organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2228-o2229

5-Bromo-5-bromo­methyl-2-phen­­oxy-1,3,2-dioxa­phospho­rinan-2-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA, and dDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 October 2008; accepted 15 October 2008; online 31 October 2008)

In the title 1,3,2-dioxaphospho­rinane derivative, C10H11Br2O4P, the 1,3,2-dioxaphospho­rinane ring adopts a chair conformation, having the P=O bond equatorially oriented and the phen­oxy group axially oriented. The bromo substituent is in an axial position opposite to the phen­oxy group and the bromo­methyl group is in an equatorial position opposite to the P=O bond. In the crystal packing, mol­ecules are linked through weak C—H⋯O and C—H⋯Br inter­actions to form chains along the b axis. The chains are arranged into sheets parallel to the ab plane. In adjacent sheets, mol­ecules are arranged in an anti­parallel fashion. Inter­molecular C—H⋯π inter­actions are also observed.

Related literature

For values of bond lengths and angles, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see, for example: Jones et al. (1984[Jones, P. G., Sheldrick, G. M., Kirby, A. J. & Briggs, A. J. (1984). Acta Cryst. C40, 1061-1065.]); Polozov et al. (1995[Polozov, A. M., Litvinov, I. A., Kataeva, O. N., Stolov, A. A., Yarkova, E. G., Khotinen, A. V. & Klimovitskii, E. N. (1995). J. Mol. Struct. 356, 125-130.]). For related literature and applications of dioxaphospho­rinane derivatives, see, for example: Goswami (1993[Goswami, S. P. (1993). Heterocycles, 35, 1551-1570.]); Goswami & Adak (2002[Goswami, S. P. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503-505.]); Pilato et al. (1991[Pilato, R. S., Erickson, K. A., Greaney, M. A., Stiefel, E. I., Goswami, S. P., Kilpatric, L., Spiro, T. G., Taylor, E. C. & Rhiengold, A. L. (1991). J. Am. Chem. Soc. 113, 9372-9374.]); Taylor & Goswami (1992[Taylor, E. C. & Goswami, S. P. (1992). Tetrahedron Lett. 32, 7357-7360.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11Br2O4P

  • Mr = 385.96

  • Monoclinic, P 21 /c

  • a = 12.1315 (3) Å

  • b = 6.3095 (1) Å

  • c = 16.8901 (3) Å

  • β = 92.196 (2)°

  • V = 1291.88 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.40 mm−1

  • T = 296 (2) K

  • 0.45 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.156, Tmax = 0.726

  • 16007 measured reflections

  • 3756 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 0.99

  • 3756 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.97 2.35 3.217 (6) 148
C4—H4A⋯O3i 0.97 2.53 3.362 (6) 144
C2—H2BCg1ii 0.97 2.81 3.755 (5) 166
C3—H3CCg1iii 0.97 2.70 3.560 (5) 148
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Six-membered cyclic phosphates are important constituents present in a number of biologically important molecules e.g. cyclic adenosine monophosphate (cAMP) and the Compound Z, a precursor of the molybdenum cofactor (Moco) (Goswami, 1993). They especially play key roles in many biosynthetic pathways and comprise structural sub-units of many physiologically important materials. In our synthetic studies (Pilato et al., 1991; Taylor & Goswami, 1992) on the molybdenum cofactor, we are interested to have an efficient synthesis of cyclic dihydroxyacetone phosphate (CDHAP) (Goswami & Adak, 2002). Reaction of phosphate triesters with N-bromosuccinimide (NBS) results in the formation of a dibromo derivative (Fig. 1).

In the title 1,3,2-dioxaphosphorinane derivative (Fig. 1), C10H11Br2O4P, the 1,3,2-dioxaphosphorinane ring adopts a slightly flattened chair conformation with the puckering parameter (Cremer & Pople, 1975) Q = 0.496 (4) Å, θ = 7.4 (5)° and ϕ = 177 (4)°, having the PO bond equatorially attached and the phenoxy substituent axially attached with the torsion angle O1—P1—O4—O5 = 82.6 (4)°. The orientation of the phenoxy group is not co-planar to the 1,3,2-dioxaphosphorinane ring as can be indicated by the torsion angle P1—O4—C5—C6 of -108.2 (4)°. The bromo substituent is in the opposite axial position to the phenoxy substituent and the methylbromo group is in an opposite equatorial position to the PO bond. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to related structures (Jones et al., 1984; Polozov et al., 1995). The closest Br···Br distance is 3.5484 (9) Å.

