organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Di­nitro­phen­yl)(1-methyl-1-nitro­ethyl)diazene

aDepartment of Chemistry and Chemical Engineering, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: chunlanyuan@126.com

(Received 15 August 2008; accepted 22 October 2008; online 25 October 2008)

In the title compound, C9H9N5O6, the azo group adopts a trans conformation and the dihedral angles between the two nitro groups and the benzene ring are 11.6 (3) and 21.3 (3)°.

Related literature

For general background, see: Hrabie et al. (1998[Hrabie, J. A., Srinivasan, A., George, C. & Keefer, L. K. (1998). Tetrahedron Lett. 39, 5933-5936.]); Batler & Williams (1993[Batler, A. R. & Williams, D. L. H. (1993). J. Chem. Soc. 22, 233-241.]); Murad (1999[Murad, F. A. (1999). Angew. Chem. Int. Ed. 38, 1856-1868.]); Ignarro (1999[Ignarro, L. J. (1999). Angew. Chem. Int. Ed. 38, 1882-1892.]); Wang et al., (2002[Wang, P. G., Xian, M., Tang, X. P., Wu, X. J., Wen, Z., Cai, T. W. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091-1134.]); Hrabie & Keefer (2002[Hrabie, J. A. & Keefer, L. K. (2002). Chem. Rev. 102, 1135-1154.]). For related compounds, see: Engel (1980[Engel, P. S. (1980). Chem. Rev. 80, 99-150.]); Katritzky et al., (2002[Katritzky, A. R., Nair, S. K., Garcia, V. R. & Xu, Y. J. (2002). J. Org. Chem. 67, 8237-8238.]). For the synthesis, see: Ueno & Umeda (1991[Ueno, K. & Umeda, T. (1991). J. Chromatogr. 585, 225-231.]); Zhang et al. (1992[Zhang, J., Hertzler, R. L. & Eisenbrun, E. J. (1992). J. Chem. Educ. 69, 1037-1044.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N5O6

  • Mr = 283.21

  • Monoclinic, C 2/c

  • a = 13.495 (4) Å

  • b = 12.847 (4) Å

  • c = 14.362 (3) Å

  • β = 92.18 (3)°

  • V = 2488.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 (2) K

  • 0.50 × 0.36 × 0.26 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 9672 measured reflections

  • 2336 independent reflections

  • 1026 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 97 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.204

  • S = 0.84

  • 2336 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The important roles of nitric oxide (NO) in atmospheric processes (Hrabie et al., 1998) and in biological events (Batler & Williams, 1993; Murad, 1999; Ignarro, 1999) have known for quite a time. The intensive researches have been directed toward reactions of NO with biological molecules ( Wang et al., 2002; Hrabie & Keefer, 2002). Azoalkanes can be widely used as thermal free radical initiators (Engel, 1980) and some of azoalkanes are specific intermediate in organic synthesis ( Katritzky et al., 2002). In this paper, a new compound of azoalkanes 1-(2,4-dinitrophenyl)azo-2-nitropropylamine, (I), was prepared and its single crystals structure determined.

The structure of (I) (Fig. 1), 1-(2,4-dinitrophenyl)azo-2-nitropropylamine, consists of 2,4-dinitrophenyl and nitropropane linked by an azo group. In three NO2, the bonds of O4/N4/O3 are normal (1.202 Å) but the bonds of the N3-O1 and N5-O6 are 1.227 and 1.230 Å, respectively. It is obviously much longer than that of N5-O5(1.180Å), due to effects of azo double bond. The double N1N2 connects 2,4-dinitrophenyl and nitropropane.The bond lengths of N2-C7 (1.484Å) is longer than that of N1-C6 (1.433 Å).

Related literature top

For general background, see: Hrabie et al. (1998); Batler & Williams (1993); Murad (1999); Ignarro (1999); Wang et al., (2002); Hrabie & Keefer (2002). For related compounds, see: Engel (1980); Katritzky et al., (2002). For the synthesis, see: Ueno & Umeda (1991); Zhang et al. (1992).

Experimental top

A stock solutions were prepared by dissolving 0.5 mol acetone -2,4-dinitrophenylhydrazine in 100 mL dry CH2Cl2. NO was produced by the reaction of 1 mol H2SO4 solution with saturated NaNO2 aqueous solution. The former was added to the latter, which was stirred under an argon atmosphere. NO was carried by argon and purified by passing it through a series of scrubbing bottles containing 4 M NaOH, distilled water, and CaCl2 in turn. All the above bottles were under an argon atmosphere. The purified NO bubbled through a previously degassed stirred stock solution at room temperature for an appropriate time. After the reaction was completed, as indicated by TLC, the reaction mixture was dried with anhydrous MgSO4, concentrated in vacuum and purified by column chromatography on silica–gel (200–300 mesh, ethyl acetate–hexane) and the pure title compound was obtained.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are not shown.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis.
(2,4-Dinitrophenyl)(1-methyl-1-nitroethyl)diazene top
Crystal data top
C9H9N5O6F(000) = 1168
Mr = 283.21Dx = 1.512 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.495 (4) ÅCell parameters from 33 reflections
b = 12.847 (4) Åθ = 4.3–13.5°
c = 14.362 (3) ŵ = 0.13 mm1
β = 92.18 (3)°T = 298 K
V = 2488.1 (12) Å3Prism, yellow
Z = 80.50 × 0.36 × 0.26 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.063
Radiation source: fine-focus sealed tubeθmax = 25.6°, θmin = 2.2°
Graphite monochromatorh = 1611
ω scansk = 1115
9672 measured reflectionsl = 1717
2336 independent reflections3 standard reflections every 97 reflections
1026 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.1218P)2]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H9N5O6V = 2488.1 (12) Å3
Mr = 283.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.495 (4) ŵ = 0.13 mm1
b = 12.847 (4) ÅT = 298 K
c = 14.362 (3) Å0.50 × 0.36 × 0.26 mm
β = 92.18 (3)°
Data collection top
Siemens P4
diffractometer
Rint = 0.063
9672 measured reflections3 standard reflections every 97 reflections
2336 independent reflections intensity decay: 0.9%
1026 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 0.85Δρmax = 0.30 e Å3
2336 reflectionsΔρmin = 0.21 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4199 (4)0.4172 (3)0.3171 (2)0.175 (2)
O20.3274 (3)0.4313 (2)0.1933 (2)0.1333 (13)
O30.2968 (2)0.1231 (3)0.00469 (19)0.1178 (11)
O40.2871 (3)0.0239 (4)0.0731 (3)0.170 (2)
O50.4965 (3)0.1031 (3)0.6134 (3)0.1268 (13)
O60.5905 (3)0.2187 (3)0.6742 (2)0.1470 (15)
N10.3952 (2)0.2560 (2)0.42044 (18)0.0693 (8)
N20.4630 (2)0.2226 (2)0.46842 (17)0.0692 (8)
N30.3672 (3)0.3804 (3)0.2542 (3)0.1072 (13)
N40.3057 (2)0.0686 (4)0.0723 (2)0.0964 (11)
N50.5245 (3)0.1903 (4)0.6209 (2)0.0946 (11)
C60.3831 (2)0.2084 (3)0.33028 (19)0.0553 (8)
C10.3611 (2)0.2680 (3)0.2510 (2)0.0622 (8)
C20.3345 (2)0.2222 (3)0.1672 (2)0.0653 (9)
H20.31810.26240.11500.078*
C30.3330 (2)0.1171 (3)0.1629 (2)0.0669 (9)
C40.3567 (3)0.0556 (3)0.2382 (2)0.0825 (11)
H40.35640.01660.23270.099*
C50.3809 (2)0.1023 (3)0.3226 (2)0.0698 (10)
H50.39590.06130.37460.084*
C70.4696 (3)0.2740 (3)0.5614 (2)0.0692 (9)
C90.3722 (3)0.2914 (4)0.6046 (2)0.1031 (15)
H9A0.33770.34720.57290.155*
H9B0.38290.30910.66910.155*
H9C0.33310.22900.59960.155*
C80.5338 (5)0.3655 (4)0.5534 (3)0.138 (2)
H8A0.59400.34580.52460.207*
H8B0.54920.39310.61440.207*
H8C0.50010.41750.51610.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.268 (6)0.114 (3)0.119 (3)0.047 (3)0.093 (3)0.048 (2)
O30.131 (3)0.162 (3)0.0577 (16)0.004 (2)0.0226 (16)0.0110 (19)
O20.202 (4)0.089 (2)0.106 (2)0.006 (2)0.039 (2)0.0264 (19)
O10.322 (6)0.098 (3)0.101 (2)0.070 (3)0.063 (3)0.019 (2)
O50.158 (3)0.100 (2)0.121 (3)0.022 (2)0.008 (2)0.023 (2)
O60.139 (3)0.206 (4)0.092 (2)0.056 (3)0.042 (2)0.039 (2)
N10.083 (2)0.0711 (19)0.0524 (15)0.0135 (15)0.0088 (13)0.0039 (14)
N20.081 (2)0.0789 (19)0.0475 (14)0.0009 (15)0.0033 (13)0.0047 (13)
N30.163 (4)0.088 (3)0.069 (2)0.032 (2)0.022 (2)0.014 (2)
N40.103 (3)0.115 (3)0.070 (2)0.028 (2)0.0264 (18)0.025 (2)
N50.102 (3)0.128 (3)0.0527 (18)0.028 (2)0.0128 (17)0.009 (2)
C10.067 (2)0.067 (2)0.0529 (18)0.0033 (16)0.0005 (14)0.0048 (16)
C20.058 (2)0.094 (3)0.0433 (16)0.0026 (18)0.0024 (13)0.0062 (17)
C30.059 (2)0.090 (3)0.0503 (18)0.0127 (18)0.0119 (14)0.0124 (18)
C40.095 (3)0.077 (2)0.074 (2)0.021 (2)0.0187 (19)0.015 (2)
C50.081 (2)0.072 (2)0.0556 (19)0.0187 (18)0.0126 (16)0.0002 (17)
C60.0500 (18)0.071 (2)0.0450 (16)0.0055 (15)0.0011 (13)0.0048 (15)
C70.091 (3)0.070 (2)0.0452 (16)0.0022 (19)0.0056 (16)0.0030 (16)
C90.117 (4)0.132 (4)0.060 (2)0.046 (3)0.001 (2)0.022 (2)
C80.200 (6)0.122 (4)0.090 (3)0.068 (4)0.020 (3)0.015 (3)
Geometric parameters (Å, º) top
O1—N31.227 (4)C3—C41.368 (5)
O2—N31.201 (4)C4—C51.381 (4)
O3—N41.200 (4)C4—H40.9300
O4—N41.215 (5)C5—H50.9300
O5—N51.186 (4)C6—C51.368 (5)
O6—N51.209 (4)C6—C11.395 (4)
N1—N21.203 (3)C7—C81.467 (6)
N1—C61.436 (4)C7—C91.493 (5)
N2—C71.489 (4)C9—H9A0.9600
N3—C11.447 (5)C9—H9B0.9600
N4—C31.478 (4)C9—H9C0.9600
N5—C71.544 (5)C8—H8A0.9600
C1—C21.375 (4)C8—H8B0.9600
C2—C31.351 (5)C8—H8C0.9600
C2—H20.9300
O3—N4—O4124.4 (4)C3—C4—H4120.6
O3—N4—C3118.7 (4)C5—C4—H4120.6
O4—N4—C3116.7 (4)C6—C5—C4120.5 (3)
O2—N3—O1124.0 (4)C6—C5—H5119.7
O2—N3—C1119.7 (3)C4—C5—H5119.7
O1—N3—C1116.1 (4)C8—C7—N2107.5 (3)
N2—N1—C6115.0 (3)C8—C7—C8116.4 (4)
N1—N2—C7111.9 (3)N2—C7—C8107.5 (3)
O5—N5—O6124.5 (4)C8—C7—N5109.2 (4)
O5—N5—C7117.6 (3)N2—C7—N5101.5 (3)
O6—N5—C7117.8 (4)C9—C7—N5106.6 (3)
C5—C6—C1118.5 (3)C7—C9—H9A109.5
C5—C6—N1119.9 (3)C7—C9—H9B109.5
C1—C6—N1121.0 (3)H9A—C9—H9B109.5
C2—C1—C6121.3 (3)C7—C9—H9C109.5
C2—C1—N3117.9 (3)H9A—C9—H9C109.5
C6—C1—N3120.8 (3)H9B—C9—H9C109.5
C3—C2—C1118.1 (3)C7—C8—H8A109.5
C3—C2—H2121.0C7—C8—H8B109.5
C2—C2—H2121.0H8A—C8—H8B109.5
C2—C3—C4122.6 (3)C7—C8—H8C109.5
C2—C3—N4117.7 (3)H8A—C8—H8C109.5
C4—C3—N4119.7 (4)H8B—C8—H8C109.5
C3—C4—C5118.9 (4)

Experimental details

Crystal data
Chemical formulaC9H9N5O6
Mr283.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.495 (4), 12.847 (4), 14.362 (3)
β (°) 92.18 (3)
V3)2488.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.50 × 0.36 × 0.26
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9672, 2336, 1026
Rint0.063
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.204, 0.85
No. of reflections2336
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

I am grateful for the financial support from the industrialization foster (No. 06JC25) of Shaanxi Province and the main project (No. 04JS37) of the Key Laboratory of Shaanxi Province, People's Republic of China.

References

First citationBatler, A. R. & Williams, D. L. H. (1993). J. Chem. Soc. 22, 233–241.  Google Scholar
First citationEngel, P. S. (1980). Chem. Rev. 80, 99–150.  CrossRef CAS Web of Science Google Scholar
First citationHrabie, J. A. & Keefer, L. K. (2002). Chem. Rev. 102, 1135–1154.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHrabie, J. A., Srinivasan, A., George, C. & Keefer, L. K. (1998). Tetrahedron Lett. 39, 5933–5936.  Web of Science CSD CrossRef CAS Google Scholar
First citationIgnarro, L. J. (1999). Angew. Chem. Int. Ed. 38, 1882–1892.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Nair, S. K., Garcia, V. R. & Xu, Y. J. (2002). J. Org. Chem. 67, 8237–8238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurad, F. A. (1999). Angew. Chem. Int. Ed. 38, 1856–1868.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationUeno, K. & Umeda, T. (1991). J. Chromatogr. 585, 225–231.  CrossRef CAS Web of Science Google Scholar
First citationWang, P. G., Xian, M., Tang, X. P., Wu, X. J., Wen, Z., Cai, T. W. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091–1134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J., Hertzler, R. L. & Eisenbrun, E. J. (1992). J. Chem. Educ. 69, 1037–1044.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds