Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(Hydroxymethyl)pyridinium chloride

Leigh Anna M. Ottley, ${ }^{\text {a* }}$ Mark A. Rodriguez ${ }^{\text {b }}$ and Timothy J. Boyle ${ }^{\text {a }}$

${ }^{\text {a }}$ Sandia National Laboratories, Advanced Materials Laboratories, 1001 University Blvd. SE, Albuquerque, NM 87106, USA, and ${ }^{\text {b }}$ PO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, NM 87185, USA
Correspondence e-mail: laottle@sandia.gov

Received 2 September 2008; accepted 27 October 2008

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.040 ; w R$ factor $=0.093 ;$ data-to-parameter ratio $=14.1$.

In the title molecular salt, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, the packing is consolidated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, resulting in the formation of [010] chains of alternating cations and anions.

Related literature

The title compound was initially isolated by Boyle et al. (2008). Only the di-substituted pyridine carbonyl HCl salt has been reported previously (Fites et al., 2006).

Cl^{-}

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=145.58$
Monoclinic, $P 2_{b} / n$
$a=7.0689$ (9) A
$b=8.0833$ (11) \AA
$c=12.1304(16) \AA$
$\beta=102.078$ (2) ${ }^{\circ}$
$V=677.79(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$

Data collection
Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) $T_{\min }=0.867, T_{\max }=0.909$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.092$
$S=1.26$
1227 reflections
87 parameters
independent and constrained refinement
$0.25 \times 0.22 \times 0.20 \mathrm{~mm}$

4681 measured reflections
1227 independent reflections
1202 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{Cl} 11^{\mathrm{i}}$	0.82	2.24	$3.0409(18)$	167
$\mathrm{~N} 1-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.83(3)$	$2.34(3)$	$3.067(2)$	$146(2)$

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y, z-1$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

For support of this research, the authors thank the Office of Basic Energy Science and the US Department of Energy under Contract DE-AC04-94 A L85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2102).

References

Boyle, T. J., Ottley, L. M., Rodriguez, M. A., Sewell, R. M., Alam, T. M. \& McIntyre, S. K. (2008). Inorg. Chem. Submitted.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Fites, R. J., Yeager, A. T., Sarvela, T. L., Howard, W. A., Zhu, G. \& Pang, K. (2006). Inorg. Chim. Acta, 359, 248-256.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2233 [doi:10.1107/S1600536808034922]

2-(Hydroxymethyl)pyridinium chloride

Leigh Anna M. Ottley, Mark A. Rodriguez and Timothy J. Boyle

S1. Comment

Figure 1 shows an atomic displacement ellipsoid plot of 2(hydroxymethyl)pyridinium chloride. The title compound was synthesized through the dissolution of bis(pyridine carbonoxide)titanium(dichloride), (OPy$)_{2} \mathrm{TiCl}_{2}$, in $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}(5 \%)$. The synthesis was optimized by dissolving HOPy in $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}(5 \%)$. Fites, et al. (2006) reported the disubstituted salt structure which was isolated from a vanadium 2,6-pyridinedimethanol complex at low pH solutions. This is in agreement to what Boyle et al.(2008) found, where the title compound was isolated from low pH aqueous solutions of the titanium monosubstituted pyridinemethanol complex.

Figure 2 displays the packing arrangement of four molecules of the title compound with the $\mathrm{Cl} \cdots \mathrm{H}$ interactions that occur between adjacent molecules. The Cl interacts with the pyridinium ($\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{Cl} 1$) and alcohol protons ($\mathrm{O} 1-$ $\mathrm{H} 1 \cdots \mathrm{Cl} 1$), with a greater interaction observed with the alcohol, as listed in Table 1. The hydrogen bond angles for O1$\mathrm{H} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{Cl} 1$ are in agreement with literature angles and intermolecular interactions. In comparison, the disubstituted structure by Fites, et al. (2006) showed a stronger Cl binding potential with respect to the pyridinium proton $(\mathrm{H} \cdots \mathrm{Cl}=2.208 \AA)$ and a slightly weaker interaction with the alcohol $(\mathrm{H} \cdots \mathrm{Cl} 2.37 \AA)$. Figure 2 also displays the pattern of $\mathrm{H} \cdots \mathrm{Cl}$ bonding throughout the unit cells. The individual molecules are related by a 2_{1} screw axis parallel to the b axis of the structure. The alternating interaction of the Cl between the pyridinium proton and the alcohol proton yields a intermolecular chain along the b axis.

S2. Experimental

2(Hydroxymethyl)pyridinium chloride was isolated by Boyle et al.(2008) through the dissolution of a titanium precursor, $\operatorname{bis}\left(\right.$ pyridine carbonoxide)titanium(dichloride) or $(\mathrm{OPy})_{2} \mathrm{TiCl}_{2}$, (where $\mathrm{OPy}=$ pyridine carbonoxide) in acidified water (5% of conc. HCl in water). In order to optimize the synthesis of this salt, crystal were grown via HOPy in acidified water (5% of conc. HCl in water). After slow evaporation, X-ray quality crystals were isolated and characterized by singlecrystal X-ray, FTIR, NMR, and EA.

S3. Refinement

H 1 (which is bound to O 1 of the methanol group) was placed on ideal position, allowed to rotate around the $\mathrm{C}-\mathrm{O}$ bond and refined via a riding model while H7 was located on difference Fourier maps and allowed to refine freely.

Figure 1

The molecular structure of the title compound, with atom labels and 50\% probability atomic displacement ellipsoids for non- H atoms. The Cl atom has been translated to clarify interaction with the OH group.

Figure 2
Packing of the title compound on the b-c plane illustrating the $\mathrm{NH}-\mathrm{Cl}-\mathrm{OH}$ intermolecular chain interaction which proceeds parallel to the b axis via the 2_{1} screw axis.

2-(Hydroxymethyl)pyridinium chloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}^{+} . \mathrm{Cl}^{-}$
$M_{r}=145.58$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=7.0689$ (9) \AA
$b=8.0833$ (11) \AA
$c=12.1304(16) \AA$
$\beta=102.078(2)^{\circ}$
$V=677.79(15) \AA^{3}$
$Z=4$

Data collection

Bruker APEX CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.867, T_{\text {max }}=0.909$

$$
\begin{aligned}
& F(000)=304 \\
& D_{\mathrm{x}}=1.427 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 200 \text { reflections } \\
& \theta=3.1-25.2^{\circ} \\
& \mu=0.48 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Irregular, colorless } \\
& 0.25 \times 0.22 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.093$
$S=1.26$
1227 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

4681 measured reflections
1227 independent reflections
1202 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0271 P)^{2}+0.6606 P\right]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.10702(9)$	$0.46272(7)$	$0.68760(4)$	$0.0311(2)$
N1	$0.2053(3)$	$0.4526(2)$	$-0.05399(16)$	$0.0213(4)$
O1	$0.0732(2)$	$0.1503(2)$	$-0.10825(13)$	$0.0292(4)$

H1	0.1498	0.1040	-0.1403	0.044^{*}
C1	$0.2214(3)$	$0.3472(3)$	$0.03263(18)$	$0.0220(5)$
C4	$0.3390(3)$	$0.6739(3)$	$0.0620(2)$	$0.0299(5)$
H4	0.3773	0.7840	0.0715	0.036^{*}
C5	$0.2628(3)$	$0.6116(3)$	$-0.04288(19)$	$0.0264(5)$
H5	0.2509	0.6789	-0.1062	0.032^{*}
C3	$0.3576(3)$	$0.5680(3)$	$0.1541(2)$	$0.0312(6)$
H3	0.4104	0.6074	0.2260	0.037^{*}
C2	$0.2989(3)$	$0.4061(3)$	$0.14015(19)$	$0.0271(5)$
H2	0.3109	0.3364	0.2022	0.033^{*}
C6	$0.1592(3)$	$0.1715(3)$	$0.00685(18)$	$0.0273(5)$
H6A	0.2708	0.0993	0.0266	0.033^{*}
H6B	0.0674	0.1402	0.0524	0.033^{*}
H7	$0.165(4)$	$0.414(3)$	$-0.118(2)$	$0.027(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0410(4)$	$0.0293(3)$	$0.0204(3)$	$-0.0037(2)$	$0.0005(2)$	$0.0035(2)$
N1	$0.0213(9)$	$0.0237(10)$	$0.0181(9)$	$0.0011(8)$	$0.0023(7)$	$-0.0017(8)$
O1	$0.0326(9)$	$0.0303(9)$	$0.0229(8)$	$-0.0027(7)$	$0.0015(7)$	$-0.0028(7)$
C1	$0.0194(11)$	$0.0260(11)$	$0.0209(11)$	$0.0026(9)$	$0.0050(8)$	$0.0030(9)$
C4	$0.0264(12)$	$0.0236(12)$	$0.0391(14)$	$-0.0003(10)$	$0.0052(10)$	$-0.0071(10)$
C5	$0.0266(12)$	$0.0228(12)$	$0.0305(12)$	$0.0038(9)$	$0.0076(9)$	$0.0029(10)$
C3	$0.0271(12)$	$0.0382(14)$	$0.0266(12)$	$0.0034(11)$	$0.0018(9)$	$-0.0102(11)$
C2	$0.0273(12)$	$0.0340(13)$	$0.0197(11)$	$0.0033(10)$	$0.0038(9)$	$0.0012(10)$
C6	$0.0323(13)$	$0.0260(12)$	$0.0223(11)$	$-0.0020(10)$	$0.0026(9)$	$0.0028(9)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 1$	$1.339(3)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.392(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.347(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 1-\mathrm{H} 7$	$0.83(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 1-\mathrm{C} 6$	$1.412(3)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.372(3)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8200	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.500(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.370(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
			$120.8(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$123.7(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 7$	$116.8(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.6
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 7$	$119.3(18)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$119.5(2)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{H} 1$	109.5	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	120.2
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$118.1(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2-\mathrm{H} 2$	120.2
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6$	$117.76(19)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$111.60(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$124.2(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.3
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.2(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.3

supporting information

C3-C4-H4	120.9	O1-C6-H6B	109.3
N1-C5-C4	$119.7(2)$	C1-C6-H6B	109.3
N1-C5-H5	120.1	H6A-C6-H6B	108.0
C4-C5-H5	120.1		

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}^{\mathrm{i}}$	0.82	2.24	$3.0409(18)$	167
$\mathrm{~N} 1 — \mathrm{H} 7 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.83(3)$	$2.34(3)$	$3.067(2)$	$146(2)$

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (ii) $x, y, z-1$.