In the crystal packing shown in Fig. 2, the molecules are linked through weak C—H···O interactions (Table 1) to form chains along the b axis which generate S(6) ring motifs (Bernstein et al., 1995). The chains are arranged into sheets parallel to the ab plane. In the adjacent sheets, the molecules are arranged in an anti-parallel fashion (Fig. 3). The adjacent sheets are connected through weak C—H···O interactions (Table 1) and Br···Br short contacts with the Br···Br distance of 3.8771 (9) Å (symmetry code: 1 - x, 1/2 + y, 1/2 - z). The crystal is stabilized by weak C—H···O, C—H···Br interactions and C—H···π interactions (Table 1); Cg1 is the centroid of the C5–C10 ring.

Related literature top

For values of bond lengths and angles, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Jones et al. (1984); Polozov et al. (1995). For related literature and applications of dioxaphosphorinane derivatives, see, for example: Goswami (1993); Goswami & Adak (2002); Pilato et al. (1991); Taylor & Goswami (1992).

Experimental top

A solution of 5-methylene-2-oxo-2-phenoxy-[1,3,2]-dioxaphosphorinane (0.4 g, 1.76 mmol), doubly crystallized N-bromosuccinimide (0.38 g, 1.78 mmol) and azobisisobutyronitrile (10 mg) in dry CCl4 (40 ml) was heated under reflux in the presence of a 60 W lamp for 4 h. By this time, a maximum of 80% of the starting materials were converted into the product. Upon prolonged heating for a period of 8 h, no improvement has been observed with respect to yield nor new spot was observed as monitored by thin layer chromatography. The CCl4 layer was then stripped off and the gummy material was dissolved in dichloromethane (100 ml) and washed well with water (2 × 100 ml) and then with brine. The organic layer was dried (Na2SO4) and concentrated to afford the crude product as a light brown gum which was passed through a silica gel (100–200 mesh) column eluting with dichloromethane to get the pure title compound as a white crystalline solid (0.32 g, 60%; m.p. 361–362 K).

Refinement top

All H atoms were constrained in a riding motion approximation, with Caryl—H = 0.93 Å and 0.97 Å for CH2. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom. The highest residual electron density peak is located at 0.72 Å from Br1 and the deepest hole is located at 0.61 Å from Br2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis showing chains along the b axis. Hydrogen bonds were shown as dash lines.
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the b axis showing the anti-parallel arrangement of the adjacent sheets. Hydrogen bonds and Br···Br short contact were shown as dash lines.
5-Bromo-5-bromomethyl-2-phenoxy-1,3,2-dioxaphosphorinan-2-one top
Crystal data top
C10H11Br2O4PF(000) = 752
Mr = 385.96Dx = 1.984 Mg m3
Monoclinic, P21/cMelting point = 361–362 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1315 (3) ÅCell parameters from 3756 reflections
b = 6.3095 (1) Åθ = 2.4–30.0°
c = 16.8901 (3) ŵ = 6.40 mm1
β = 92.196 (2)°T = 296 K
V = 1291.88 (4) Å3Needle, colourless
Z = 40.45 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3756 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scansh = 1517
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.156, Tmax = 0.726l = 2223
16007 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.3299P]
where P = (Fo2 + 2Fc2)/3
3756 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C10H11Br2O4PV = 1291.88 (4) Å3
Mr = 385.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1315 (3) ŵ = 6.40 mm1
b = 6.3095 (1) ÅT = 296 K
c = 16.8901 (3) Å0.45 × 0.10 × 0.05 mm
β = 92.196 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3756 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1952 reflections with I > 2σ(I)
Tmin = 0.156, Tmax = 0.726Rint = 0.072
16007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.99Δρmax = 0.67 e Å3
3756 reflectionsΔρmin = 0.91 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60424 (5)0.36096 (9)0.21315 (3)0.0610 (2)
Br20.53167 (5)0.78769 (10)0.08461 (4)0.0719 (2)
P10.88523 (11)0.20179 (19)0.12969 (8)0.0438 (3)
O10.8686 (3)0.3316 (5)0.20749 (18)0.0463 (8)
O20.7744 (3)0.2261 (5)0.0802 (2)0.0495 (8)
O30.9159 (3)0.0157 (5)0.1448 (3)0.0677 (11)
O40.9665 (3)0.3340 (5)0.0784 (2)0.0504 (8)
C10.7093 (4)0.5327 (6)0.1542 (3)0.0376 (10)
C20.8186 (4)0.5375 (7)0.2016 (3)0.0443 (11)
H2A0.86870.63400.17640.053*
H2B0.80630.59080.25440.053*
C30.7229 (4)0.4330 (7)0.0740 (3)0.0453 (11)
H3B0.65110.41920.04720.054*
H3C0.76770.52500.04220.054*
C40.6653 (4)0.7573 (7)0.1467 (3)0.0519 (13)
H4A0.72140.84490.12350.062*
H4B0.65350.81150.19940.062*
C51.0807 (4)0.3235 (7)0.0921 (3)0.0408 (11)
C61.1335 (5)0.4950 (9)0.1258 (3)0.0619 (15)
H6A1.09390.61320.14130.074*
C71.2469 (6)0.4884 (12)0.1362 (3)0.077 (2)
H7A1.28410.60400.15850.092*
C81.3055 (5)0.3123 (14)0.1139 (3)0.077 (2)
H8A1.38170.30870.12170.092*
C91.2510 (5)0.1428 (10)0.0803 (3)0.0640 (16)
H9A1.29040.02410.06510.077*
C101.1368 (4)0.1479 (8)0.0688 (3)0.0494 (12)
H10A1.09930.03360.04580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0439 (3)0.0719 (4)0.0680 (4)0.0032 (3)0.0128 (3)0.0258 (3)
Br20.0560 (4)0.0786 (4)0.0810 (5)0.0177 (3)0.0001 (3)0.0093 (3)
P10.0372 (7)0.0360 (6)0.0585 (8)0.0025 (5)0.0049 (6)0.0049 (5)
O10.0419 (19)0.0494 (18)0.0472 (19)0.0009 (15)0.0047 (15)0.0109 (14)
O20.048 (2)0.0423 (17)0.058 (2)0.0006 (15)0.0007 (17)0.0115 (15)
O30.056 (2)0.0374 (18)0.110 (3)0.0033 (17)0.011 (2)0.0135 (19)
O40.0383 (19)0.0516 (19)0.062 (2)0.0020 (15)0.0096 (16)0.0124 (16)
C10.038 (3)0.035 (2)0.040 (2)0.0041 (19)0.006 (2)0.0020 (18)
C20.041 (3)0.047 (3)0.044 (3)0.001 (2)0.003 (2)0.004 (2)
C30.040 (3)0.052 (3)0.043 (3)0.001 (2)0.005 (2)0.000 (2)
C40.044 (3)0.041 (3)0.070 (4)0.001 (2)0.002 (3)0.001 (2)
C50.039 (3)0.046 (3)0.037 (2)0.007 (2)0.008 (2)0.0027 (19)
C60.076 (4)0.056 (3)0.055 (3)0.022 (3)0.020 (3)0.009 (3)
C70.082 (5)0.097 (5)0.050 (3)0.048 (4)0.001 (3)0.007 (3)
C80.048 (4)0.137 (6)0.045 (3)0.029 (4)0.008 (3)0.022 (4)
C90.049 (3)0.088 (4)0.055 (3)0.010 (3)0.004 (3)0.014 (3)
C100.043 (3)0.058 (3)0.048 (3)0.005 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C11.971 (4)C3—H3C0.9700
Br2—C41.907 (5)C4—H4A0.9700
P1—O31.442 (4)C4—H4B0.9700
P1—O21.563 (4)C5—C101.365 (7)
P1—O11.568 (3)C5—C61.371 (7)
P1—O41.576 (3)C6—C71.380 (9)
O1—C21.436 (5)C6—H6A0.9300
O2—C31.450 (6)C7—C81.380 (10)
O4—C51.398 (6)C7—H7A0.9300
C1—C31.509 (6)C8—C91.369 (9)
C1—C41.518 (6)C8—H8A0.9300
C1—C21.523 (6)C9—C101.392 (8)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9300
C3—H3B0.9700
O3—P1—O2113.5 (2)H3B—C3—H3C107.9
O3—P1—O1112.9 (2)C1—C4—Br2115.4 (3)
O2—P1—O1105.14 (18)C1—C4—H4A108.4
O3—P1—O4116.0 (2)Br2—C4—H4A108.4
O2—P1—O4101.35 (19)C1—C4—H4B108.4
O1—P1—O4106.73 (19)Br2—C4—H4B108.4
C2—O1—P1118.8 (3)H4A—C4—H4B107.5
C3—O2—P1119.1 (3)C10—C5—C6122.0 (5)
C5—O4—P1121.4 (3)C10—C5—O4119.5 (4)
C3—C1—C4111.3 (4)C6—C5—O4118.4 (5)
C3—C1—C2110.9 (4)C5—C6—C7118.5 (6)
C4—C1—C2108.8 (4)C5—C6—H6A120.8
C3—C1—Br1108.6 (3)C7—C6—H6A120.8
C4—C1—Br1108.9 (3)C8—C7—C6120.7 (6)
C2—C1—Br1108.2 (3)C8—C7—H7A119.6
O1—C2—C1112.0 (4)C6—C7—H7A119.6
O1—C2—H2A109.2C9—C8—C7119.8 (6)
C1—C2—H2A109.2C9—C8—H8A120.1
O1—C2—H2B109.2C7—C8—H8A120.1
C1—C2—H2B109.2C8—C9—C10120.1 (6)
H2A—C2—H2B107.9C8—C9—H9A120.0
O2—C3—C1111.8 (4)C10—C9—H9A120.0
O2—C3—H3B109.3C5—C10—C9118.9 (5)
C1—C3—H3B109.3C5—C10—H10A120.5
O2—C3—H3C109.3C9—C10—H10A120.5
C1—C3—H3C109.3
O3—P1—O1—C2168.7 (3)C2—C1—C3—O253.4 (5)
O2—P1—O1—C244.4 (4)Br1—C1—C3—O265.5 (4)
O4—P1—O1—C262.7 (4)C3—C1—C4—Br254.6 (5)
O3—P1—O2—C3168.0 (3)C2—C1—C4—Br2177.1 (3)
O1—P1—O2—C344.1 (4)Br1—C1—C4—Br265.2 (4)
O4—P1—O2—C366.9 (4)P1—O4—C5—C1074.5 (5)
O3—P1—O4—C544.2 (4)P1—O4—C5—C6108.2 (4)
O2—P1—O4—C5167.6 (3)C10—C5—C6—C70.0 (8)
O1—P1—O4—C582.6 (4)O4—C5—C6—C7177.3 (4)
P1—O1—C2—C152.5 (5)C5—C6—C7—C80.6 (9)
C3—C1—C2—O154.0 (5)C6—C7—C8—C90.7 (9)
C4—C1—C2—O1176.7 (4)C7—C8—C9—C100.2 (9)
Br1—C1—C2—O165.1 (4)C6—C5—C10—C90.4 (7)
P1—O2—C3—C152.0 (5)O4—C5—C10—C9177.7 (4)
C4—C1—C3—O2174.6 (4)C8—C9—C10—C50.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.353.217 (6)148
C3—H3B···Br20.972.823.233 (5)106
C4—H4A···O3i0.972.533.362 (6)144
C2—H2B···Cg1ii0.972.813.755 (5)166
C3—H3C···Cg1iii0.972.703.560 (5)148
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H11Br2O4P
Mr385.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.1315 (3), 6.3095 (1), 16.8901 (3)
β (°) 92.196 (2)
V3)1291.88 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.40
Crystal size (mm)0.45 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.156, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
16007, 3756, 1952
Rint0.072
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 0.99
No. of reflections3756
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.91

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.34973.217 (6)148
C3—H3B···Br20.972.82393.233 (5)106
C4—H4A···O3i0.972.53093.362 (6)144
C2—H2B···Cg1ii0.972.80553.755 (5)166
C3—H3C···Cg1iii0.972.70273.560 (5)148
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

AKA, ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S. P. (1993). Heterocycles, 35, 1551–1570.  CrossRef CAS Google Scholar
First citationGoswami, S. P. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503–505.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Sheldrick, G. M., Kirby, A. J. & Briggs, A. J. (1984). Acta Cryst. C40, 1061–1065.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPilato, R. S., Erickson, K. A., Greaney, M. A., Stiefel, E. I., Goswami, S. P., Kilpatric, L., Spiro, T. G., Taylor, E. C. & Rhiengold, A. L. (1991). J. Am. Chem. Soc. 113, 9372–9374.  CSD CrossRef CAS Web of Science Google Scholar
First citationPolozov, A. M., Litvinov, I. A., Kataeva, O. N., Stolov, A. A., Yarkova, E. G., Khotinen, A. V. & Klimovitskii, E. N. (1995). J. Mol. Struct. 356, 125–130.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C. & Goswami, S. P. (1992). Tetrahedron Lett. 32, 7357–7360.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2228-o2229
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds