metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(phenyl­acetato-κO)copper(II) phenyl­acetate hexa­hydrate

aFaculty of Materials Science and Chemical Engineering, China University of Geoscience, Wuhan, Hubei 430074, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials & Preparation Science, Faculty of Materials Science & Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 27 August 2008; accepted 8 October 2008; online 31 October 2008)

In the title compound, [Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O, the Cu atom is in a distorted square-pyramidal coordination environment. The six crystallographically independent uncoordinated water mol­ecules are inter­connected by hydrogen bonds, completing dodeca­water (H2O)12 clusters which are hydrogen bonded to the carboxyl­ate groups of phenyl­acetate anions, building up one-dimensional anionic chains propagating along [100]. Between the cationic and anionic chains are hydrogen bonds from water mol­ecules to the carboxyl­ate O atoms belonging to the phenyl­acetato ligands.

Related literature

For general background, see: Kuroda-Sowa et al. (1997[Kuroda-Sowa, T., Horino, T., Yamamoto, M., Ohno, Y., Maekawa, M. & Munakata, M. (1997). Inorg. Chem. 36, 6382-6389.]); Lehn (2007[Lehn, J. M. (2007). Chem. Rev. 36, 151-160.]); Li et al. (2008[Li, X., Cheng, D. Y., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853-2861.]). For related structures, see: Addison & Rao (1984[Addison, A. W. & Rao, N. T. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1984.]); Baruah et al. (2007[Baruah, A. M., Karmaker, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488.]); Liu & Xu (2005[Liu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87-89.]); Ma et al. (2005[Ma, B. Q., Sun, H. L. & Gao, S. (2005). Chem. Commun. pp. 2336-2338.]); Sugimori et al. (1997[Sugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem. 36, 576-583.]); Zheng et al. (2001[Zheng, Y. Q., Sun, J. & Lin, J. L. (2001). Z. Anorg. Allg. Chem. 627, 90-94.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O

  • Mr = 802.33

  • Triclinic, [P \overline 1]

  • a = 11.499 (2) Å

  • b = 11.903 (2) Å

  • c = 16.066 (3) Å

  • α = 71.00 (3)°

  • β = 72.97 (3)°

  • γ = 68.93 (3)°

  • V = 1901.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 (2) K

  • 0.37 × 0.35 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.793, Tmax = 0.902

  • 18689 measured reflections

  • 8680 independent reflections

  • 7070 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.08

  • 8680 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Construction of supramolecular architectures with interesting physical properties has grown rapidly owing to their potential use as new functional materials (Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Kuroda-Sowa et al., 1997; Li et al., 2008). Here, we report a Cu(II) complex [Cu(C12H8N2)2(C8H7O2)](C8H7O2).6H2O from the self-assembly of Cu(OH)2, phenylacetatic acid and phenanthroline.

The title compound consists of [Cu(C12H8N2)2(C8H7O2)]2+ complex cations, phenylacetate anions, and water molecules of crystallization (Fig.1). The Cu atoms are each coordinated by two phenanthroline ligands and one phenylacetato ligand to complete a square-pyramidal CuN4O chromophore with the phenylacetic oxygen atom at the equatorial site. The equatorial Cu–N bond lengths fall in the range 2.002–2.060 Å and the Cu–O bond distance is equal to 2.001 (1) Å, while the axial Cu–N bond distance is 2.187 (2) Å. According to Addison's definition (Addison & Rao, 1984), the τ index about the central Cu atom is 0.233 Å, suggesting that the square pyramidal coordination geometry is slightly distorted with the Cu atom deviated from the basal plane by 0.1779 (8) Å towards the apical N1 atom. Within each complex cation, both phenanthroline ligands exhibit nearly perfect coplanarity and constitute an orthogonal system with the coordinating carboxylate group of the phenylacetate anion. The complex cation displays a similar configuration to those observed in a succinato complex [Cu(phen)2(C4H4O4)] previously reported by us (Zheng et al., 2001) and all the bonding parameters are normal (Baruah et al., 2007). As far as the phenylacetato ligand is concerned, the phenyl plane is found to be nearly perpendicular to the single bonded carbon backbone (dihedral angle: 89.5 (1)°), which is significantly larger than the corresponding one of 68.6 (2)° in the non-coordinating phenylacetate anion, and the carboxylate group is twisted from the single bonded carbon backbone by 70.4 (2)° in the former coordinating one, and is considerably larger the 60.7 (2)° in the non-coordinating anion. As expected, the C–O bond distance for the coordinating oxygen atom is 1.281 (2) Å, which is longer than those for non-coordinating ones (1.247–1.254 Å). The complex cations are distributed in such a way that the symmetry-related phenanthroline ligands are oriented antiparallel with a mean interplanar distance of 3.39 (2) Å, indicating a significant face-to-face π-π stacking interaction (Sugimori et al., 1997). Owing to such intercationic π-π stacking interactions and weak intercationic C–H···O interactions with the uncoordinating carboxylate oxygen atom, two centrosymmetrically related complex cations form dimers, which are further assembled via interdimeric π-π stacking interactions into 1D chains extending along the [101] direction. Furthermore, the resulting chains are arranged in planes parallel to (010), between which the lattice water molecules and the phenylacetate anions are sandwiched.

Out of the six crystallographically distinct lattice water molecules, three water molecules together with their centrosymmetry-related partners are hydrogen bonded to one another to generate chair-like hexawater clusters (Fig.2), to which the remaining lattice water molecules are associated by hydrogen bonds to complete dodecawater (H2O)12 clusters similar to those reported in the literature (Liu & Xu, 2005; Ma et al., 2005). The resulting dodecawater (H2O)12 clusters are hydrogen bonded to the carboxylate groups of phenylacetate anions to build up 1D anionic chains propagating along [100]. Between the cationic and anionic chains exist hydrogen bonds from water molecules to the carboxylate oxygen atoms belonging to the phenylacetato ligands.

Related literature top

For general background, see: Kuroda-Sowa et al. (1997); Lehn (2007); Li et al. (2008). For related structures, see: Addison & Rao (1984); Baruah et al. (2007); Liu & Xu (2005); Ma et al. (2005); Sugimori et al. (1997); Zheng et al. (2001).

Experimental top

Dropwise addition of 2.0 mL(1.0 M) of NaOH to a aqueous solution of CuCl2.2H2O (0.170 g, 1.00 mmol) in 5.0 mL of H2O gave a blue precipitate, which was separated by centrifugation and washed with water until no Cl anions were detectable in the supernatant. The collected blue precipitate was transferred to a mixture of ethanol and water (1:1 V/V, 10 mL), to which phenanthroline (0.198 g, 1.00 mmol) and phenylacetic acid (0.136 g, 1.00 mmol) were added successively. The resulting blue solution (pH = 7.52) was allowed to stand at room temperature. Blue blocklike crystals were grown by slow evaporation for over 7 days.

Refinement top

All H atoms bound to C were positioned geometrically and refined as riding, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O were located in a difference Fourier map and refined isotropically, with the O–H distances restrained to 0.85 (1) Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OPTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom labeling scheme of [Cu(C12H8N2)2(C8H7O2)](C8H7O2).6H2O. H atoms and water molecules are not given. Displacement ellipsoids are drawn at 45%.
[Figure 2] Fig. 2. A chair-like hexawater clusters composed of three water molecules and their centrosymmetry-related parterners is hydrongen bonded.
Bis(1,10-phenanthroline-κ2N,N')(phenylacetato-κO)copper(II) phenylacetate hexahydrate top
Crystal data top
[Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2OZ = 2
Mr = 802.33F(000) = 838
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.499 (2) ÅCell parameters from 14647 reflections
b = 11.903 (2) Åθ = 3.0–27.5°
c = 16.066 (3) ŵ = 0.64 mm1
α = 71.00 (3)°T = 293 K
β = 72.97 (3)°Prism, blue
γ = 68.93 (3)°0.37 × 0.35 × 0.17 mm
V = 1901.3 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8680 independent reflections
Radiation source: fine-focus sealed tube7070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.793, Tmax = 0.902k = 1515
18689 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.3044P]
where P = (Fo2 + 2Fc2)/3
8680 reflections(Δ/σ)max = 0.002
496 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2Oγ = 68.93 (3)°
Mr = 802.33V = 1901.3 (8) Å3
Triclinic, P1Z = 2
a = 11.499 (2) ÅMo Kα radiation
b = 11.903 (2) ŵ = 0.64 mm1
c = 16.066 (3) ÅT = 293 K
α = 71.00 (3)°0.37 × 0.35 × 0.17 mm
β = 72.97 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8680 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7070 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.902Rint = 0.030
18689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
8680 reflectionsΔρmin = 0.39 e Å3
496 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.68956 (2)0.48613 (2)0.746890 (15)0.01698 (7)
N10.88512 (16)0.37869 (15)0.70294 (11)0.0202 (3)
N20.75896 (16)0.62363 (15)0.66308 (10)0.0187 (3)
C10.9447 (2)0.25741 (19)0.72006 (14)0.0246 (4)
H1A0.89950.20270.75790.030*
C21.0735 (2)0.2091 (2)0.68296 (15)0.0299 (5)
H2A1.11230.12380.69660.036*
C31.1417 (2)0.2876 (2)0.62679 (14)0.0282 (5)
H3A1.22720.25650.60240.034*
C41.08088 (19)0.4164 (2)0.60633 (13)0.0234 (4)
C51.1439 (2)0.5061 (2)0.54605 (13)0.0263 (5)
H5A1.22910.47920.51920.032*
C61.0814 (2)0.6284 (2)0.52797 (13)0.0274 (5)
H6A1.12450.68460.48930.033*
C70.9498 (2)0.6735 (2)0.56728 (12)0.0223 (4)
C80.8792 (2)0.7998 (2)0.54857 (13)0.0265 (5)
