organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,6-Difluorobenzoyl)-3-(2,3,5-trichlorophenyl)urea

Sheng-Jiao Yan,* Chao Huang, Yan-Mei Li, Yu-Yun Yan and Jun Lin*

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: yanshengjiao@126.com

Received 1 May 2008; accepted 6 October 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.089; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $C_{14}H_7Cl_3F_2N_2O_2$, contains two unique molecules. The 2,3,5-trichlorophenyl ring is almost coplanar with the urea group in both molecules, whereas the 2,6-difluorophenyl ring is twisted from the urea plane by 54.83 (10)° in one molecule and 60.58 (10)° in the other. An intramolecular N-H-O hydrogen bond stabilizes the molecular conformation. The crystal packing is formed by intermolecular N-H-O hydrogen bonds and F···F interactions [2.841 (2) Å].

Related literature

For general background, see: Yan *et al.* (2003). For synthetic details, see: Lin *et al.* (2003, 2005).

Experimental

a = 7.1669 (4) Å
b = 22.8228 (12) Å
c = 18.2885 (10) Å

 $\beta = 94.768 \ (2)^{\circ}$ $V = 2981.1 \ (3) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2006) $T_{\rm min} = 0.860, T_{\rm max} = 0.927$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.089$ S = 1.077091 reflections 431 parameters $R_{\rm int} = 0.050$

6011 reflections with $I > 2\sigma(I)$

27779 measured reflections

7091 independent reflections

 $\mu = 0.65 \text{ mm}^{-1}$

T = 113 (2) K

 $0.24 \times 0.14 \times 0.12 \text{ mm}$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1 H1Cl1	0.89(2)	2 46 (2)	2 9126 (15)	111.8 (16)
$N1 - H1 \cdots O2$	0.89 (2)	1.88 (2)	2.641 (2)	141.5 (19)
$N2-H2 \cdot \cdot \cdot O1^{i}$	0.82 (2)	2.00 (2)	2.8205 (19)	173 (2)
$N3 - H3 \cdot \cdot \cdot Cl4$	0.80(2)	2.43 (2)	2.8944 (16)	118.2 (19)
$\substack{\text{N3-H3}\cdots\text{O4}\\\text{N4-H4}\cdots\text{O3}^{\text{ii}}}$	0.80 (2) 0.91 (2)	1.99 (2) 1.93 (2)	2.658 (2) 2.8378 (18)	140 (2) 176 (2)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: *CrystalClear* (Rigaku, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2006).

This project was supported by the 11th Five-Year Construction Item for Yunnan University Teachers (grant No. 0030-WX069051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2065).

References

- Lin, J., Yan, S. J., Mao, D. S., Xu, R., Yang, L. J. & Liu, F. C. (2003). Chin. Chem. Lett. 14, 1219–1222.
- Lin, J., Yan, S. J., Yang, L. J., Li, J. F. & Liu, F. C. (2005). *Chin. J. Org. Chem.* 25, 304–307.
- Rigaku (2006). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, S. J., Lin, J., Bi, F. C., Rang, L. J. & Cheng, Y. P. (2003). *J. Yunnan Univ.* **25**, 438–441.

supporting information

Acta Cryst. (2008). E64, o2102 [doi:10.1107/S1600536808032029]

1-(2,6-Difluorobenzoyl)-3-(2,3,5-trichlorophenyl)urea

Sheng-Jiao Yan, Chao Huang, Yan-Mei Li, Yu-Yun Yan and Jun Lin

S1. Comment

Derivatives of benzoylphenylureas (BPUs) are kind of insect growth regulators (IGRs), interferes the chitin synthesis in target pests, causing death or abortive development. BPUs posses high selectivity, low acute toxicity for mammals. At the time, the different groups on the phenyl that have different bioactivity. So research the configuration of the different compound is important to find more potent insecticide. The title compound (I) (Fig. 1), $C_{14}H_7Cl_3F_2N_2O_2$, which possesses high bioactivity to pests (Yan *et al.*, 2003).

The geometrical parameters for (I) (Table 1) show the conjugation present: the length of the C1=O1 and C=O2 double bond is greater than that of a normal C=O double bond. The lengths of the C1-N1, C1-N2, C8-N2 bonds are shorter than that of normal C-N single bonds. The 2,3,5-trichlorophenyl ring of the title compound is almost coplanar with the urea group, whereas the 2,6-difluorophenyl ring is twisted from the urea plane by $60.58 (10)^\circ$. An intramolecular N-H-O hydrogen bond stabilizes the molecular conformation. The crystal packing of the title compound formed by intermolecular N-H-O hydrogen bonds and F…F bond (Fig 2).

S2. Experimental

A solution of 2,6-difluorobenzoyl isocyanate (II) (10 mmol, 1.0 equiv.) in 1,2-dichloroethane (10 ml) was added to a stirred solution of 2,3,5-trichloroaniline (III) (10 mmol, 1.0 equiv.) in dry 1,2-dichloroethane (20 ml) and stirred at room temperature for 24 hrs, the solvent was removed *in vacuo* and the residue was recrystallized with ethyl acetate to give desired compounds as white needle-crystals (I) in 93% yield (Lin *et al.*, 2003; Lin *et al.*, 2005). The desire product recrystallized from acetone (m.p. 517 K).

S3. Refinement

In the absence of significant anomalous dispersion effects, Freidel pairs were merged; the absolute configuration was assigned on the basis of the known configuration of the starting material. All H atoms were placed in idealized positions and refined with riding constraints, with C—H distances in the range 0.93–0.96 Å and with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figure 1

View of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2

The crystal packing of complex 1 showing the hydrogen bonds as broken lines. Symmetry code: (i) -*x*, -*y* + 1, -*z* + 1; (ii) - x + 1, -*y* + 1, -*z*.

Figure 3

The formation of the title compound.

1-(2,6-Difluorobenzoyl)-3-(2,3,5-trichlorophenyl)urea

Crystal data

 $C_{14}H_7Cl_3F_2N_2O_2$ $M_r = 379.57$ Monoclinic, $P2_1/c$ a = 7.1669 (4) Å b = 22.8228 (12) Å c = 18.2885 (10) Å $\beta = 94.768$ (2)° V = 2981.1 (3) Å³ Z = 8F(000) = 1520

Data collection

Rigaku Saturn	27779 measu
diffractometer	7091 indepen
Radiation source: rotating anode	6011 reflection
Confocal monochromator	$R_{\rm int} = 0.050$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \theta_{\rm max}$
ω and φ scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -30 \rightarrow 30$
(CrystalClear; Rigaku, 2006)	$l = -24 \rightarrow 24$
$T_{\min} = 0.860, \ T_{\max} = 0.927$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.089$ S = 1.077091 reflections 431 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_x = 1.691 \text{ Mg m}^{-3}$ Melting point: 517 K Mo K α radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 6247 reflections $\theta = 1.8-27.9^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 113 KPrism, colourless $0.24 \times 0.14 \times 0.12 \text{ mm}$

27779 measured reflections 7091 independent reflections 6011 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -30 \rightarrow 30$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 0.1727P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.03364 (7)	0.50654 (2)	0.15961 (2)	0.02733 (12)	
C12	-0.07937 (7)	0.40202 (2)	0.05408 (2)	0.03038 (12)	
C13	-0.17311 (7)	0.26475 (2)	0.28607 (3)	0.03149 (12)	
Cl4	0.34943 (7)	0.283841 (19)	0.19434 (2)	0.02671 (11)	
C15	0.36147 (7)	0.28306 (2)	0.36548 (2)	0.03282 (13)	
Cl6	0.54168 (7)	0.51085 (2)	0.37218 (2)	0.02918 (12)	
F1	-0.17544 (16)	0.64246 (6)	0.45899 (7)	0.0423 (3)	
F2	0.44718 (15)	0.65048 (6)	0.39926 (7)	0.0414 (3)	
F3	0.04346 (14)	0.34365 (5)	-0.10568 (6)	0.0303 (3)	
F4	0.67828 (15)	0.39222 (5)	-0.10684 (6)	0.0327 (3)	
01	-0.02709 (19)	0.44667 (6)	0.42993 (6)	0.0291 (3)	
O2	0.14058 (17)	0.59069 (6)	0.31730 (6)	0.0248 (3)	
03	0.51390 (18)	0.48843 (5)	0.09749 (6)	0.0247 (3)	
04	0.33939 (17)	0.32720 (5)	0.01436 (6)	0.0240 (3)	
N1	0.0186 (2)	0.48145 (7)	0.31516 (8)	0.0214 (3)	
N2	0.0531 (2)	0.54179 (7)	0.41771 (8)	0.0225 (3)	
N3	0.4215 (2)	0.39641 (7)	0.12945 (8)	0.0202 (3)	
N4	0.4259 (2)	0.42336 (7)	0.00736 (8)	0.0201 (3)	
C1	0.0123 (3)	0.48592 (8)	0.38878 (9)	0.0221 (4)	
C2	-0.0276 (2)	0.43225 (8)	0.27132 (9)	0.0197 (4)	
C3	-0.0277 (2)	0.43974 (8)	0.19488 (9)	0.0212 (4)	
C4	-0.0753 (2)	0.39311 (8)	0.14825 (9)	0.0225 (4)	
C5	-0.1203 (2)	0.33913 (8)	0.17552 (10)	0.0246 (4)	
H5	-0.1524	0.3073	0.1434	0.029*	
C6	-0.1176 (2)	0.33237 (8)	0.25079 (10)	0.0226 (4)	
C7	-0.0722 (2)	0.37795 (8)	0.29909 (9)	0.0215 (4)	
H7	-0.0717	0.3721	0.3505	0.026*	
C8	0.1103 (2)	0.59011 (8)	0.38219 (9)	0.0205 (4)	
C9	0.1360 (2)	0.64407 (8)	0.42805 (9)	0.0207 (4)	
C10	-0.0058 (3)	0.66965 (9)	0.46427 (10)	0.0270 (4)	
C11	0.0158 (3)	0.72142 (9)	0.50213 (11)	0.0331 (5)	
H11	-0.0859	0.7382	0.5250	0.040*	
C12	0.1879 (3)	0.74862 (9)	0.50626 (10)	0.0314 (5)	
H12	0.2058	0.7840	0.5334	0.038*	
C13	0.3350 (3)	0.72521 (8)	0.47147 (10)	0.0291 (4)	
H13	0.4537	0.7440	0.4742	0.035*	
C14	0.3047 (3)	0.67426 (8)	0.43304 (10)	0.0252 (4)	
C15	0.4574 (2)	0.43923 (8)	0.08133 (9)	0.0193 (4)	
C16	0.4364 (2)	0.39918 (8)	0.20631 (9)	0.0193 (4)	
C17	0.4017 (2)	0.34714 (8)	0.24369 (9)	0.0205 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C18	0.4090 (3)	0.34667 (8)	0.31982 (9)	0.0227 (4)	
C19	0.4524 (2)	0.39688 (8)	0.36001 (9)	0.0241 (4)	
H19	0.4574	0.3966	0.4121	0.029*	
C20	0.4882 (2)	0.44752 (8)	0.32218 (9)	0.0219 (4)	
C21	0.4809 (2)	0.44985 (8)	0.24629 (9)	0.0208 (4)	
H21	0.5058	0.4854	0.2220	0.025*	
C22	0.3743 (2)	0.37040 (7)	-0.02176 (9)	0.0181 (4)	
C23	0.3613 (2)	0.36860 (7)	-0.10363 (9)	0.0185 (4)	
C24	0.1951 (3)	0.35418 (8)	-0.14347 (9)	0.0219 (4)	
C25	0.1753 (3)	0.35137 (8)	-0.21846 (10)	0.0265 (4)	
H25	0.0583	0.3416	-0.2438	0.032*	
C26	0.3300 (3)	0.36319 (8)	-0.25635 (10)	0.0290 (4)	
H26	0.3189	0.3617	-0.3084	0.035*	
C27	0.5015 (3)	0.37721 (8)	-0.21950 (10)	0.0281 (4)	
H27	0.6082	0.3848	-0.2456	0.034*	
C28	0.5121 (2)	0.37969 (8)	-0.14440 (10)	0.0224 (4)	
H1	0.050 (3)	0.5150 (9)	0.2941 (11)	0.033 (6)*	
H2	0.053 (3)	0.5433 (10)	0.4626 (12)	0.039 (6)*	
Н3	0.392 (3)	0.3651 (9)	0.1119 (12)	0.036 (7)*	
H4	0.441 (3)	0.4529 (10)	-0.0251 (12)	0.045 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Cl1	0.0356 (3)	0.0278 (3)	0.0190 (2)	-0.0018 (2)	0.00479 (18)	-0.00021 (17)
Cl2	0.0346 (3)	0.0393 (3)	0.0171 (2)	0.0015 (2)	0.00166 (18)	-0.00678 (18)
C13	0.0359 (3)	0.0224 (3)	0.0360 (3)	-0.0003(2)	0.0023 (2)	-0.00089 (19)
Cl4	0.0352 (3)	0.0200 (2)	0.0249 (2)	-0.00355 (19)	0.00249 (19)	0.00437 (17)
C15	0.0422 (3)	0.0311 (3)	0.0256 (2)	-0.0054 (2)	0.0058 (2)	0.01259 (19)
C16	0.0362 (3)	0.0271 (3)	0.0243 (2)	0.0022 (2)	0.00324 (19)	-0.00380 (18)
F1	0.0232 (6)	0.0534 (9)	0.0519 (8)	-0.0052 (6)	0.0122 (5)	-0.0179 (6)
F2	0.0237 (6)	0.0504 (8)	0.0518 (8)	-0.0071 (6)	0.0141 (5)	-0.0213 (6)
F3	0.0211 (6)	0.0405 (7)	0.0298 (6)	-0.0052 (5)	0.0058 (5)	0.0026 (5)
F4	0.0204 (6)	0.0436 (7)	0.0345 (6)	-0.0041 (5)	0.0055 (5)	-0.0001 (5)
01	0.0437 (8)	0.0258 (7)	0.0185 (6)	-0.0046 (6)	0.0073 (6)	-0.0011 (5)
O2	0.0277 (7)	0.0292 (7)	0.0178 (6)	-0.0046 (6)	0.0037 (5)	-0.0016 (5)
O3	0.0349 (8)	0.0192 (7)	0.0204 (6)	-0.0058 (6)	0.0052 (5)	0.0014 (5)
O4	0.0319 (7)	0.0177 (7)	0.0229 (6)	-0.0010 (5)	0.0050 (5)	0.0041 (5)
N1	0.0256 (9)	0.0223 (9)	0.0166 (7)	-0.0023 (7)	0.0035 (6)	-0.0022 (6)
N2	0.0290 (9)	0.0241 (9)	0.0149 (7)	-0.0038 (7)	0.0048 (6)	-0.0033 (6)
N3	0.0258 (8)	0.0179 (8)	0.0172 (7)	-0.0012 (7)	0.0031 (6)	0.0026 (6)
N4	0.0257 (8)	0.0174 (8)	0.0176 (7)	-0.0017 (6)	0.0039 (6)	0.0034 (6)
C1	0.0236 (10)	0.0244 (10)	0.0184 (8)	-0.0008 (8)	0.0027 (7)	-0.0035 (7)
C2	0.0163 (9)	0.0248 (10)	0.0182 (8)	0.0019 (7)	0.0023 (7)	-0.0053 (7)
C3	0.0180 (9)	0.0248 (10)	0.0212 (8)	0.0025 (7)	0.0032 (7)	-0.0002 (7)
C4	0.0177 (9)	0.0317 (11)	0.0178 (8)	0.0041 (8)	0.0007 (7)	-0.0059 (7)
C5	0.0216 (10)	0.0263 (10)	0.0259 (9)	0.0025 (8)	0.0026 (7)	-0.0067 (7)
C6	0.0179 (9)	0.0216 (10)	0.0286 (9)	0.0031 (7)	0.0031 (7)	-0.0017 (7)

C7	0.0182 (9)	0.0265 (10)	0.0198 (8)	0.0029 (7)	0.0015 (7)	-0.0006 (7)
C8	0.0155 (9)	0.0257 (10)	0.0203 (8)	0.0000 (7)	0.0017 (7)	0.0000 (7)
C9	0.0220 (9)	0.0226 (10)	0.0173 (8)	0.0009 (7)	0.0005 (7)	0.0004 (7)
C10	0.0212 (10)	0.0313 (11)	0.0287 (10)	0.0002 (8)	0.0040 (8)	-0.0021 (8)
C11	0.0374 (12)	0.0305 (12)	0.0325 (11)	0.0085 (9)	0.0101 (9)	-0.0058 (8)
C12	0.0482 (13)	0.0213 (10)	0.0249 (9)	0.0001 (9)	0.0043 (9)	-0.0016 (8)
C13	0.0349 (12)	0.0274 (11)	0.0251 (9)	-0.0068 (9)	0.0028 (8)	0.0001 (8)
C14	0.0235 (10)	0.0278 (11)	0.0250 (9)	-0.0001 (8)	0.0052 (7)	-0.0012 (7)
C15	0.0188 (9)	0.0206 (10)	0.0190 (8)	0.0016 (7)	0.0039 (7)	0.0029 (7)
C16	0.0171 (9)	0.0221 (9)	0.0190 (8)	0.0025 (7)	0.0027 (7)	0.0039 (7)
C17	0.0175 (9)	0.0213 (10)	0.0231 (9)	0.0011 (7)	0.0034 (7)	0.0036 (7)
C18	0.0219 (9)	0.0244 (10)	0.0221 (9)	0.0023 (8)	0.0047 (7)	0.0090 (7)
C19	0.0227 (10)	0.0316 (11)	0.0185 (8)	0.0034 (8)	0.0049 (7)	0.0044 (7)
C20	0.0184 (9)	0.0243 (10)	0.0232 (9)	0.0040 (7)	0.0027 (7)	-0.0003 (7)
C21	0.0199 (9)	0.0206 (9)	0.0223 (9)	0.0028 (7)	0.0039 (7)	0.0047 (7)
C22	0.0156 (9)	0.0177 (9)	0.0214 (8)	0.0036 (7)	0.0032 (7)	-0.0001 (7)
C23	0.0217 (9)	0.0147 (9)	0.0197 (8)	0.0030 (7)	0.0049 (7)	0.0013 (6)
C24	0.0237 (10)	0.0179 (9)	0.0250 (9)	-0.0003 (7)	0.0075 (7)	0.0028 (7)
C25	0.0301 (11)	0.0239 (10)	0.0249 (9)	-0.0028 (8)	-0.0017 (8)	0.0020 (7)
C26	0.0461 (13)	0.0223 (10)	0.0192 (9)	-0.0019 (9)	0.0056 (8)	-0.0004 (7)
C27	0.0328 (11)	0.0251 (11)	0.0283 (10)	-0.0008 (8)	0.0142 (8)	0.0011 (8)
C28	0.0209 (9)	0.0203 (10)	0.0265 (9)	0.0010 (7)	0.0040 (7)	-0.0014 (7)

Geometric parameters (Å, °)

Cl1—C3	1.7265 (18)	С5—Н5	0.9500
Cl2—C4	1.7320 (18)	C6—C7	1.386 (2)
Cl3—C6	1.7317 (19)	С7—Н7	0.9500
Cl4—C17	1.7280 (18)	C8—C9	1.493 (2)
Cl5—C18	1.7228 (18)	C9—C10	1.387 (2)
Cl6—C20	1.7362 (19)	C9—C14	1.388 (3)
F1-C10	1.361 (2)	C10—C11	1.372 (3)
F2—C14	1.350 (2)	C11—C12	1.377 (3)
F3—C24	1.357 (2)	C11—H11	0.9500
F4—C28	1.355 (2)	C12—C13	1.383 (3)
01—C1	1.218 (2)	C12—H12	0.9500
O2—C8	1.224 (2)	C13—C14	1.367 (3)
O3—C15	1.222 (2)	C13—H13	0.9500
O4—C22	1.224 (2)	C16—C21	1.391 (2)
N1-C1	1.355 (2)	C16—C17	1.403 (2)
N1-C2	1.403 (2)	C17—C18	1.389 (2)
N1—H1	0.89 (2)	C18—C19	1.383 (3)
N2—C8	1.360 (2)	C19—C20	1.382 (2)
N2-C1	1.402 (2)	С19—Н19	0.9500
N2—H2	0.82 (2)	C20—C21	1.386 (2)
N3—C15	1.354 (2)	C21—H21	0.9500
N3—C16	1.402 (2)	C22—C23	1.493 (2)
N3—H3	0.80 (2)	C23—C24	1.383 (2)

N4—C22	1.360 (2)	C23—C28	1.386 (2)
N4—C15	1.401 (2)	C24—C25	1.369 (2)
N4—H4	0.91 (2)	C25—C26	1.382 (3)
C2—C7	1.387 (2)	С25—Н25	0.9500
C2—C3	1.408 (2)	C26—C27	1.389 (3)
C3—C4	1.388 (2)	С26—Н26	0.9500
C4—C5	1.377 (3)	C27—C28	1.370 (2)
C5—C6	1.384 (2)	С27—Н27	0.9500
C1—N1—C2	127.03 (16)	C14—C13—C12	118.06 (19)
C1—N1—H1	113.2 (13)	C14—C13—H13	121.0
C2—N1—H1	119.6 (13)	С12—С13—Н13	121.0
C8—N2—C1	128.23 (15)	F2-C14-C13	118.90 (17)
C8—N2—H2	117.9 (15)	F2—C14—C9	117.26 (16)
C1—N2—H2	113.4 (15)	C13—C14—C9	123.81 (18)
C15—N3—C16	128.03 (16)	O3—C15—N3	125.68 (16)
C15—N3—H3	116.0 (16)	O3—C15—N4	119.67 (15)
C16—N3—H3	115.9 (16)	N3—C15—N4	114.65 (15)
C22—N4—C15	128.67 (14)	C21—C16—N3	124.02 (15)
C22—N4—H4	116.5 (14)	C21—C16—C17	119.34 (16)
C15—N4—H4	114.8 (14)	N3—C16—C17	116.64 (15)
01—C1—N1	125.96 (17)	C18—C17—C16	120.11 (16)
O1—C1—N2	119.17 (15)	C18—C17—Cl4	120.36 (14)
N1—C1—N2	114.85 (15)	C16—C17—Cl4	119.53 (13)
C7—C2—N1	123.82 (15)	C19—C18—C17	120.96 (16)
C7—C2—C3	119.40 (16)	C19—C18—C15	119.04 (13)
N1—C2—C3	116.79 (16)	C17—C18—C15	120.00 (14)
C4—C3—C2	119.77 (17)	C20—C19—C18	118.02 (16)
C4—C3—Cl1	120.30 (14)	С20—С19—Н19	121.0
C2—C3—Cl1	119.93 (14)	С18—С19—Н19	121.0
C5—C4—C3	121.06 (16)	C19—C20—C21	122.72 (17)
C5—C4—Cl2	118.68 (14)	C19—C20—C16	118.33 (13)
C3—C4—Cl2	120.25 (15)	C21—C20—C16	118.94 (14)
C4—C5—C6	118.41 (17)	C20—C21—C16	118.84 (16)
С4—С5—Н5	120.8	C20—C21—H21	120.6
С6—С5—Н5	120.8	C16—C21—H21	120.6
C5—C6—C7	122.24 (17)	O4—C22—N4	124.46 (16)
C5—C6—C13	119.04 (14)	O4—C22—C23	121.38 (15)
C7—C6—C13	118.72 (14)	N4—C22—C23	114.16 (14)
C6—C7—C2	119.11 (16)	C24—C23—C28	115.82 (16)
С6—С7—Н7	120.4	C24—C23—C22	120.91 (15)
С2—С7—Н7	120.4	C28—C23—C22	123.25 (16)
O2—C8—N2	123.81 (17)	F3—C24—C25	118.75 (16)
02—C8—C9	120.80 (16)	F3—C24—C23	117.71 (15)
N2—C8—C9	115.39 (15)	C25—C24—C23	123.53 (17)
C10—C9—C14	115.37 (17)	C24—C25—C26	118.19 (17)
C10—C9—C8	123.65 (16)	C24—C25—H25	120.9
C14—C9—C8	120.86 (16)	C26—C25—H25	120.9

F1-C10-C11 F1-C10-C9 C11-C10-C9 C10-C11-C12 C10-C11-H11 C12-C11-H11 C11-C12-C13 C11-C12-H12 C13-C12-H12	119.38 (17) 117.38 (17) 123.19 (18) 118.59 (19) 120.7 120.7 120.94 (19) 119.5 119.5	C25—C26—C27 C25—C26—H26 C27—C26—H26 C28—C27—C26 C28—C27—H27 C26—C27—H27 F4—C28—C27 F4—C28—C27 F4—C28—C23 C27—C28—C23	121.07 (17) 119.5 119.5 117.96 (17) 121.0 121.0 119.34 (16) 117.21 (15) 123.43 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.5 (3) \\ -175.52 (16) \\ 175.84 (18) \\ -5.1 (3) \\ -6.0 (3) \\ 173.97 (17) \\ 1.1 (3) \\ -178.90 (16) \\ -178.25 (13) \\ 1.8 (2) \\ -0.9 (3) \\ 178.44 (14) \\ 179.03 (13) \\ -1.7 (2) \\ 0.2 (3) \\ -179.71 (13) \\ 0.3 (3) \\ -179.82 (13) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.6 (3) \\ -178.88 (16) \\ 175.83 (17) \\ -3.8 (3) \\ 4.5 (3) \\ -176.16 (17) \\ 1.0 (3) \\ -178.33 (16) \\ -179.16 (13) \\ 1.5 (2) \\ -0.8 (3) \\ 179.40 (14) \\ 178.62 (14) \\ -1.2 (2) \\ 0.0 (3) \\ -179.39 (13) \\ 0.5 (3) \\ 179.69 (14) \end{array}$
C5—C6—C7—C2	-0.1 (3)	C19—C20—C21—C16	-0.3 (3)
Cl3—C6—C7—C2	-179.98 (13)	Cl6—C20—C21—C16	-179.44 (13)
N1—C2—C7—C6	179.38 (16)	N3—C16—C21—C20	178.79 (16)
C3—C2—C7—C6	-0.6 (3)	C17—C16—C21—C20	-0.5 (3)
C1—N2—C8—O2	-2.4 (3)	C15—N4—C22—O4	2.9 (3)
C1—N2—C8—C9	177.94 (17)	C15—N4—C22—C23	-177.49 (16)
O2—C8—C9—C10	121.2 (2)	O4—C22—C23—C24	58.7 (2)
N2—C8—C9—C10	-59.1 (2)	N4—C22—C23—C24	-120.91 (18)
O2—C8—C9—C14	-54.5 (2)	O4—C22—C23—C28	-119.8 (2)
N2 - C8 - C9 - C14 $C14 - C9 - C10 - F1$ $C8 - C9 - C10 - F1$ $C14 - C9 - C10 - C11$ $C8 - C9 - C10 - C11$ $F1 - C10 - C11$	125.14 (18)	N4C22C23C28	60.5 (2)
	178.06 (16)	C28C23C24F3	-179.26 (15)
	2.1 (3)	C22C23C24F3	2.1 (2)
	0.6 (3)	C28C23C24C25	-0.8 (3)
	-175.38 (18)	C22C23C24C25	-179.46 (17)
	-179.34 (17)	F3C24C25C26	178.00 (16)
C9-C10-C11-C12 C10-C11-C12-C13 C11-C12-C13-C14 C12-C13-C14-F2 C12-C13-C14-F2 C12-C13-C14-C9	$\begin{array}{c} -1.9 (3) \\ 1.7 (3) \\ -0.1 (3) \\ -179.42 (17) \\ -1.3 (3) \end{array}$	C23-C24-C25-C26 C24-C25-C26-C27 C25-C26-C27-C28 C26-C27-C28-F4 C26-C27-C28-C23	$\begin{array}{c} 178.90 (10) \\ 0.5 (3) \\ 0.4 (3) \\ -0.8 (3) \\ 178.83 (16) \\ 0.4 (3) \end{array}$

C10—C9—C14—F2	179.24 (16)	C24—C23—C28—F4	-178.09 (15)
C8—C9—C14—F2	-4.7 (3)	C22—C23—C28—F4	0.5 (3)
C10-C9-C14-C13	1.1 (3)	C24—C23—C28—C27	0.4 (3)
C8—C9—C14—C13	177.14 (17)	C22—C23—C28—C27	178.97 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N1—H1…Cl1	0.89 (2)	2.46 (2)	2.9126 (15)	111.8 (16)
N1—H1…O2	0.89 (2)	1.88 (2)	2.641 (2)	141.5 (19)
N2—H2···O1 ⁱ	0.82 (2)	2.00 (2)	2.8205 (19)	173 (2)
N3—H3…Cl4	0.80 (2)	2.43 (2)	2.8944 (16)	118.2 (19)
N3—H3…O4	0.80 (2)	1.99 (2)	2.658 (2)	140 (2)
N4—H4···O3 ⁱⁱ	0.91 (2)	1.93 (2)	2.8378 (18)	176 (2)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.