of China and the Post-Doctoral Innovation Project of Shandong Province.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKorupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845–2852.  Web of Science CSD CrossRef Google Scholar
First citationLo, W.-K., Wong, W.-K., Guo, J., Wong, W.-Y., Li, K.-F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. H., Kou, H.-Z., Zhao, Y.-H., Zheng, L., Wang, R.-J., Cui, A.-L. & Sato, O. (2005). Inorg. Chem. 44, 2050–2059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277–m2278.  CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds