metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[2,6-bis(pyrazol-1-yl- κN^2)pyridine- κN^1](nitrato- $\kappa^2 O, O'$)cadmium(II)]- μ -thiocyanato- $\kappa^2 N$:S]

Zhong Nian Yang^a* and Ting Ting Sun^b

^aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

Received 26 September 2008; accepted 7 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.074; data-to-parameter ratio = 15.4.

In the title crystal structure, $[Cd(NCS)(NO_3)(C_{11}H_9N_5)]_n$, the unique Cd^{II} ion is coordinated in a distorted pentagonalbipyramidal environment. The axial thiocyanate ligands act in a $\mu_{1,3}$ -bridging mode to connect symmetry-related Cd^{II} ions into one-dimensional chains along [010]. In addition, there are intermolecular $C-H\cdots O$ contacts between chains.

Related literature

For background information, see: Halcrow (2005); Shi et al. (2006).

Experimental

Crystal data [Cd(NCS)(NO₃)(C₁₁H₉N₅)] $M_r = 443.72$ Monoclinic, $P2_1/n$ a = 8.4161 (15) Å b = 11.817 (2) Å c = 15.631 (3) Å $\beta = 99.673$ (2)°

 $V = 1532.5 (5) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.59 \text{ mm}^{-1}$ T = 298 (2) K0.18 \times 0.15 \times 0.11 mm

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.763, T_{\rm max} = 0.845$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	1 restraint
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
3335 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
217 parameters	

8813 measured reflections

 $R_{\rm int} = 0.034$

3335 independent reflections

2710 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Cd1-N6	2.279 (3)	Cd1-N3	2.388 (2)
Cd1-N1	2.346 (3)	Cd1-O2	2.495 (2)
Cd1-O3	2.361 (2)	Cd1-S1 ⁱ	2.7447 (9)
Cd1-N5	2.379 (3)		
N6-Cd1-N1	93.43 (12)	N1-Cd1-O2	85.22 (9)
N6-Cd1-O3	90.12 (11)	O3-Cd1-O2	52.36 (8)
N1-Cd1-O3	136.31 (9)	N5-Cd1-O2	139.77 (9)
N6-Cd1-N5	89.13 (10)	N3-Cd1-O2	152.71 (9)
N1-Cd1-N5	134.53 (10)	N6-Cd1-S1 ⁱ	173.33 (8)
O3-Cd1-N5	89.01 (9)	$N1-Cd1-S1^{i}$	86.04 (7)
N6-Cd1-N3	100.47 (10)	O3-Cd1-S1 ⁱ	85.71 (6)
N1-Cd1-N3	67.50 (9)	N5-Cd1-S1 ⁱ	95.98 (6)
O3-Cd1-N3	153.74 (9)	N3-Cd1-S1 ⁱ	85.49 (6)
N5-Cd1-N3	67.41 (9)	O2-Cd1-S1 ⁱ	92.16 (6)
N6-Cd1-O2	81.17 (9)		

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···O1 ⁱⁱ	0.93	2.50	3.412 (5)	167
C4-H4···O2 ⁱⁱⁱ	0.93	2.47	3.370 (4)	164
$C7 - H7 \cdots O3^{iv}$	0.93	2.52	3.312 (5)	143
$C10-H10\cdots S1^{iv}$	0.93	2.83	3.723 (4)	160
Symmetry codes: $x + \frac{1}{2} - y + \frac{3}{2} - \frac{1}{2}$	(ii) $-x + \frac{1}{2}$,	$y + \frac{1}{2}, -z + \frac{1}{2};$	(iii) $x - \frac{1}{2}, -y - \frac{1}{2}$	$+\frac{3}{2}, z - \frac{1}{2};$ (iv)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Doctor's Foundation of Binzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2703).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Halcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880-2908.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380.

supporting information

Acta Cryst. (2008). E64, m1386 [doi:10.1107/S1600536808032297]

catena-Poly[[[2,6-bis(pyrazol-1-yl- κN^2)pyridine- κN^1](nitrato- $\kappa^2 O, O'$)cadmium(II)]- μ -thiocyanato- $\kappa^2 N$:S]

Zhong Nian Yang and Ting Ting Sun

S1. Comment

Both the 2,6-bis(pyrazolyl)pyridine and thiocyanate ligands play an important role in modern coordination chemistry (Halcrow 2005; Shi *et al.* 2006), and our interest in complexes formed with these ligands led us to prepare the title complex and determine its crystal structure (I).

As shown in Fig. 1 the Cd^{II} ion is coordinated in a distorted pentagonal–bipyramidal environment with the 2,6-bis-(pyrazolyl)pyridine and nitrate anion acting as chelating tridentate and bidentate ligands, respectively. The axial thiocyantate ligands bridge symmetry-related Cd^{II} ions [with a Cd···Cd separation of 6.1817 (10) Å] to form a onedimensional `zigzag' chain along the *b* axis (Fig. 2). In addition, the crystal structure contains C—H···O and C—H···S short contacts between chains.

S2. Experimental

A 15 ml methanol solution containing 2,6-bis(pyrazolyl)pyridine (0.4140 g, 0.196 mmol) was added to 8 ml H₂O solution of Cd(NO₃)₂6H₂O (0.0689 g, 0.200 mmol) and NaSCN (0.0324 g, 0.400 mmol), and the mixture was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for a month.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of part of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 1/2.]

Figure 2

Part of the one-dimensional chain of (I).

catena-Poly[[[2,6-bis(pyrazol-1-yl- κ N²)pyridine- κ N¹](nitrato- κ ²O,O')cadmium(II)]- μ -thiocyanato- κ ²N:S]

Crystal data $[Cd(NCS)(NO_3)(C_{11}H_9N_5)]$ $M_r = 443.72$

Monoclinic, $P2_1/n$ Hall symbol: -P 2yn Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.2 - 24.8^{\circ}$

 $\mu = 1.59 \text{ mm}^{-1}$

Block, colourless

 $0.18 \times 0.15 \times 0.11 \text{ mm}$

T = 298 K

Cell parameters from 2732 reflections

a = 8.4161 (15) Å b = 11.817 (2) Å c = 15.631 (3) Å $\beta = 99.673 (2)^{\circ}$ $V = 1532.5 (5) \text{ Å}^{3}$ Z = 4 F(000) = 872 $D_{x} = 1.923 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX CCD	8813 measured reflections
diffractometer	3335 independent reflections
Radiation source: fine-focus sealed tube	2710 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 7$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 14$
$T_{\min} = 0.763, \ T_{\max} = 0.845$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.074$	neighbouring sites
S = 1.02	H-atom parameters constrained
3335 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2]$
217 parameters	where $P = (F_0^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.53 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8278 (4)	0.8449 (3)	0.3362 (2)	0.0413 (8)	
C2	0.3464 (4)	0.7893 (3)	0.1478 (2)	0.0507 (9)	
H2	0.3042	0.7689	0.1968	0.061*	
C3	0.2736 (5)	0.8650 (3)	0.0850 (3)	0.0582 (11)	
H3	0.1769	0.9034	0.0840	0.070*	
C4	0.3722 (5)	0.8708 (3)	0.0265 (3)	0.0550 (10)	
H4	0.3569	0.9151	-0.0234	0.066*	
C5	0.6374 (4)	0.7813 (2)	0.01605 (19)	0.0399 (8)	
C6	0.6570 (5)	0.8277 (3)	-0.0627 (2)	0.0558 (10)	

H6	0.5765	0.8708	-0.0955	0.067*
C7	0.8005 (6)	0.8073 (3)	-0.0903 (2)	0.0654 (12)
H7	0.8187	0.8386	-0.1423	0.078*
C8	0.9175 (5)	0.7420 (3)	-0.0429 (2)	0.0596 (11)
H8	1.0153	0.7286	-0.0612	0.071*
C9	0.8833 (4)	0.6968 (3)	0.0337 (2)	0.0428 (8)
C10	1.1325 (5)	0.5770 (3)	0.0743 (3)	0.0666 (12)
H10	1.1804	0.5861	0.0253	0.080*
C11	1.1898 (5)	0.5134 (3)	0.1447 (3)	0.0705 (12)
H11	1.2834	0.4701	0.1538	0.085*
C12	1.0793 (5)	0.5266 (3)	0.2001 (3)	0.0633 (11)
H12	1.0885	0.4923	0.2543	0.076*
Cd1	0.69811 (3)	0.631846 (17)	0.194115 (13)	0.03553 (9)
N1	0.9587 (4)	0.5939 (2)	0.16692 (19)	0.0501 (7)
N2	0.9920 (4)	0.6253 (2)	0.08807 (19)	0.0468 (7)
N3	0.7484 (3)	0.7163 (2)	0.06248 (15)	0.0370 (6)
N4	0.4991 (3)	0.8004 (2)	0.05286 (16)	0.0389 (6)
N5	0.4831 (3)	0.7503 (2)	0.12873 (16)	0.0416 (6)
N6	0.7831 (5)	0.7729 (3)	0.29035 (19)	0.0716 (12)
N7	0.6367 (3)	0.5128 (2)	0.34211 (16)	0.0410 (6)
01	0.6028 (3)	0.4666 (2)	0.40633 (16)	0.0704 (8)
O2	0.7776 (3)	0.5144 (2)	0.32709 (14)	0.0483 (6)
O3	0.5296 (3)	0.5612 (2)	0.28825 (14)	0.0552 (6)
S1	0.89559 (11)	0.94486 (6)	0.40588 (5)	0.0430 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.049 (2)	0.0320 (17)	0.0409 (17)	0.0047 (15)	0.0013 (15)	0.0078 (14)
C2	0.049 (2)	0.0420 (19)	0.061 (2)	0.0077 (17)	0.0092 (18)	-0.0019 (16)
C3	0.042 (2)	0.045 (2)	0.083 (3)	0.0052 (17)	-0.007 (2)	-0.0069 (19)
C4	0.056 (2)	0.0379 (19)	0.063 (2)	0.0029 (18)	-0.015 (2)	0.0093 (16)
C5	0.052 (2)	0.0279 (15)	0.0362 (16)	-0.0140 (15)	-0.0035 (15)	0.0005 (13)
C6	0.074 (3)	0.048 (2)	0.0410 (19)	-0.017 (2)	-0.0016 (19)	0.0085 (16)
C7	0.094 (3)	0.064 (3)	0.0368 (19)	-0.031 (3)	0.007 (2)	0.0046 (18)
C8	0.069 (3)	0.061 (2)	0.055 (2)	-0.026 (2)	0.029 (2)	-0.0149 (19)
C9	0.050 (2)	0.0376 (18)	0.0404 (17)	-0.0173 (17)	0.0064 (16)	-0.0060 (14)
C10	0.047 (2)	0.063 (3)	0.095 (3)	-0.014 (2)	0.027 (2)	-0.032 (2)
C11	0.041 (2)	0.053 (2)	0.115 (4)	0.005 (2)	0.006 (2)	-0.024 (3)
C12	0.047 (2)	0.057 (2)	0.080 (3)	0.010 (2)	-0.007 (2)	-0.010 (2)
Cd1	0.04344 (16)	0.03132 (14)	0.03132 (13)	0.00301 (10)	0.00483 (10)	0.00214 (9)
N1	0.0439 (18)	0.0509 (16)	0.0541 (18)	0.0074 (15)	0.0047 (14)	0.0011 (14)
N2	0.0382 (17)	0.0452 (16)	0.0589 (18)	-0.0105 (13)	0.0133 (14)	-0.0136 (13)
N3	0.0421 (17)	0.0308 (13)	0.0372 (13)	-0.0067 (12)	0.0037 (12)	0.0000 (11)
N4	0.0430 (17)	0.0294 (13)	0.0402 (14)	-0.0014 (12)	-0.0045 (12)	0.0026 (11)
N5	0.0474 (18)	0.0340 (14)	0.0419 (15)	-0.0001 (13)	0.0032 (13)	0.0025 (11)
N6	0.116 (3)	0.0365 (17)	0.0525 (18)	0.0005 (18)	-0.015 (2)	-0.0097 (14)
N7	0.0462 (18)	0.0433 (15)	0.0339 (14)	0.0003 (14)	0.0076 (13)	-0.0010 (12)

supporting information

O1	0.078 (2)	0.0841 (19)	0.0511 (15)	-0.0113 (16)	0.0165 (14)	0.0281 (14)
O2	0.0494 (15)	0.0532 (15)	0.0416 (11)	0.0051 (12)	0.0056 (11)	0.0075 (9)
O3	0.0491 (15)	0.0758 (17)	0.0407 (13)	0.0098 (13)	0.0080 (11)	0.0087 (12)
S 1	0.0561 (6)	0.0331 (4)	0.0364 (4)	-0.0018 (4)	-0.0015 (4)	-0.0006 (3)

Geometric parameters (Å, °)

C1—N6	1.135 (4)	C10—C11	1.352 (6)
C1—S1	1.642 (4)	C10—N2	1.362 (5)
C2—N5	1.319 (4)	C10—H10	0.9300
C2—C3	1.391 (5)	C11—C12	1.383 (6)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.336 (6)	C12—N1	1.325 (4)
С3—Н3	0.9300	C12—H12	0.9300
C4—N4	1.362 (4)	Cd1—N6	2.279 (3)
C4—H4	0.9300	Cd1—N1	2.346 (3)
C5—N3	1.327 (4)	Cd1—O3	2.361 (2)
C5—C6	1.383 (4)	Cd1—N5	2.379 (3)
C5—N4	1.400 (4)	Cd1—N3	2.388 (2)
С6—С7	1.370 (6)	Cd1—O2	2.495 (2)
С6—Н6	0.9300	Cd1—S1 ⁱ	2.7447 (9)
С7—С8	1.367 (5)	N1—N2	1.360 (4)
С7—Н7	0.9300	N4—N5	1.352 (3)
C8—C9	1.385 (5)	N7—O1	1.218 (3)
C8—H8	0.9300	N7—O2	1.247 (3)
C9—N3	1.310 (4)	N7—O3	1.262 (3)
C9—N2	1.418 (4)	S1—Cd1 ⁱⁱ	2.7447 (9)
N6-C1-S1	177.5 (3)	O3—Cd1—N5	89.01 (9)
N5-C2-C3	111.3 (4)	N6—Cd1—N3	100.47 (10)
N5-C2-H2	124.3	N1—Cd1—N3	67.50 (9)
C3—C2—H2	124.3	O3—Cd1—N3	153.74 (9)
C4—C3—C2	105.4 (4)	N5—Cd1—N3	67.41 (9)
С4—С3—Н3	127.3	N6Cd1O2	81.17 (9)
С2—С3—Н3	127.3	N1—Cd1—O2	85.22 (9)
C3—C4—N4	107.9 (3)	O3—Cd1—O2	52.36 (8)
C3—C4—H4	126.1	N5Cd1O2	139.77 (9)
N4—C4—H4	126.1	N3—Cd1—O2	152.71 (9)
N3—C5—C6	122.5 (4)	N6-Cd1-S1 ⁱ	173.33 (8)
N3—C5—N4	115.2 (3)	N1-Cd1-S1 ⁱ	86.04 (7)
C6-C5-N4	122.3 (3)	O3—Cd1—S1 ⁱ	85.71 (6)
C7—C6—C5	117.0 (4)	N5-Cd1-S1 ⁱ	95.98 (6)
С7—С6—Н6	121.5	N3—Cd1—S1 ⁱ	85.49 (6)
С5—С6—Н6	121.5	O2—Cd1—S1 ⁱ	92.16 (6)
C8—C7—C6	121.4 (4)	C12—N1—N2	105.0 (3)
С8—С7—Н7	119.3	C12—N1—Cd1	136.2 (3)
С6—С7—Н7	119.3	N2—N1—Cd1	116.9 (2)
С7—С8—С9	116.8 (4)	N1—N2—C10	110.1 (3)

С7—С8—Н8	121.6	N1—N2—C9	119.7 (3)
C9—C8—H8	121.6	C10—N2—C9	130.1 (4)
N3-C9-C8	123.2 (3)	C9—N3—C5	119.0 (3)
N3-C9-N2	114.0 (3)	C9—N3—Cd1	120.8(2)
C8-C9-N2	122.8 (3)	C5—N3—Cd1	120.2(2)
$C_{11} - C_{10} - N_2$	107 8 (4)	N5—N4—C4	120.2(2) 1101(3)
$C_{11} - C_{10} - H_{10}$	126.1	N5—N4—C5	120.2(2)
N_{2} C_{10} H_{10}	126.1	C4 - N4 - C5	120.2(2) 129.6(3)
C10-C11-C12	105 1 (4)	$C_2 = N_5 = N_4$	125.0(3) 105.3(3)
C10-C11-H11	105.1 (4)	$C_2 = N_5 = C_{d1}$	137.6(2)
C_{12} C_{11} H_{11}	127.1	N4 N5 Cd1	137.0(2)
N1 - C12 - C11	111 9 (4)	C1 - N6 - Cd1	177.7(3)
N1_C12_H12	124.0	01 - N7 - 02	177.7(3)
$C_{11} = C_{12} = H_{12}$	124.0	01-N7-02	121.3(3)
N6-Cd1-N1	93 43 (12)	02N703	120.9(3)
N6 Cd1 O3	90.12 (11)	N7 O2 Cd1	01 00 (17)
$N_1 = Cd_1 = O_3$	136 31 (0)	N7 = O3 = Cd1	91.99(17) 98.02(10)
NG Cd1 N5	80.13 (10)	$C_1 = S_1 = C_1^{11}$	90.02(19)
N1 Cd1 N5	13453(10)	C1—51—Cd1	<i>99.01</i> (11)
NI-Cui-NS	134.33 (10)		
N5—C2—C3—C4	-0.1(4)	N6-Cd1-N3-C5	-87.3(2)
C2-C3-C4-N4	0.5 (4)	N1—Cd1—N3—C5	-176.7(2)
N3—C5—C6—C7	-2.4(5)	03—Cd1—N3—C5	24.9 (3)
N4—C5—C6—C7	177.1 (3)	N5-Cd1-N3-C5	-2.70(19)
C5-C6-C7-C8	1.4 (5)	02-Cd1-N3-C5	-178.35(18)
C6-C7-C8-C9	0.6 (5)	S1 ⁱ —Cd1—N3—C5	95.7 (2)
C7—C8—C9—N3	-1.8(5)	C3-C4-N4-N5	-0.7(4)
C7-C8-C9-N2	178.5 (3)	C3-C4-N4-C5	-176.5(3)
$N_2 - C_{10} - C_{11} - C_{12}$	-0.4(4)	N3-C5-N4-N5	-2.6(4)
C10-C11-C12-N1	0.3(4)	C6-C5-N4-N5	1780(3)
$C_{11} - C_{12} - N_{1} - N_{2}$	-0.1(4)	N3-C5-N4-C4	172.9(3)
$C_{11} - C_{12} - N_1 - C_{d_1}$	162.7(3)	C6-C5-N4-C4	-66(5)
N_{6} Cd1 N_{1} Cl2	90.2 (3)	C3-C2-N5-N4	-0.3(4)
03-Cd1-N1-C12	-36(4)	$C_3 - C_2 - N_5 - C_{d1}$	1753(2)
N_{5} Cd1 N_{1} Cl2	-177.6(3)	C4 N4 N5 $C2$	0.6(3)
N_3 —Cd1—N1—C12	-1699(4)	C_{5} N4 N5 C_{2}	1769(3)
02-Cd1-N1-C12	94(3)	C4—N4—N5—Cd1	-176.07(19)
$S1^{i}$ Cd1 N1 C12	-831(3)	C_{5} N4 N5 Cd1	0.2(3)
N6-Cd1-N1-N2	-1085(2)	N6-Cd1-N5-C2	-723(3)
Ω_3 —Cd1—N1—N2	157 76 (18)	N1 - Cd1 - N5 - C2	-1663(3)
$N_5 - C_{d1} - N_1 - N_2$	-163(3)	Ω_{3} Cd1 N5 C2	178(3)
N_3 Cd1 N_1 N_2	-86(2)	N_3 Cd1 N_5 C2	-1741(3)
Ω_2 —Cd1—N1—N2	170.7(2)	$\Omega^2 - Cd1 - N5 - C2$	28(4)
$S1^{i}$ Cd1 $N1$ $N2$	78.2 (2)	$S1^{i}$ Cd1 N5 C2	103 4 (3)
$C_12_N_1_N_2 C_{10}$	-0.1(4)	N6-Cd1-N5-N4	103.7(3)
$C_{12} - N_1 - N_2 - C_{10}$	-166.9(2)	N1 Cd1 N5 N4	0.0(3)
C12 N1 N2 C0	178 6 (3)	$\frac{1}{101} - \frac{1}{101} - \frac{1}{101} - \frac{1}{104}$	-166.04(10)
$C_{12} = N_1 = N_2 = C_9$	110.0(3)	V_{3} V_{41} V_{5} V_{4}	1 21 (19)
Cu1—IN1—IN2—C9	11.9 (3)	IND—UUI—IND—IN4	1.21 (18)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—N2—N1	0.4 (4)	O2—Cd1—N5—N4	178.12 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11 - C10 - N2 - C9	-178.3(3)	$S1^{i}$ —Cd1—N5—N4	-81.36(19)
R_{1} <	N_{3} C9 N_{2} N1	-7.0(4)	01 - N7 - 02 - Cd1	-177.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8 - C9 - N2 - N1	172.7 (3)	03 - N7 - 02 - Cd1	2.5 (3)
NSCSN2C10 $1113 (0)$ N6Cd1O2N1 $53.51 (17)$ C8C9N2C10 $-8.8 (5)$ N1 $-Cd1$ -02 $N7$ $-170.26 (18)$ C8C9N3C5 $0.9 (4)$ O3 $-Cd1$ -02 $N7$ $-1.52 (16)$ N2C9N3C5 $-179.3 (2)$ N5 $-Cd1$ -02 $N7$ $-1.52 (16)$ N2C9N3Cd1 $178.9 (2)$ N3 $-Cd1$ -02 $N7$ $-168.76 (17)$ N2C9N3Cd1 $-1.3 (3)$ S1 ⁱ $-Cd1$ -02 $N7$ $-168.76 (17)$ N2C9N3Cd1 $-1.3 (3)$ S1 ⁱ $-Cd1$ -02 $N7$ $-168.76 (17)$ N2C9N3Cd1 $-1.3 (3)$ S1 ⁱ $-Cd1$ -02 $N7$ $-168.76 (17)$ N2C9N3Cd1 $-1.3 (3)$ S1 ⁱ $-Cd1$ -02 $N7$ $-168.76 (17)$ N2C9N3Cd1 $-1.3 (3)$ S1 ⁱ $-Cd1$ -02 $N7$ $-168.76 (17)$ N4C5N3C9 $-178.2 (3)$ 02 $N7$ -03 $-Cd1$ $-2.7 (3)$ N4C5N3Cd1 $-176.8 (2)$ N6 $-Cd1$ -03 $N7$ $-77.21 (19)$ N4C5N3Cd1 $3.7 (3)$ N1 $-Cd1$ -03 $N7$ $-166.34 (18)$ N1Cd1 $-N3$ C9 $5.3 (2)$ N3 $-Cd1$	N_{3} C9 N_{2} C10	172.7(3) 171 5 (3)	N6-Cd1-O2-N7	95 51 (19)
C8-C9-N2-C10 $3.3 (3)$ N1-Cd1-O2-N7 $170.20 (16)$ C8-C9-N3-C5 $0.9 (4)$ O3-Cd1-O2-N7 $-1.52 (16)$ N2-C9-N3-C5 $-179.3 (2)$ N5-Cd1-O2-N7 $17.5 (2)$ C8-C9-N3-Cd1 $178.9 (2)$ N3-Cd1-O2-N7 $-168.76 (17)$ N2-C9-N3-Cd1 $-1.3 (3)$ $S1^{i}$ -Cd1-O2-N7 $-84.41 (17)$ C6-C5-N3-C9 $1.3 (4)$ $O1$ -N7-O3-Cd1 $177.2 (3)$ N4-C5-N3-C9 $-178.2 (3)$ $O2$ -N7-O3-Cd1 $-2.7 (3)$ C6-C5-N3-C41 $-176.8 (2)$ N6-Cd1-O3-N7 $-77.21 (19)$ N4-C5-N3-C41 $3.7 (3)$ N1-Cd1-O3-N7 $17.9 (2)$ N6-Cd1-N3-C9 $94.7 (2)$ N5-Cd1-O3-N7 $-166.34 (18)$ N1-Cd1-N3-C9 $5.3 (2)$ $N3$ -Cd1-O3-N7 $1.52 (16)$ N5-Cd1-N3-C9 $-153.0 (2)$ $O2$ -Cd1-O3-N7 $1.52 (16)$ N5-Cd1-N3-C9 $179.3 (2)$ $S1^{i}$ -Cd1-O3-N7 $97.59 (17)$	$^{-}$	-8.8(5)	N1 - Cd1 - O2 - N7	-170.26(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{8} = C_{9} = N_{2} = C_{10}$	0.9(4)	O_{3} C_{d1} O_{2} N_{7}	-1.52(16)
N2=C9=N3=C3173.3 (2)N3=Cd1=O2=N7173.3 (2)C8=C9=N3=Cd1178.9 (2)N3=Cd1=O2=N7 $-168.76 (17)$ N2=C9=N3=Cd1 $-1.3 (3)$ S1 ⁱ =Cd1=O2=N7 $-84.41 (17)$ C6=C5=N3=C91.3 (4)O1=N7=O3=Cd1177.2 (3)N4=C5=N3=C9 $-178.2 (3)$ O2=N7=O3=Cd1 $-2.7 (3)$ C6=C5=N3=Cd1 $-176.8 (2)$ N6=Cd1=O3=N7 $-77.21 (19)$ N4=C5=N3=Cd1 $3.7 (3)$ N1=Cd1=O3=N7 $17.9 (2)$ N6=Cd1=N3=C9 $94.7 (2)$ N5=Cd1=O3=N7 $-166.34 (18)$ N1=Cd1=N3=C9 $5.3 (2)$ N3=Cd1=O3=N7 $1.52 (16)$ N5=Cd1=N3=C9 $179.3 (2)$ $S1^{i}$ =Cd1=O3=N7 $1.52 (16)$	$N_2 = C_2 = N_3 = C_3$	-170.3(2)	N5 Cd1 O2 N7	1.52(10)
C8-C9-N3-Cd1 $178.9(2)$ N3-Cd1-O2-N7 $-168.76(17)$ N2-C9-N3-Cd1 $-1.3(3)$ $S1^{i}$ -Cd1-O2-N7 $-84.41(17)$ C6-C5-N3-C9 $1.3(4)$ $O1$ -N7-O3-Cd1 $177.2(3)$ N4-C5-N3-C9 $-178.2(3)$ $O2$ -N7-O3-Cd1 $-2.7(3)$ C6-C5-N3-Cd1 $-176.8(2)$ N6-Cd1-O3-N7 $-77.21(19)$ N4-C5-N3-Cd1 $3.7(3)$ N1-Cd1-O3-N7 $17.9(2)$ N6-Cd1-N3-C9 $94.7(2)$ N5-Cd1-O3-N7 $-166.34(18)$ N1-Cd1-N3-C9 $5.3(2)$ N3-Cd1-O3-N7 $152(16)$ N5-Cd1-N3-C9 $-153.0(2)$ $O2$ -Cd1-O3-N7 $1.52(16)$ N5-Cd1-N3-C9 $179.3(2)$ $S1^{i}$ -Cd1-O3-N7 $97.59(17)$	$12 - C_{9} - 11_{3} - C_{9}$	179.3(2)	$N_{2} = C_{1} = O_{2} = N_{7}$	17.3(2)
N2-C9-N3-Cd1 -1.3 (3)S1'-Cd1-O2-N7 -84.41 (17)C6-C5-N3-C91.3 (4)O1-N7-O3-Cd1177.2 (3)N4-C5-N3-C9 -178.2 (3)O2-N7-O3-Cd1 -2.7 (3)C6-C5-N3-Cd1 -176.8 (2)N6-Cd1-O3-N7 -77.21 (19)N4-C5-N3-Cd1 3.7 (3)N1-Cd1-O3-N7 17.9 (2)N6-Cd1-N3-C9 94.7 (2)N5-Cd1-O3-N7 -166.34 (18)N1-Cd1-N3-C9 5.3 (2)N3-Cd1-O3-N7 168.29 (17)O3-Cd1-N3-C9 -153.0 (2)O2-Cd1-O3-N7 1.52 (16)N5-Cd1-N3-C9 179.3 (2) $S1^{i}$ -Cd1-O3-N7 97.59 (17)	_8—C9—N3—Cd1	1/8.9(2)	N3-Cd1-02-N/	-108.70(17)
C6—C5—N3—C91.3 (4)O1—N7—O3—Cd1177.2 (3)N4—C5—N3—C9 -178.2 (3)O2—N7—O3—Cd1 -2.7 (3)C6—C5—N3—Cd1 -176.8 (2)N6—Cd1—O3—N7 -77.21 (19)N4—C5—N3—Cd13.7 (3)N1—Cd1—O3—N717.9 (2)N6—Cd1—N3—C994.7 (2)N5—Cd1—O3—N7 -166.34 (18)N1—Cd1—N3—C95.3 (2)N3—Cd1—O3—N7168.29 (17)O3—Cd1—N3—C9 -153.0 (2)O2—Cd1—O3—N71.52 (16)N5—Cd1—N3—C9 179.3 (2)S1 ⁱ —Cd1—O3—N797.59 (17)	N2—C9—N3—Cd1	-1.3 (3)	S1 ⁱ —Cd1—O2—N7	-84.41 (17)
N4—C5—N3—C9 $-178.2 (3)$ O2—N7—O3—Cd1 $-2.7 (3)$ C6—C5—N3—Cd1 $-176.8 (2)$ N6—Cd1—O3—N7 $-77.21 (19)$ N4—C5—N3—Cd1 $3.7 (3)$ N1—Cd1—O3—N7 $17.9 (2)$ N6—Cd1—N3—C9 $94.7 (2)$ N5—Cd1—O3—N7 $-166.34 (18)$ N1—Cd1—N3—C9 $5.3 (2)$ N3—Cd1—O3—N7 $168.29 (17)$ O3—Cd1—N3—C9 $-153.0 (2)$ O2—Cd1—O3—N7 $1.52 (16)$ N5—Cd1—N3—C9 $179.3 (2)$ $S1^{i}$ —Cd1—O3—N7 $97.59 (17)$	C6—C5—N3—C9	1.3 (4)	O1—N7—O3—Cd1	177.2 (3)
C6—C5—N3—Cd1 -176.8 (2)N6—Cd1—O3—N7 -77.21 (19)N4—C5—N3—Cd1 3.7 (3)N1—Cd1—O3—N7 17.9 (2)N6—Cd1—N3—C9 94.7 (2)N5—Cd1—O3—N7 -166.34 (18)N1—Cd1—N3—C9 5.3 (2)N3—Cd1—O3—N7 168.29 (17)O3—Cd1—N3—C9 -153.0 (2)O2—Cd1—O3—N7 1.52 (16)N5—Cd1—N3—C9 179.3 (2) $S1^{i}$ —Cd1—O3—N7 97.59 (17)	N4—C5—N3—C9	-178.2 (3)	O2—N7—O3—Cd1	-2.7 (3)
N4—C5—N3—Cd1 3.7 (3) N1—Cd1—O3—N7 17.9 (2) N6—Cd1—N3—C9 94.7 (2) N5—Cd1—O3—N7 -166.34 (18) N1—Cd1—N3—C9 5.3 (2) N3—Cd1—O3—N7 168.29 (17) O3—Cd1—N3—C9 -153.0 (2) O2—Cd1—O3—N7 1.52 (16) N5—Cd1—N3—C9 179.3 (2) S1 ⁱ —Cd1—O3—N7 97.59 (17)	C6—C5—N3—Cd1	-176.8 (2)	N6—Cd1—O3—N7	-77.21 (19)
N6—Cd1—N3—C9 94.7 (2) N5—Cd1—O3—N7 -166.34 (18) N1—Cd1—N3—C9 5.3 (2) N3—Cd1—O3—N7 168.29 (17) O3—Cd1—N3—C9 -153.0 (2) O2—Cd1—O3—N7 1.52 (16) N5—Cd1—N3—C9 179.3 (2) S1 ⁱ —Cd1—O3—N7 97.59 (17)	N4—C5—N3—Cd1	3.7 (3)	N1—Cd1—O3—N7	17.9 (2)
N1—Cd1—N3—C9 5.3 (2) N3—Cd1—O3—N7 168.29 (17) O3—Cd1—N3—C9 -153.0 (2) O2—Cd1—O3—N7 1.52 (16) N5—Cd1—N3—C9 179.3 (2) S1 ⁱ —Cd1—O3—N7 97.59 (17)	N6—Cd1—N3—C9	94.7 (2)	N5—Cd1—O3—N7	-166.34 (18)
O3-Cd1-N3-C9 -153.0 (2) O2-Cd1-O3-N7 1.52 (16) N5-Cd1-N3-C9 179.3 (2) S1 ⁱ -Cd1-O3-N7 97.59 (17)	N1—Cd1—N3—C9	5.3 (2)	N3—Cd1—O3—N7	168.29 (17)
N5-Cd1-N3-C9 179.3 (2) S1 ⁱ -Cd1-O3-N7 97.59 (17)	D3—Cd1—N3—C9	-153.0 (2)	O2—Cd1—O3—N7	1.52 (16)
	N5—Cd1—N3—C9	179.3 (2)	S1 ⁱ —Cd1—O3—N7	97.59 (17)
O2—Cd1—N3—C9 3.7 (3) N6—C1—S1—Cd1 ⁱⁱ 179 (100)	D2—Cd1—N3—C9	3.7 (3)	N6-C1-S1-Cd1 ⁱⁱ	179 (100)
$S1^{i}$ —Cd1—N3—C9 -82.3 (2)	S1 ⁱ —Cd1—N3—C9	-82.3 (2)		

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+3/2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3····O1 ⁱⁱⁱ	0.93	2.50	3.412 (5)	167
C4—H4····O2 ^{iv}	0.93	2.47	3.370 (4)	164
С7—Н7…О3 ^v	0.93	2.52	3.312 (5)	143
C10—H10····S1 ^{v}	0.93	2.83	3.723 (4)	160

Symmetry codes: (iii) -x+1/2, y+1/2, -z+1/2; (iv) x-1/2, -y+3/2, z-1/2; (v) x+1/2, -y+3/2, z-1/2.