H8A0.91840.85920.51040.032*
C90.7529 (2)0.8349 (2)0.58661 (14)0.0265 (5)
H9A0.70590.91830.57490.032*
C100.6947 (2)0.74424 (19)0.64352 (13)0.0228 (4)
H10A0.60840.76890.66850.027*
C110.88530 (19)0.58773 (19)0.62585 (12)0.0190 (4)
C120.95214 (19)0.45701 (19)0.64659 (12)0.0192 (4)
N30.71006 (15)0.52113 (15)0.85842 (10)0.0184 (3)
N40.61981 (15)0.35480 (15)0.84204 (10)0.0179 (3)
C130.75535 (19)0.60510 (19)0.86524 (14)0.0234 (4)
H13A0.78050.66120.81310.028*
C140.7671 (2)0.6132 (2)0.94739 (15)0.0276 (5)
H14A0.80040.67280.94910.033*
C150.7289 (2)0.5323 (2)1.02531 (14)0.0267 (5)
H15A0.73550.53691.08040.032*
C160.67958 (19)0.44215 (19)1.02106 (13)0.0215 (4)
C170.6358 (2)0.3548 (2)1.09815 (13)0.0255 (4)
H17A0.64050.35541.15480.031*
C180.5875 (2)0.2709 (2)1.09022 (13)0.0253 (4)
H18A0.55880.21561.14150.030*
C190.57996 (18)0.26646 (18)1.00364 (13)0.0204 (4)
C200.53024 (19)0.18274 (18)0.99020 (13)0.0236 (4)
H20A0.49960.12561.03900.028*
C210.5275 (2)0.18630 (19)0.90460 (14)0.0241 (4)
H21A0.49490.13160.89490.029*
C220.57429 (19)0.27314 (18)0.83178 (13)0.0219 (4)
H22A0.57340.27360.77400.026*
C230.62315 (17)0.35128 (17)0.92720 (12)0.0169 (4)
C240.67262 (18)0.44035 (18)0.93590 (12)0.0180 (4)
O10.60569 (13)0.47269 (12)0.65901 (9)0.0194 (3)
O20.46263 (13)0.63541 (13)0.70364 (9)0.0227 (3)
C250.49547 (18)0.55256 (18)0.66273 (12)0.0178 (4)
C260.40023 (19)0.53846 (19)0.62087 (12)0.0196 (4)
H26A0.36180.61760.58280.024*
H26B0.44320.47920.58410.024*
C270.29830 (18)0.49355 (18)0.69518 (12)0.0184 (4)
C280.19012 (19)0.57800 (19)0.72970 (13)0.0223 (4)
H28A0.17940.66280.70650.027*
C290.0977 (2)0.5369 (2)0.79870 (14)0.0267 (4)
H29A0.02550.59440.82120.032*
C300.1120 (2)0.4103 (2)0.83452 (14)0.0271 (5)
H30A0.05010.38280.88080.033*
C310.2201 (2)0.3260 (2)0.79992 (14)0.0269 (5)
H31A0.23060.24120.82320.032*
C320.3130 (2)0.36672 (19)0.73082 (13)0.0226 (4)
H32A0.38510.30920.70830.027*
O30.92255 (14)0.04315 (14)0.61308 (10)0.0298 (3)
O40.74454 (15)0.07607 (14)0.71534 (10)0.0311 (4)
C330.8540 (2)0.01148 (18)0.68752 (14)0.0239 (4)
C340.9041 (3)0.1168 (2)0.74904 (15)0.0358 (6)
H34A0.84740.16570.75870.043*
H34B0.98690.15870.71860.043*
C350.9159 (2)0.11314 (18)0.83942 (15)0.0283 (5)
C361.0334 (2)0.1482 (2)0.86166 (17)0.0370 (6)
H36A1.10670.17170.81960.044*
C371.0441 (2)0.1489 (2)0.94604 (19)0.0414 (6)
H37A1.12410.17260.95970.050*
C380.9367 (2)0.1145 (2)1.00936 (17)0.0343 (5)
H38A0.94380.11611.06600.041*
C390.8190 (2)0.0779 (2)0.98804 (15)0.0320 (5)
H39A0.74620.05321.03010.038*
C400.8079 (2)0.0776 (2)0.90389 (15)0.0299 (5)
H40A0.72770.05350.89050.036*
O50.39349 (18)1.03378 (16)0.68444 (12)0.0399 (4)
H5B0.38190.98420.66190.048*
H5C0.42451.08610.63520.048*
O60.35322 (16)0.87072 (14)0.61361 (12)0.0356 (4)
H6B0.37050.79560.64280.043*
H6C0.26840.88060.60870.043*
O71.14845 (15)0.11805 (14)0.55998 (10)0.0307 (3)
H7B1.06570.06350.57700.037*
H7C1.14800.10060.50050.037*
O80.52945 (16)0.78513 (16)0.46170 (11)0.0351 (4)
H8B0.48710.82220.50250.042*
H8C0.47890.77400.43780.042*
O90.54855 (19)0.03208 (19)0.80451 (11)0.0478 (5)
H9B0.50110.01640.76920.057*
H9C0.60050.00170.78410.057*
O100.64854 (14)0.27146 (13)0.58757 (9)0.0261 (3)
H10B0.63770.33790.60760.031*
H10C0.69530.20650.62030.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01848 (13)0.01903 (12)0.01421 (11)0.01010 (9)0.00353 (9)0.00032 (9)
N10.0194 (8)0.0230 (8)0.0198 (8)0.0072 (7)0.0056 (7)0.0048 (7)
N20.0204 (8)0.0226 (8)0.0146 (7)0.0111 (7)0.0037 (6)0.0010 (7)
C10.0251 (11)0.0232 (10)0.0267 (10)0.0075 (9)0.0077 (9)0.0048 (9)
C20.0268 (11)0.0281 (11)0.0364 (12)0.0003 (9)0.0133 (10)0.0123 (10)
C30.0190 (10)0.0410 (13)0.0285 (11)0.0049 (9)0.0070 (9)0.0158 (10)
C40.0196 (10)0.0378 (12)0.0194 (9)0.0108 (9)0.0043 (8)0.0127 (9)
C50.0195 (10)0.0486 (14)0.0180 (9)0.0175 (10)0.0001 (8)0.0123 (10)
C60.0274 (11)0.0469 (13)0.0165 (9)0.0255 (10)0.0008 (8)0.0057 (9)
C70.0266 (11)0.0336 (11)0.0131 (8)0.0187 (9)0.0036 (8)0.0032 (8)
C80.0375 (12)0.0311 (11)0.0178 (9)0.0242 (10)0.0061 (9)0.0015 (9)
C90.0346 (12)0.0238 (10)0.0233 (10)0.0147 (9)0.0096 (9)0.0017 (9)
C100.0252 (11)0.0233 (10)0.0206 (9)0.0105 (8)0.0060 (8)0.0013 (8)
C110.0214 (10)0.0280 (10)0.0126 (8)0.0123 (8)0.0046 (7)0.0048 (8)
C120.0202 (10)0.0272 (10)0.0145 (8)0.0106 (8)0.0047 (7)0.0054 (8)
N30.0163 (8)0.0219 (8)0.0181 (8)0.0073 (7)0.0038 (6)0.0039 (7)
N40.0175 (8)0.0192 (8)0.0169 (7)0.0076 (7)0.0032 (6)0.0018 (7)
C130.0219 (10)0.0255 (10)0.0235 (10)0.0113 (8)0.0045 (8)0.0022 (9)
C140.0246 (11)0.0327 (11)0.0336 (11)0.0123 (9)0.0065 (9)0.0137 (10)
C150.0223 (11)0.0344 (12)0.0261 (10)0.0031 (9)0.0073 (9)0.0145 (10)
C160.0161 (9)0.0265 (10)0.0183 (9)0.0016 (8)0.0026 (7)0.0067 (8)
C170.0234 (11)0.0313 (11)0.0159 (9)0.0018 (9)0.0042 (8)0.0048 (9)
C180.0226 (10)0.0280 (11)0.0161 (9)0.0039 (9)0.0012 (8)0.0001 (8)
C190.0161 (9)0.0205 (9)0.0172 (9)0.0027 (8)0.0012 (7)0.0001 (8)
C200.0210 (10)0.0187 (9)0.0222 (10)0.0065 (8)0.0009 (8)0.0040 (8)
C210.0236 (11)0.0204 (10)0.0282 (10)0.0101 (8)0.0054 (9)0.0017 (9)
C220.0227 (10)0.0236 (10)0.0205 (9)0.0090 (8)0.0046 (8)0.0039 (8)
C230.0131 (9)0.0184 (9)0.0148 (8)0.0026 (7)0.0025 (7)0.0012 (7)
C240.0132 (9)0.0201 (9)0.0174 (9)0.0015 (7)0.0035 (7)0.0038 (8)
O10.0204 (7)0.0212 (7)0.0170 (6)0.0089 (6)0.0052 (5)0.0010 (6)
O20.0237 (7)0.0284 (7)0.0179 (6)0.0100 (6)0.0019 (6)0.0076 (6)
C250.0195 (10)0.0213 (9)0.0107 (8)0.0101 (8)0.0012 (7)0.0016 (7)
C260.0199 (10)0.0236 (10)0.0155 (9)0.0066 (8)0.0056 (7)0.0030 (8)
C270.0194 (10)0.0228 (9)0.0162 (8)0.0084 (8)0.0084 (7)0.0019 (8)
C280.0211 (10)0.0230 (10)0.0231 (10)0.0075 (8)0.0059 (8)0.0034 (8)
C290.0183 (10)0.0347 (12)0.0275 (10)0.0077 (9)0.0032 (8)0.0095 (9)
C300.0255 (11)0.0383 (12)0.0211 (10)0.0202 (10)0.0038 (8)0.0007 (9)
C310.0356 (12)0.0244 (10)0.0251 (10)0.0168 (9)0.0131 (9)0.0034 (9)
C320.0239 (10)0.0225 (10)0.0229 (10)0.0058 (8)0.0089 (8)0.0048 (8)
O30.0261 (8)0.0244 (8)0.0299 (8)0.0068 (6)0.0034 (6)0.0023 (7)
O40.0313 (9)0.0238 (8)0.0272 (8)0.0068 (7)0.0010 (7)0.0023 (6)
C330.0302 (11)0.0166 (9)0.0239 (10)0.0085 (9)0.0076 (9)0.0001 (8)
C340.0529 (16)0.0179 (10)0.0274 (11)0.0038 (10)0.0079 (11)0.0012 (9)
C350.0354 (12)0.0139 (9)0.0286 (11)0.0048 (9)0.0056 (9)0.0006 (9)
C360.0304 (13)0.0282 (12)0.0446 (14)0.0035 (10)0.0012 (11)0.0101 (11)
C370.0309 (13)0.0395 (14)0.0561 (16)0.0032 (11)0.0164 (12)0.0156 (13)
C380.0400 (14)0.0268 (11)0.0363 (12)0.0072 (10)0.0150 (11)0.0041 (10)
C390.0330 (12)0.0288 (11)0.0256 (11)0.0069 (10)0.0035 (9)0.0002 (9)
C400.0274 (11)0.0268 (11)0.0275 (11)0.0052 (9)0.0078 (9)0.0026 (9)
O50.0506 (11)0.0361 (9)0.0412 (9)0.0205 (8)0.0180 (8)0.0034 (8)
O60.0385 (9)0.0259 (8)0.0460 (10)0.0092 (7)0.0167 (8)0.0065 (7)
O70.0279 (8)0.0314 (8)0.0277 (8)0.0047 (7)0.0064 (6)0.0044 (7)
O80.0335 (9)0.0430 (10)0.0340 (8)0.0173 (8)0.0045 (7)0.0114 (8)
O90.0638 (13)0.0678 (13)0.0242 (8)0.0491 (11)0.0145 (8)0.0113 (8)
O100.0317 (8)0.0221 (7)0.0245 (7)0.0073 (6)0.0095 (6)0.0031 (6)
Geometric parameters (Å, º) top
Cu—N22.0009 (18)C21—H21A0.9300
Cu—O12.0011 (14)C22—H22A0.9300
Cu—N42.0128 (17)C23—C241.430 (3)
Cu—N32.0600 (16)O1—C251.281 (2)
Cu—N12.1866 (19)O2—C251.247 (2)
N1—C11.330 (3)C25—C261.522 (3)
N1—C121.357 (3)C26—C271.517 (3)
N2—C101.336 (3)C26—H26A0.9700
N2—C111.365 (3)C26—H26B0.9700
C1—C21.405 (3)C27—C281.388 (3)
C1—H1A0.9300C27—C321.395 (3)
C2—C31.366 (3)C28—C291.389 (3)
C2—H2A0.9300C28—H28A0.9300
C3—C41.408 (3)C29—C301.393 (3)
C3—H3A0.9300C29—H29A0.9300
C4—C121.404 (3)C30—C311.387 (3)
C4—C51.441 (3)C30—H30A0.9300
C5—C61.347 (3)C31—C321.391 (3)
C5—H5A0.9300C31—H31A0.9300
C6—C71.434 (3)C32—H32A0.9300
C6—H6A0.9300O3—C331.250 (3)
C7—C81.407 (3)O4—C331.254 (3)
C7—C111.410 (3)C33—C341.536 (3)
C8—C91.366 (3)C34—C351.513 (3)
C8—H8A0.9300C34—H34A0.9700
C9—C101.403 (3)C34—H34B0.9700
C9—H9A0.9300C35—C361.382 (3)
C10—H10A0.9300C35—C401.395 (3)
C11—C121.441 (3)C36—C371.394 (4)
N3—C131.327 (3)C36—H36A0.9300
N3—C241.365 (3)C37—C381.378 (4)
N4—C221.329 (2)C37—H37A0.9300
N4—C231.367 (2)C38—C391.375 (3)
C13—C141.402 (3)C38—H38A0.9300
C13—H13A0.9300C39—C401.393 (3)
C14—C151.373 (3)C39—H39A0.9300
C14—H14A0.9300C40—H40A0.9300
C15—C161.409 (3)O5—H5B0.8492
C15—H15A0.9300O5—H5C0.9025
C16—C241.401 (3)O6—H6B0.8443
C16—C171.429 (3)O6—H6C0.9634
C17—C181.359 (3)O7—H7B0.9596
C17—H17A0.9300O7—H7C0.9107
C18—C191.438 (3)O8—H8B0.8418
C18—H18A0.9300O8—H8C0.8508
C19—C231.404 (3)O9—H9B0.8328
C19—C201.410 (3)O9—H9C0.7473
C20—C211.371 (3)O10—H10B0.9033
C20—H20A0.9300O10—H10C0.8749
C21—C221.404 (3)
N2—Cu—O195.38 (6)C20—C19—C18124.14 (18)
N2—Cu—N4173.84 (6)C21—C20—C19119.44 (18)
O1—Cu—N490.11 (6)C21—C20—H20A120.3
N2—Cu—N392.59 (7)C19—C20—H20A120.3
O1—Cu—N3159.85 (6)C20—C21—C22119.49 (19)
N4—Cu—N381.31 (7)C20—C21—H21A120.3
N2—Cu—N180.25 (7)C22—C21—H21A120.3
O1—Cu—N199.99 (6)N4—C22—C21122.70 (18)
N4—Cu—N1101.58 (7)N4—C22—H22A118.7
N3—Cu—N199.58 (7)C21—C22—H22A118.7
C1—N1—C12118.02 (18)N4—C23—C19123.02 (18)
C1—N1—Cu132.56 (14)N4—C23—C24116.59 (16)
C12—N1—Cu109.42 (13)C19—C23—C24120.39 (17)
C10—N2—C11118.72 (17)N3—C24—C16123.45 (18)
C10—N2—Cu126.25 (14)N3—C24—C23116.65 (17)
C11—N2—Cu114.99 (13)C16—C24—C23119.90 (18)
N1—C1—C2122.3 (2)C25—O1—Cu108.11 (12)
N1—C1—H1A118.8O2—C25—O1122.11 (18)
C2—C1—H1A118.8O2—C25—C26119.94 (18)
C3—C2—C1119.9 (2)O1—C25—C26117.82 (17)
C3—C2—H2A120.1C27—C26—C25108.99 (15)
C1—C2—H2A120.1C27—C26—H26A109.9
C2—C3—C4119.2 (2)C25—C26—H26A109.9
C2—C3—H3A120.4C27—C26—H26B109.9
C4—C3—H3A120.4C25—C26—H26B109.9
C12—C4—C3117.3 (2)H26A—C26—H26B108.3
C12—C4—C5119.5 (2)C28—C27—C32119.05 (19)
C3—C4—C5123.19 (19)C28—C27—C26120.48 (18)
C6—C5—C4121.05 (19)C32—C27—C26120.47 (18)
C6—C5—H5A119.5C27—C28—C29120.5 (2)
C4—C5—H5A119.5C27—C28—H28A119.8
C5—C6—C7121.2 (2)C29—C28—H28A119.8
C5—C6—H6A119.4C28—C29—C30120.6 (2)
C7—C6—H6A119.4C28—C29—H29A119.7
C8—C7—C11117.52 (19)C30—C29—H29A119.7
C8—C7—C6123.42 (19)C31—C30—C29118.83 (19)
C11—C7—C6119.0 (2)C31—C30—H30A120.6
C9—C8—C7119.88 (19)C29—C30—H30A120.6
C9—C8—H8A120.1C30—C31—C32120.7 (2)
C7—C8—H8A120.1C30—C31—H31A119.6
C8—C9—C10119.5 (2)C32—C31—H31A119.6
C8—C9—H9A120.3C31—C32—C27120.3 (2)
C10—C9—H9A120.3C31—C32—H32A119.9
N2—C10—C9122.2 (2)C27—C32—H32A119.9
N2—C10—H10A118.9O3—C33—O4124.60 (19)
C9—C10—H10A118.9O3—C33—C34118.50 (19)
N2—C11—C7122.18 (19)O4—C33—C34116.88 (19)
N2—C11—C12117.75 (17)C35—C34—C33114.35 (18)
C7—C11—C12120.06 (18)C35—C34—H34A108.7
N1—C12—C4123.28 (19)C33—C34—H34A108.7
N1—C12—C11117.49 (17)C35—C34—H34B108.7
C4—C12—C11119.20 (18)C33—C34—H34B108.7
C13—N3—C24117.51 (17)H34A—C34—H34B107.6
C13—N3—Cu130.54 (14)C36—C35—C40118.0 (2)
C24—N3—Cu111.93 (12)C36—C35—C34121.2 (2)
C22—N4—C23118.00 (17)C40—C35—C34120.9 (2)
C22—N4—Cu128.52 (13)C35—C36—C37121.2 (2)
C23—N4—Cu113.47 (12)C35—C36—H36A119.4
N3—C13—C14123.11 (19)C37—C36—H36A119.4
N3—C13—H13A118.4C38—C37—C36120.3 (2)
C14—C13—H13A118.4C38—C37—H37A119.8
C15—C14—C13119.33 (19)C36—C37—H37A119.8
C15—C14—H14A120.3C39—C38—C37119.4 (2)
C13—C14—H14A120.3C39—C38—H38A120.3
C14—C15—C16119.35 (19)C37—C38—H38A120.3
C14—C15—H15A120.3C38—C39—C40120.5 (2)
C16—C15—H15A120.3C38—C39—H39A119.8
C24—C16—C15117.25 (19)C40—C39—H39A119.8
C24—C16—C17119.03 (19)C39—C40—C35120.8 (2)
C15—C16—C17123.72 (19)C39—C40—H40A119.6
C18—C17—C16121.23 (19)C35—C40—H40A119.6
C18—C17—H17A119.4H5B—O5—H5C102.2
C16—C17—H17A119.4H6B—O6—H6C97.9
C17—C18—C19120.92 (19)H7B—O7—H7C97.3
C17—C18—H18A119.5H8B—O8—H8C109.3
C19—C18—H18A119.5H9B—O9—H9C112.4
C23—C19—C20117.33 (18)H10B—O10—H10C107.4
C23—C19—C18118.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O60.8491.9202.769 (3)178.64
O5—H5C···O8i0.9021.8982.794 (3)171.66
O6—H6B···O20.8441.9122.723 (2)160.78
O6—H6C···O7ii0.9631.7672.682 (3)157.25
O7—H7B···O30.9601.7542.710 (2)173.79
O7—H7C···O3iii0.9112.0282.896 (2)158.83
O8—H8B···O60.8422.0762.888 (3)161.67
O8—H8C···O10iv0.8511.9152.749 (3)166.41
O9—H9B···O5v0.8331.9152.746 (3)175.07
O9—H9C···O40.7472.0462.790 (3)173.58
O10—H10B···O10.9031.9112.812 (2)175.12
O10—H10C···O40.8751.8422.686 (2)161.44
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O
Mr802.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.499 (2), 11.903 (2), 16.066 (3)
α, β, γ (°)71.00 (3), 72.97 (3), 68.93 (3)
V3)1901.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.37 × 0.35 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.793, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
18689, 8680, 7070
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.08
No. of reflections8680
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OPTEPII (Johnson, 1976).

 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationAddison, A. W. & Rao, N. T. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1984.  CSD CrossRef Web of Science Google Scholar
First citationBaruah, A. M., Karmaker, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKuroda-Sowa, T., Horino, T., Yamamoto, M., Ohno, Y., Maekawa, M. & Munakata, M. (1997). Inorg. Chem. 36, 6382–6389.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehn, J. M. (2007). Chem. Rev. 36, 151–160.  CrossRef CAS Google Scholar
First citationLi, X., Cheng, D. Y., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853–2861.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, B. Q., Sun, H. L. & Gao, S. (2005). Chem. Commun. pp. 2336–2338.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem. 36, 576–583.  CSD CrossRef CAS Web of Science Google Scholar
First citationZheng, Y. Q., Sun, J. & Lin, J. L. (2001). Z. Anorg. Allg. Chem. 627, 90–94.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds