Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Diaguabis(2,2'-bipyridine- $\kappa^2 N, N'$)ruthenium(II) bis(trifluoromethanesulfonate)

Hershel Jude,^a* Peter S. White,^b Dana M. Dattelbaum^c and Reginaldo C. Rocha^a

^aLos Alamos National Laboratory, MPA-CINT, Mail Stop G755, Los Alamos, NM 87545, USA, ^bUniversity of North Carolina, Department of Chemistry, Chapel Hill, NC 27599-3290, USA, and ^cLos Alamos National Laboratory, DE-9, Mail Stop P952, Los Alamos, NM 87545, USA

Correspondence e-mail: judeh3@lanl.gov

Received 21 July 2008; accepted 3 September 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.062; data-to-parameter ratio = 12.4.

The title compound, trans- $[Ru(bpy)_2(H_2O)_2](CF_3SO_3)_2$ (bpy = 2,2'-bipyridine, C₁₀H₈N₂), crystallized from the decomposition of an aged aqueous solution of a dimeric complex of cis- $Ru(bpy)_2$ in 0.1 *M* triffic acid. The Ru^{II} ion is located on a crystallographic inversion center and exhibits a distorted octahedral coordination with equivalent ligands trans to each other. The Ru-O distance is 2.1053 (16) Å and the Ru-N distances are 2.0727 (17) and 2.0739 (17) Å. The bpy ligands are bent, due to inter-ligand steric interactions between H atoms of opposite pyridyl units across the Ru center. The crystal structure exhibits an extensive hydrogen-bonding network involving the water ligands and the trifluoromethanesulfonate counter-ions within two-dimensional layers, although no close hydrogen-bond interactions exist between different layers.

Related literature

For the crystal structures of related compounds, see: Weathers et al. (1997); Durham et al. (1980); Klüfers & Zangl (2007). For a comparative discussion, see the Comment section in the Supplementary materials. For the preparation of the title compound, see: Jude et al. (2008); Sullivan et al. (1978). For related literature, see: Walsh & Durham (1982).

Experimental

Crystal data	
$[Ru(C_{10}H_8N_2)_2(H_2O)_2](CF_3SO_3)_2$	$V = 1382.71 (13) \text{ Å}^3$
$M_r = 747.61$ Monoclinic P2./c	Z = 2 Cu K radiation
a = 8.6569 (5) Å	$\mu = 6.88 \text{ mm}^{-1}$
b = 14.1272 (8) Å	T = 100 (2) K
c = 11.3226 (6) A $\beta = 93.095 (3)^{\circ}$	$0.20 \times 0.15 \times 0.02$ mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: numerical followed by SADABS (Bruker, 2007) $T_{\min} = 0.340, T_{\max} = 0.875$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.061$ S = 1.092538 reflections 204 parameters

Table 1

Hydrogen-bond geometry (Å, °).

15574 measured reflections

 $R_{\rm int} = 0.039$

2538 independent reflections

2436 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1B\cdots O19^{i}$ $O1-H1A\cdots O20^{ii}$	0.73 (4) 0.75 (3)	2.01 (4) 1.95 (3)	2.727 (2) 2.695 (2)	169 (4) 169 (3)
2	1	. 1		

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2108).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Durham, B., Wilson, S. R., Hodgson, D. J. & Meyer, T. J. (1980). J. Am. Chem. Soc. 102, 600–607.
- Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702.
- Klüfers, P. & Zangl, A. (2007). Acta Cryst. E63, m3088.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334–3341.
- Walsh, J. L. & Durham, B. (1982). Inorg. Chem. 21, 329-332.
- Weathers, N. R., Sadoski, R. C., Durham, B. & Cordes, A. W. (1997). Acta Cryst. C53, 1047–1049.

supporting information

Acta Cryst. (2008). E64, m1388-m1389 [doi:10.1107/S1600536808028195]

trans-Diaquabis(2,2'-bipyridine- $\kappa^2 N, N'$)ruthenium(II) bis(trifluoromethane-sulfonate)

Hershel Jude, Peter S. White, Dana M. Dattelbaum and Reginaldo C. Rocha

S1. Comment

The water ligands in *cis*- and *trans*-[Ru(bpy)₂(H₂O)₂]²⁺ can undergo facile ligand substitution under mild reaction conditions and thus these complexes have been important synthetic precursors to derivatives of the general type $[Ru(bpy)_2(X)(Y)]^n$. Although the *trans* isomer is usually obtained from the photo-induced isomerization of the more common *cis* isomer (Durham *et al.*, 1980; Walsh & Durham, 1982), formation of the *trans* isomer as a by-product in synthetic preparations involving the *cis*-Ru(bpy)₂ moiety has also been reported (*e.g.* Weathers *et al.*, 1997).

The title compound *trans*-[Ru(bpy)₂(H₂O)₂](CF₃SO₃)₂, (**I**), was unintentionally obtained and crystallized from an acidic $(0.1 M \text{ CF}_3\text{SO}_3\text{H})$ aqueous solution of [(bpy)₂Ru(OMe)(pyz)Ru(bpy)₂](PF₆)₂ (Jude *et al.*, 2008) that was left aging in ambient conditions for several weeks. Its crystal structure is shown in Figs. 1 and 2, and detailed structural information is available herein as *supplementary materials* as well as in the archived CIF.

The structure of the analogous compound as a hexafluorophosphate salt, *i.e. trans*-[Ru(bpy)₂(H₂O)₂](PF₆)₂, (**II**), was previosuly reported (Weathers *et al.*, 1997). In this case, the compound crystallized in the triclinic ($P\overline{1}$) space group. The Ru—O distance of 2.116 (2) Å in the PF₆ salt is similar to that reported here for the CF₃SO₃ analogue, and the mean Ru —N distance of 2.074 (2) Å in **II** is essentially identical to those observed for **I**. The dihedral angle between the pyridyl (C₅N) ring planes in the distorted, non-planar bpy ligands is also similar in these compounds: 162.68 (12)° for **II** and 160.1 (1)° for **I**.

Another related structure was reported earlier for the oxidized/deprotonated Ru(III)-hydroxy species, *trans*-[Ru(bpy)₂(H₂O)(OH)](ClO₄)₂ (Durham *et al.*, 1980). This perchlorate salt, (**III**), crystallized in the trigonal space group ($P3_121$). In this case, however, the sterically strained bpy ligands adopted a *twisted* conformation, in contrast to the *bowed* conformation in both **I** and **II**. Shorter Ru—N distances are exhibited by the Ru(II)-diaqua species compared to **III** (2.090 (3) and 2.099 (3) Å), owing to the characteristic π -backbonding involving Ru(II) and π -acceptor pyridyl ligands. Consistent with the higher Ru(III) oxidation state, however, the Ru—O bond distance is shorter in **III** (2.007 (3) Å).

The *trans*- $[Ru(bpy)_2(H_2O)_2]^{2+}$ cations pack in alternating layers with the CF₃SO₃⁻ anions packed between the cations. An extensive hydrogen bonding network exists within two-dimensional layers as a result of the hydrogen bonds between the water ligand molecules in the cationic complex and the sulfonate groups in the trifluoromethanesulfonate anions (Table 1 and Figure 2). However, no significant hydrogen-bond interactions are present between different layers.

S2. Experimental

cis-Ru(bpy)₂Cl₂ was prepared as described by Sullivan *et al.* (1978). The title compound was a product of the decomposition of [(bpy)₂Ru(OMe)(pyz)Ru(bpy)₂](PF₆)₂ (Jude *et al.*, 2008) in a highly acidic (0.1 *M* CF₃SO₃H) aqueous solution that was kept for several weeks in a sealed clear glass jar in ambient lighting and temperature conditions. Red–orange blocks suitable for single-crystal X-ray analysis were isolated from the mixture.

S3. Refinement

Diffraction data for single crystals of I were collected for $2\theta < 139.4^{\circ}$ on a Bruker AXS SMART APEXII diffractometer. The structure was solved by direct methods and hydrogen atoms were included in the final refinement cycles at predicted positions, with the exception of H1A and H1B which were refined isotropically.

Figure 1

Single crystal structure of the title compound with 50% probability displacement ellipsoids. H atoms are omitted for clarity.

Figure 2

A packing diagram showing the hydrogen bonds (as dotted lines) between the water ligands in the ruthenium complex and the sulfonate group in the trifluoromethanesulfonate counterions.

trans-Diaquabis(2,2'-bipyridine- κ^2 N,N')ruthenium(II) bis(trifluoromethanesulfonate)

Crystal data	
[Ru(C ₁₀ H ₈ N ₂) ₂ (H ₂ O) ₂](CF ₃ O ₃ S) ₂ $M_r = 747.61$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6569 (5) Å b = 14.1272 (8) Å c = 11.3226 (6) Å $\beta = 93.095$ (3)° V = 1382.71 (13) Å ³ Z = 2	F(000) = 748 $D_x = 1.796 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1677 reflections $\theta = 5.0-67.3^{\circ}$ $\mu = 6.88 \text{ mm}^{-1}$ T = 100 K Plate, brown $0.20 \times 0.15 \times 0.02 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube	Absorption correction: numerical Numerical followed by <i>SADABS</i> (Bruker, 2007) $T_{min} = 0.340, T_{max} = 0.875$
Graphite monochromator φ and ω scans	15574 measured reflections 2538 independent reflections 2436 reflections with $I > 2\sigma(I)$

$R_{\rm int}=0.039$	$k = -17 \rightarrow 17$
$\theta_{\rm max} = 69.7^{\circ}, \theta_{\rm min} = 5.0^{\circ}$	$l = -13 \rightarrow 13$
$h = -9 \rightarrow 10$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.062$	H atoms treated by a mixture of independent
S = 1.09	and constrained refinement
2538 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 1.4103P]$
204 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.45 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. Hydrogen atoms were placed in calculated positions with the exception of H1A and H1A, which were located in a difference synthesis and subsequently allowed to refine with isotropic thermal parameters.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.5000	0.5000	0.0000	0.01303 (9)	
01	0.64907 (19)	0.61137 (12)	0.05421 (17)	0.0181 (3)	
N2	0.6089 (2)	0.42131 (12)	0.13474 (15)	0.0154 (4)	
C3	0.5507 (3)	0.39407 (15)	0.23786 (19)	0.0192 (4)	
H3	0.4431	0.4020	0.2475	0.023*	
C4	0.6412 (3)	0.35501 (17)	0.3302 (2)	0.0243 (5)	
H4	0.5965	0.3365	0.4014	0.029*	
C5	0.7986 (3)	0.34355 (18)	0.3164 (2)	0.0271 (5)	
H5	0.8644	0.3208	0.3800	0.033*	
C6	0.8584 (3)	0.36563 (17)	0.2090 (2)	0.0230 (5)	
H6	0.9650	0.3559	0.1970	0.028*	
C7	0.7606 (3)	0.40225 (15)	0.11871 (19)	0.0179 (4)	
C8	0.8048 (2)	0.41339 (15)	-0.00489 (19)	0.0170 (4)	
C9	0.9491 (3)	0.38753 (16)	-0.0439 (2)	0.0208 (5)	
H9	1.0312	0.3708	0.0113	0.025*	
C10	0.9709 (3)	0.38668 (17)	-0.1642 (2)	0.0240 (5)	
H10	1.0692	0.3716	-0.1926	0.029*	
C11	0.8470 (3)	0.40816 (17)	-0.2426 (2)	0.0230 (5)	
H11	0.8578	0.4043	-0.3255	0.028*	
C12	0.7075 (3)	0.43527 (16)	-0.19861 (19)	0.0194 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H12	0.6233	0.4499	-0.2528	0.023*	
N13	0.6869 (2)	0.44164 (12)	-0.08110 (16)	0.0160 (4)	
S1	0.31188 (6)	0.31728 (4)	0.61491 (5)	0.01857 (13)	
C14	0.2290 (3)	0.3937 (2)	0.4986 (2)	0.0343 (6)	
F15	0.1904 (2)	0.34309 (16)	0.40134 (15)	0.0556 (5)	
F16	0.3298 (2)	0.45966 (12)	0.46821 (15)	0.0458 (4)	
F17	0.1035 (2)	0.43667 (17)	0.53333 (18)	0.0652 (6)	
019	0.44116 (19)	0.27407 (11)	0.55926 (14)	0.0241 (4)	
O20	0.3551 (2)	0.38361 (12)	0.70808 (14)	0.0271 (4)	
O21	0.1893 (2)	0.25354 (14)	0.64049 (17)	0.0360 (5)	
H1A	0.644 (3)	0.6198 (19)	0.120 (3)	0.016 (7)*	
H1B	0.619 (4)	0.651 (2)	0.018 (3)	0.033 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01032 (13)	0.01596 (13)	0.01305 (13)	0.00058 (8)	0.00289 (8)	-0.00017 (7)
01	0.0178 (8)	0.0206 (8)	0.0159 (9)	-0.0017 (6)	0.0017 (6)	0.0007 (7)
N2	0.0146 (9)	0.0163 (8)	0.0155 (9)	0.0011 (7)	0.0015 (7)	-0.0003 (7)
C3	0.0195 (11)	0.0191 (10)	0.0196 (11)	0.0000 (8)	0.0064 (9)	-0.0007 (8)
C4	0.0310 (13)	0.0241 (11)	0.0185 (11)	0.0024 (9)	0.0070 (10)	0.0042 (9)
C5	0.0291 (14)	0.0300 (12)	0.0219 (11)	0.0101 (10)	-0.0011 (10)	0.0028 (9)
C6	0.0164 (11)	0.0288 (12)	0.0240 (11)	0.0054 (9)	0.0022 (9)	0.0008 (9)
C7	0.0174 (11)	0.0169 (10)	0.0196 (11)	0.0008 (8)	0.0041 (9)	-0.0011 (8)
C8	0.0149 (11)	0.0164 (10)	0.0198 (11)	-0.0002 (8)	0.0016 (9)	-0.0010 (8)
C9	0.0163 (11)	0.0228 (11)	0.0232 (11)	0.0020 (9)	0.0018 (9)	-0.0001 (9)
C10	0.0180 (12)	0.0285 (12)	0.0265 (12)	0.0039 (9)	0.0102 (10)	0.0003 (9)
C11	0.0228 (12)	0.0281 (12)	0.0188 (11)	0.0033 (9)	0.0063 (9)	-0.0001 (9)
C12	0.0192 (12)	0.0227 (11)	0.0167 (10)	0.0016 (9)	0.0027 (9)	-0.0003 (8)
N13	0.0137 (9)	0.0160 (8)	0.0185 (9)	-0.0004 (7)	0.0037 (7)	-0.0005 (7)
S1	0.0180 (3)	0.0219 (3)	0.0161 (2)	-0.0016 (2)	0.0032 (2)	-0.00187 (19)
C14	0.0296 (15)	0.0488 (17)	0.0245 (13)	0.0170 (12)	-0.0003 (11)	0.0023 (11)
F15	0.0536 (12)	0.0841 (14)	0.0270 (9)	0.0107 (10)	-0.0172 (8)	-0.0078 (9)
F16	0.0665 (12)	0.0385 (9)	0.0332 (9)	0.0124 (8)	0.0110 (8)	0.0147 (7)
F17	0.0458 (11)	0.0919 (16)	0.0583 (12)	0.0474 (11)	0.0068 (9)	0.0086 (11)
019	0.0218 (9)	0.0244 (8)	0.0266 (8)	0.0029 (6)	0.0054 (7)	0.0001 (6)
O20	0.0347 (10)	0.0275 (9)	0.0191 (8)	-0.0044 (7)	0.0015 (7)	-0.0040 (7)
O21	0.0340 (11)	0.0391 (10)	0.0366 (10)	-0.0155 (8)	0.0171 (8)	-0.0102(8)

Geometric parameters (Å, °)

Ru1—N2 ⁱ	2.0727 (17)	С7—С8	1.479 (3)
Ru1—N2	2.0727 (17)	C8—N13	1.360 (3)
Ru1—N13 ⁱ	2.0739 (17)	C8—C9	1.396 (3)
Ru1—N13	2.0739 (17)	C9—C10	1.385 (3)
Ru1—O1 ⁱ	2.1053 (16)	С9—Н9	0.9500
Ru1—O1	2.1053 (16)	C10—C11	1.389 (4)
01—H1A	0.75 (3)	C10—H10	0.9500

O1—H1B	0.73 (4)	C11—C12	1.384 (3)
N2—C3	1.352 (3)	C11—H11	0.9500
N2—C7	1.363 (3)	C12—N13	1.355 (3)
C3—C4	1.387 (3)	C12—H12	0.9500
C3—H3	0.9500	S1-021	1 4334 (18)
C_{4} C_{5}	1.380(4)	S1 020	1.4554(10) 1.4451(17)
$C_4 = C_5$	1.369 (4)	S1_010	1.4431(17)
	0.9500	S1_019	1.4460 (10)
C5—C6	1.383 (3)	51	1.820 (3)
C5—H5	0.9500	C14—F17	1.323 (3)
C6—C7	1.391 (3)	C14—F16	1.334 (3)
С6—Н6	0.9500	C14—F15	1.340 (3)
N2 ⁱ —Ru1—N2	180.00 (8)	N2—C7—C6	121.9 (2)
$N2^{i}$ —Ru1—N13 ⁱ	77.18 (7)	N2—C7—C8	113.93 (19)
N2—Ru1—N13 ⁱ	102.82 (7)	C6—C7—C8	123.8 (2)
N2 ⁱ —Ru1—N13	102.82 (7)	N13—C8—C9	122.0 (2)
N2—Ru1—N13	77.18(7)	N13—C8—C7	114.07 (18)
$N13^{i}$ Ru1 N13	180.0	C9-C8-C7	1236(2)
$N2^{i}$ Ru1 $O1^{i}$	86 51 (7)	C_{10} C_{9} C_{8}	129.0(2) 119.0(2)
N2 Ru1 $O1^{i}$	03.40(7)	C_{10} C_{9} H_{9}	120.5
$N_2 = K_{II} = O_1$ $N_1 2i = B_{II} = O_1 i$	95.49 (7) 96.99 (7)	$C_{10} C_{20} H_{10}$	120.5
N12 Pr1 O1	00.00(7)	$C_0 = C_1 $	120.3
NI3—RUI—OI	93.12(7)		119.0 (2)
N2'—Ru1—O1	93.49 (7)	C9—C10—H10	120.5
N2—Ru1—O1	86.51 (7)	С11—С10—Н10	120.5
N13 ¹ —Ru1—O1	93.12 (7)	C12—C11—C10	119.3 (2)
N13—Ru1—O1	86.88 (7)	C12—C11—H11	120.4
Ol ⁱ —Ru1—Ol	180.0	C10-C11-H11	120.4
Ru1—O1—H1A	110 (2)	N13—C12—C11	122.4 (2)
Ru1—O1—H1B	102 (3)	N13—C12—H12	118.8
H1A—O1—H1B	113 (3)	C11—C12—H12	118.8
C3—N2—C7	117.74 (19)	C12—N13—C8	117.98 (18)
C3—N2—Ru1	127.77 (15)	C12—N13—Ru1	127.48 (15)
C7—N2—Ru1	114.28 (14)	C8—N13—Ru1	114.35 (14)
N2-C3-C4	122.9(2)	021 - 81 - 020	115.16(10)
N2 C3 H3	118.6	021 S1 020	114.90 (11)
C_{4} C_{3} H_{3}	118.6	021 - 51 - 019	114.50(11) 114.53(10)
C_{4}	118.0	020 - 51 - 019	104.58(10)
$C_3 = C_4 = C_3$	110.0 (2)	021 - 31 - 014	104.38 (13)
С3—С4—Н4	120.7	020-51-014	102.69 (12)
C5—C4—H4	120.7	019—\$1—C14	102.65 (11)
C6—C5—C4	119.2 (2)	F1/—C14—F16	108.4 (2)
C6—C5—H5	120.4	F17—C14—F15	108.5 (2)
C4—C5—H5	120.4	F16—C14—F15	107.4 (2)
C5—C6—C7	119.2 (2)	F17—C14—S1	110.79 (19)
С5—С6—Н6	120.4	F16—C14—S1	111.30 (19)
С7—С6—Н6	120.4	F15—C14—S1	110.4 (2)
N13 ⁱ —Ru1—N2—C3	16.01 (19)	C9-C10-C11-C12	3.8 (4)
N13—Ru1—N2—C3	-163.99 (19)	C10-C11-C12-N13	-0.1 (4)

O1 ⁱ —Ru1—N2—C3	-71.58 (18)	C11—C12—N13—C8	-5.0 (3)
O1—Ru1—N2—C3	108.42 (18)	C11—C12—N13—Ru1	169.81 (17)
N13 ⁱ —Ru1—N2—C7	-158.51 (14)	C9—C8—N13—C12	6.5 (3)
N13—Ru1—N2—C7	21.49 (14)	C7—C8—N13—C12	-166.89 (19)
O1 ⁱ —Ru1—N2—C7	113.90 (15)	C9—C8—N13—Ru1	-169.01 (16)
O1—Ru1—N2—C7	-66.10 (15)	C7—C8—N13—Ru1	17.6 (2)
C7—N2—C3—C4	5.3 (3)	N2 ⁱ —Ru1—N13—C12	-16.10 (19)
Ru1—N2—C3—C4	-169.07 (17)	N2—Ru1—N13—C12	163.90 (19)
N2-C3-C4-C5	0.2 (4)	O1 ⁱ —Ru1—N13—C12	71.02 (18)
C3—C4—C5—C6	-4.1 (4)	O1—Ru1—N13—C12	-108.98 (18)
C4—C5—C6—C7	2.5 (4)	N2 ⁱ —Ru1—N13—C8	158.85 (14)
C3—N2—C7—C6	-7.0 (3)	N2—Ru1—N13—C8	-21.15 (14)
Ru1—N2—C7—C6	168.14 (17)	O1 ⁱ —Ru1—N13—C8	-114.03 (15)
C3—N2—C7—C8	166.29 (18)	O1—Ru1—N13—C8	65.97 (15)
Ru1—N2—C7—C8	-18.6 (2)	O21—S1—C14—F17	57.2 (2)
C5—C6—C7—N2	3.2 (3)	O20—S1—C14—F17	-63.4 (2)
C5—C6—C7—C8	-169.4 (2)	O19—S1—C14—F17	177.4 (2)
N2-C7-C8-N13	0.6 (3)	O21—S1—C14—F16	177.87 (17)
C6—C7—C8—N13	173.7 (2)	O20—S1—C14—F16	57.3 (2)
N2—C7—C8—C9	-172.6 (2)	O19—S1—C14—F16	-61.9 (2)
C6—C7—C8—C9	0.5 (3)	O21—S1—C14—F15	-63.0 (2)
N13—C8—C9—C10	-2.8 (3)	O20—S1—C14—F15	176.41 (18)
C7—C8—C9—C10	169.9 (2)	O19—S1—C14—F15	57.3 (2)
C8—C9—C10—C11	-2.4 (3)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O1—H1 <i>B</i> ···O19 ⁱⁱ	0.73 (4)	2.01 (4)	2.727 (2)	169 (4)
O1—H1A···O20 ⁱⁱⁱ	0.75 (3)	1.95 (3)	2.695 (2)	169 (3)

Symmetry codes: (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1.