

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(phenylacetato- κO)copper(II) phenylacetate hexahydrate

Bing-Tian Tu,^a Hong-Zhen Xie,^b* Ying-Tao Ren^{a,b} and Jing-Zhong Chen^a

^aFaculty of Materials Science and Chemical Engineering, China University of Geoscience, Wuhan, Hubei 430074, People's Republic of China, and ^bState Key Laboratory Base of Novel Functional Materials & Preparation Science, Faculty of Materials Science & Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: zhengyueqing@nbu.edu.cn

Received 27 August 2008; accepted 8 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.095; data-to-parameter ratio = 17.3.

In the title compound, $[Cu(C_8H_7O_2)(C_{12}H_8N_2)_2](C_8H_7O_2)$. 6H₂O, the Cu atom is in a distorted square-pyramidal coordination environment. The six crystallographically independent uncoordinated water molecules are interconnected by hydrogen bonds, completing dodecawater $(H_2O)_{12}$ clusters which are hydrogen bonded to the carboxylate groups of phenylacetate anions, building up one-dimensional anionic chains propagating along [100]. Between the cationic and anionic chains are hydrogen bonds from water molecules to the carboxylate O atoms belonging to the phenylacetato ligands.

Related literature

For general background, see: Kuroda-Sowa et al. (1997); Lehn (2007); Li et al. (2008). For related structures, see: Addison & Rao (1984); Baruah et al. (2007); Liu & Xu (2005); Ma et al. (2005); Sugimori et al. (1997); Zheng et al. (2001).

18689 measured reflections 8680 independent reflections

 $R_{\rm int} = 0.030$

7070 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

	2 72 07 (2) 0
$[Cu(C_8H_7O_2)(C_{12}H_8N_2)_2]$ -	$\beta = 72.97(3)^{\circ}$
$(C_8H_7O_2)\cdot 6H_2O$	$\gamma = 68.93 \ (3)^{\circ}$
$M_r = 802.33$	V = 1901.3 (8) Å ³
Triclinic, P1	Z = 2
a = 11.499 (2) Å	Mo $K\alpha$ radiation
b = 11.903 (2) Å	$\mu = 0.64 \text{ mm}^{-1}$
c = 16.066 (3) Å	T = 293 (2) K
$\alpha = 71.00 \ (3)^{\circ}$	$0.37 \times 0.35 \times 0.17 \text{ mm}$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	496 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
8680 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2118).

References

- Addison, A. W. & Rao, N. T. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1984
- Baruah, A. M., Karmaker, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kuroda-Sowa, T., Horino, T., Yamamoto, M., Ohno, Y., Maekawa, M. & Munakata, M. (1997). Inorg. Chem. 36, 6382-6389.
- Lehn, J. M. (2007). Chem. Rev. 36, 151-160.
- Li, X., Cheng, D. Y., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853-2861.
- Liu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87-89.
- Ma, B. Q., Sun, H. L. & Gao, S. (2005). Chem. Commun. pp. 2336-2338.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem. 36, 576-583.
- Zheng, Y. Q., Sun, J. & Lin, J. L. (2001). Z. Anorg. Allg. Chem. 627, 90-94.

supporting information

Acta Cryst. (2008). E64, m1475 [doi:10.1107/S1600536808032480]

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)(phenylacetato- κO)copper(II) phenylacetate hexahydrate

Bing-Tian Tu, Hong-Zhen Xie, Ying-Tao Ren and Jing-Zhong Chen

S1. Comment

Construction of supramolecular architectures with interesting physical properties has grown rapidly owing to their potential use as new functional materials (Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Kuroda-Sowa *et al.*, 1997; Li *et al.*, 2008). Here, we report a Cu(II) complex $[Cu(C_{12}H_8N_2)_2(C_8H_7O_2)](C_8H_7O_2).6H_2O$ from the self-assembly of Cu(OH)₂, phenylacetatic acid and phenanthroline.

The title compound consists of $[Cu(C_{12}H_8N_2)_2(C_8H_7O_2)]^{2+}$ complex cations, phenylacetate anions, and water molecules of crystallization (Fig.1). The Cu atoms are each coordinated by two phenanthroline ligands and one phenylacetato ligand to complete a square-pyramidal CuN₄O chromophore with the phenylacetic oxygen atom at the equatorial site. The equatorial Cu–N bond lengths fall in the range 2.002–2.060 Å and the Cu–O bond distance is equal to 2.001 (1) Å, while the axial Cu–N bond distance is 2.187 (2) Å. According to Addison's definition (Addison & Rao, 1984), the τ index about the central Cu atom is 0.233 Å, suggesting that the square pyramidal coordination geometry is slightly distorted with the Cu atom deviated from the basal plane by 0.1779 (8) Å towards the apical N1 atom. Within each complex cation, both phenanthroline ligands exhibit nearly perfect coplanarity and constitute an orthogonal system with the coordinating carboxylate group of the phenylacetate anion. The complex cation displays a similar configuration to those observed in a succinato complex [Cu(phen)₂(C₄H₄O₄)] previously reported by us (Zheng et al., 2001) and all the bonding parameters are normal (Baruah et al., 2007). As far as the phenylacetato ligand is concerned, the phenyl plane is found to be nearly perpendicular to the single bonded carbon backbone (dihedral angle: $89.5 (1)^{\circ}$), which is significantly larger than the corresponding one of $68.6 (2)^{\circ}$ in the non-coordinating phenylacetate anion, and the carboxylate group is twisted from the single bonded carbon backbone by 70.4 (2)° in the former coordinating one, and is considerably larger the 60.7 (2)° in the non-coordinating anion. As expected, the C-O bond distance for the coordinating oxygen atom is 1.281 (2) Å, which is longer than those for non-coordinating ones (1.247–1.254 Å). The complex cations are distributed in such a way that the symmetry-related phenanthroline ligands are oriented antiparallel with a mean interplanar distance of 3.39 (2) Å, indicating a significant face-to-face π - π stacking interaction (Sugimori *et al.*, 1997). Owing to such intercationic π - π stacking interactions and weak intercationic C-H···O interactions with the uncoordinating carboxylate oxygen atom, two centrosymmetrically related complex cations form dimers, which are further assembled via interdimeric π - π stacking interactions into 1D chains extending along the [101] direction. Furthermore, the resulting chains are arranged in planes parallel to (010), between which the lattice water molecules and the phenylacetate anions are sandwiched.

Out of the six crystallographically distinct lattice water molecules, three water molecules together with their centrosymmetry-related partners are hydrogen bonded to one another to generate chair-like hexawater clusters (Fig.2), to which the remaining lattice water molecules are associated by hydrogen bonds to complete dodecawater $(H_2O)_{12}$ clusters

similar to those reported in the literature (Liu & Xu, 2005; Ma *et al.*, 2005). The resulting dodecawater $(H_2O)_{12}$ clusters are hydrogen bonded to the carboxylate groups of phenylacetate anions to build up 1D anionic chains propagating along [100]. Between the cationic and anionic chains exist hydrogen bonds from water molecules to the carboxylate oxygen atoms belonging to the phenylacetato ligands.

S2. Experimental

Dropwise addition of 2.0 mL(1.0 M) of NaOH to a aqueous solution of $CuCl_2.2H_2O$ (0.170 g, 1.00 mmol) in 5.0 mL of H_2O gave a blue precipitate, which was separated by centrifugation and washed with water until no Cl anions were detectable in the supernatant. The collected blue precipitate was transferred to a mixture of ethanol and water (1:1 V/V, 10 mL), to which phenanthroline (0.198 g, 1.00 mmol) and phenylacetic acid (0.136 g, 1.00 mmol) were added successively. The resulting blue solution (pH = 7.52) was allowed to stand at room temperature. Blue blocklike crystals were grown by slow evaporation for over 7 days.

S3. Refinement

All H atoms bound to C were positioned geometrically and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Hydrogen atoms attached to O were located in a difference Fourier map and refined isotropically, with the O–H distances restrained to 0.85 (1) Å and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The molecular structure and atom labeling scheme of $[Cu(C_{12}H_8N_2)_2(C_8H_7O_2)](C_8H_7O_2).6H_2O$. H atoms and water molecules are not given. Displacement ellipsoids are drawn at 45%.

Figure 2

A chair-like hexawater clusters composed of three water molecules and their centrosymmetry-related parterners is hydrongen bonded.

$Bis (1, 10-phenanthroline - \kappa^2 N, N') (phenylacetato - \kappa O) copper (II) phenylacetate hexahydrate$

Crystal data

$[Cu(C_8H_7O_2)(C_{12}H_8N_2)_2](C_8H_7O_2) \cdot 6H_2O$	Z = 2
$M_r = 802.33$	F(000) = 838
Triclinic, $P\overline{1}$	$D_x = 1.401 \text{ Mg m}^{-3}$
Hall symbol: -P 1	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
a = 11.499 (2) Å	Cell parameters from 14647 reflections
b = 11.903 (2) Å	$\theta = 3.0-27.5^{\circ}$
c = 16.066 (3) Å	$\mu = 0.64 \text{ mm}^{-1}$
a = 71.00 (3)°	T = 293 K
$\beta = 72.97$ (3)°	Prism, blue
$\gamma = 68.93$ (3)°	$0.37 \times 0.35 \times 0.17 \text{ mm}$
V = 1901.3 (8) Å ³	
Data collection	
Rigaku R-AXIS RAPID	18689 measured reflections
diffractometer	8680 independent reflections
Radiation source: fine-focus sealed tube	7070 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.030$
ω scans	$\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>ABSCOR</i> ; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.793, T_{\max} = 0.902$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
S = 1.08	H-atom parameters constrained
8680 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 1.3044P]$
496 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	<i>x</i>	У	<i>Z</i>	$U_{\rm iso}*/U_{\rm eq}$	
Cu	0.68956 (2)	0.48613 (2)	0.746890 (15)	0.01698 (7)	
N1	0.88512 (16)	0.37869 (15)	0.70294 (11)	0.0202 (3)	
N2	0.75896 (16)	0.62363 (15)	0.66308 (10)	0.0187 (3)	
C1	0.9447 (2)	0.25741 (19)	0.72006 (14)	0.0246 (4)	
H1A	0.8995	0.2027	0.7579	0.030*	
C2	1.0735 (2)	0.2091 (2)	0.68296 (15)	0.0299 (5)	
H2A	1.1123	0.1238	0.6966	0.036*	
C3	1.1417 (2)	0.2876 (2)	0.62679 (14)	0.0282 (5)	
H3A	1.2272	0.2565	0.6024	0.034*	
C4	1.08088 (19)	0.4164 (2)	0.60633 (13)	0.0234 (4)	
C5	1.1439 (2)	0.5061 (2)	0.54605 (13)	0.0263 (5)	
H5A	1.2291	0.4792	0.5192	0.032*	
C6	1.0814 (2)	0.6284 (2)	0.52797 (13)	0.0274 (5)	
H6A	1.1245	0.6846	0.4893	0.033*	
C7	0.9498 (2)	0.6735 (2)	0.56728 (12)	0.0223 (4)	
C8	0.8792 (2)	0.7998 (2)	0.54857 (13)	0.0265 (5)	
H8A	0.9184	0.8592	0.5104	0.032*	
C9	0.7529 (2)	0.8349 (2)	0.58661 (14)	0.0265 (5)	
H9A	0.7059	0.9183	0.5749	0.032*	
C10	0.6947 (2)	0.74424 (19)	0.64352 (13)	0.0228 (4)	
H10A	0.6084	0.7689	0.6685	0.027*	
C11	0.88530 (19)	0.58773 (19)	0.62585 (12)	0.0190 (4)	
C12	0.95214 (19)	0.45701 (19)	0.64659 (12)	0.0192 (4)	
N3	0.71006 (15)	0.52113 (15)	0.85842 (10)	0.0184 (3)	
N4	0.61981 (15)	0.35480 (15)	0.84204 (10)	0.0179 (3)	

C13	0.75535 (19)	0.60510 (19)	0.86524 (14)	0.0234 (4)
H13A	0.7805	0.6612	0.8131	0.028*
C14	0.7671 (2)	0.6132 (2)	0.94739 (15)	0.0276 (5)
H14A	0.8004	0.6728	0.9491	0.033*
C15	0.7289 (2)	0.5323 (2)	1.02531 (14)	0.0267 (5)
H15A	0.7355	0.5369	1.0804	0.032*
C16	0.67958 (19)	0.44215 (19)	1.02106 (13)	0.0215 (4)
C17	0.6358 (2)	0.3548 (2)	1.09815 (13)	0.0255 (4)
H17A	0.6405	0.3554	1.1548	0.031*
C18	0.5875 (2)	0.2709 (2)	1.09022 (13)	0.0253 (4)
H18A	0.5588	0.2156	1.1415	0.030*
C19	0.57996 (18)	0.26646 (18)	1.00364 (13)	0.0204 (4)
C20	0.53024 (19)	0.18274 (18)	0.99020 (13)	0.0236 (4)
H20A	0.4996	0.1256	1.0390	0.028*
C21	0.5275 (2)	0.18630 (19)	0.90460 (14)	0.0241 (4)
H21A	0.4949	0.1316	0.8949	0.029*
C22	0.57429 (19)	0.27314 (18)	0.83178 (13)	0.0219 (4)
H22A	0.5734	0.2736	0.7740	0.026*
C23	0.62315 (17)	0.35128 (17)	0.92720 (12)	0.0169 (4)
C24	0.67262 (18)	0.44035 (18)	0.93590 (12)	0.0180 (4)
01	0.60569 (13)	0.47269 (12)	0.65901 (9)	0.0194 (3)
02	0.46263 (13)	0.63541 (13)	0.70364 (9)	0.0227 (3)
C25	0.49547 (18)	0.55256 (18)	0.66273 (12)	0.0178 (4)
C26	0.40023 (19)	0.53846 (19)	0.62087 (12)	0.0196 (4)
H26A	0.3618	0.6176	0.5828	0.024*
H26B	0.4432	0.4792	0.5841	0.024*
C27	0.29830 (18)	0.49355 (18)	0.69518 (12)	0.0184 (4)
C28	0.19012 (19)	0.57800 (19)	0.72970 (13)	0.0223 (4)
H28A	0.1794	0.6628	0.7065	0.027*
C29	0.0977 (2)	0.5369 (2)	0.79870 (14)	0.0267 (4)
H29A	0.0255	0.5944	0.8212	0.032*
C30	0.1120 (2)	0.4103 (2)	0.83452 (14)	0.0271 (5)
H30A	0.0501	0.3828	0.8808	0.033*
C31	0.2201 (2)	0.3260 (2)	0.79992 (14)	0.0269 (5)
H31A	0.2306	0.2412	0.8232	0.032*
C32	0.3130(2)	0.36672 (19)	0.73082 (13)	0.0226 (4)
H32A	0.3851	0.3092	0.7083	0.027*
03	0.92255 (14)	0.04315 (14)	0.61308 (10)	0.0298 (3)
04	0.74454 (15)	0.07607 (14)	0.71534 (10)	0.0311 (4)
C33	0.8540 (2)	0.01148 (18)	0.68752 (14)	0.0239 (4)
C34	0.9041 (3)	-0.1168 (2)	0.74904 (15)	0.0358 (6)
H34A	0.8474	-0.1657	0.7587	0.043*
H34B	0.9869	-0.1587	0.7186	0.043*
C35	0.9159 (2)	-0.11314 (18)	0.83942 (15)	0.0283 (5)
C36	1.0334 (2)	-0.1482 (2)	0.86166 (17)	0.0370 (6)
H36A	1.1067	-0.1717	0.8196	0.044*
C37	1.0441 (2)	-0.1489 (2)	0.94604 (19)	0.0414 (6)
H37A	1.1241	-0.1726	0.9597	0.050*

C38	0.9367 (2)	-0.1145 (2)	1.00936 (17)	0.0343 (5)
H38A	0.9438	-0.1161	1.0660	0.041*
C39	0.8190 (2)	-0.0779 (2)	0.98804 (15)	0.0320 (5)
H39A	0.7462	-0.0532	1.0301	0.038*
C40	0.8079 (2)	-0.0776 (2)	0.90389 (15)	0.0299 (5)
H40A	0.7277	-0.0535	0.8905	0.036*
O5	0.39349 (18)	1.03378 (16)	0.68444 (12)	0.0399 (4)
H5B	0.3819	0.9842	0.6619	0.048*
H5C	0.4245	1.0861	0.6352	0.048*
O6	0.35322 (16)	0.87072 (14)	0.61361 (12)	0.0356 (4)
H6B	0.3705	0.7956	0.6428	0.043*
H6C	0.2684	0.8806	0.6087	0.043*
07	1.14845 (15)	-0.11805 (14)	0.55998 (10)	0.0307 (3)
H7B	1.0657	-0.0635	0.5770	0.037*
H7C	1.1480	-0.1006	0.5005	0.037*
O8	0.52945 (16)	0.78513 (16)	0.46170 (11)	0.0351 (4)
H8B	0.4871	0.8222	0.5025	0.042*
H8C	0.4789	0.7740	0.4378	0.042*
O9	0.54855 (19)	-0.03208 (19)	0.80451 (11)	0.0478 (5)
H9B	0.5011	-0.0164	0.7692	0.057*
H9C	0.6005	-0.0017	0.7841	0.057*
O10	0.64854 (14)	0.27146 (13)	0.58757 (9)	0.0261 (3)
H10B	0.6377	0.3379	0.6076	0.031*
H10C	0.6953	0.2065	0.6203	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.01848 (13)	0.01903 (12)	0.01421 (11)	-0.01010 (9)	-0.00353 (9)	0.00032 (9)
N1	0.0194 (8)	0.0230 (8)	0.0198 (8)	-0.0072 (7)	-0.0056 (7)	-0.0048 (7)
N2	0.0204 (8)	0.0226 (8)	0.0146 (7)	-0.0111 (7)	-0.0037 (6)	-0.0010 (7)
C1	0.0251 (11)	0.0232 (10)	0.0267 (10)	-0.0075 (9)	-0.0077 (9)	-0.0048 (9)
C2	0.0268 (11)	0.0281 (11)	0.0364 (12)	-0.0003 (9)	-0.0133 (10)	-0.0123 (10)
C3	0.0190 (10)	0.0410 (13)	0.0285 (11)	-0.0049 (9)	-0.0070 (9)	-0.0158 (10)
C4	0.0196 (10)	0.0378 (12)	0.0194 (9)	-0.0108 (9)	-0.0043 (8)	-0.0127 (9)
C5	0.0195 (10)	0.0486 (14)	0.0180 (9)	-0.0175 (10)	-0.0001 (8)	-0.0123 (10)
C6	0.0274 (11)	0.0469 (13)	0.0165 (9)	-0.0255 (10)	-0.0008 (8)	-0.0057 (9)
C7	0.0266 (11)	0.0336 (11)	0.0131 (8)	-0.0187 (9)	-0.0036 (8)	-0.0032 (8)
C8	0.0375 (12)	0.0311 (11)	0.0178 (9)	-0.0242 (10)	-0.0061 (9)	0.0015 (9)
C9	0.0346 (12)	0.0238 (10)	0.0233 (10)	-0.0147 (9)	-0.0096 (9)	0.0017 (9)
C10	0.0252 (11)	0.0233 (10)	0.0206 (9)	-0.0105 (8)	-0.0060 (8)	-0.0013 (8)
C11	0.0214 (10)	0.0280 (10)	0.0126 (8)	-0.0123 (8)	-0.0046 (7)	-0.0048 (8)
C12	0.0202 (10)	0.0272 (10)	0.0145 (8)	-0.0106 (8)	-0.0047 (7)	-0.0054 (8)
N3	0.0163 (8)	0.0219 (8)	0.0181 (8)	-0.0073 (7)	-0.0038 (6)	-0.0039 (7)
N4	0.0175 (8)	0.0192 (8)	0.0169 (7)	-0.0076 (7)	-0.0032 (6)	-0.0018 (7)
C13	0.0219 (10)	0.0255 (10)	0.0235 (10)	-0.0113 (8)	-0.0045 (8)	-0.0022 (9)
C14	0.0246 (11)	0.0327 (11)	0.0336 (11)	-0.0123 (9)	-0.0065 (9)	-0.0137 (10)
C15	0.0223 (11)	0.0344 (12)	0.0261 (10)	-0.0031 (9)	-0.0073 (9)	-0.0145 (10)

C16	0.0161 (9)	0.0265 (10)	0.0183 (9)	-0.0016 (8)	-0.0026 (7)	-0.0067 (8)
C17	0.0234 (11)	0.0313 (11)	0.0159 (9)	-0.0018 (9)	-0.0042 (8)	-0.0048 (9)
C18	0.0226 (10)	0.0280 (11)	0.0161 (9)	-0.0039 (9)	-0.0012 (8)	0.0001 (8)
C19	0.0161 (9)	0.0205 (9)	0.0172 (9)	-0.0027 (8)	-0.0012 (7)	-0.0001 (8)
C20	0.0210 (10)	0.0187 (9)	0.0222 (10)	-0.0065 (8)	-0.0009 (8)	0.0040 (8)
C21	0.0236 (11)	0.0204 (10)	0.0282 (10)	-0.0101 (8)	-0.0054 (9)	-0.0017 (9)
C22	0.0227 (10)	0.0236 (10)	0.0205 (9)	-0.0090 (8)	-0.0046 (8)	-0.0039 (8)
C23	0.0131 (9)	0.0184 (9)	0.0148 (8)	-0.0026 (7)	-0.0025 (7)	-0.0012 (7)
C24	0.0132 (9)	0.0201 (9)	0.0174 (9)	-0.0015 (7)	-0.0035 (7)	-0.0038 (8)
01	0.0204 (7)	0.0212 (7)	0.0170 (6)	-0.0089 (6)	-0.0052 (5)	-0.0010 (6)
O2	0.0237 (7)	0.0284 (7)	0.0179 (6)	-0.0100 (6)	-0.0019 (6)	-0.0076 (6)
C25	0.0195 (10)	0.0213 (9)	0.0107 (8)	-0.0101 (8)	-0.0012 (7)	0.0016 (7)
C26	0.0199 (10)	0.0236 (10)	0.0155 (9)	-0.0066 (8)	-0.0056 (7)	-0.0030 (8)
C27	0.0194 (10)	0.0228 (9)	0.0162 (8)	-0.0084 (8)	-0.0084 (7)	-0.0019 (8)
C28	0.0211 (10)	0.0230 (10)	0.0231 (10)	-0.0075 (8)	-0.0059 (8)	-0.0034 (8)
C29	0.0183 (10)	0.0347 (12)	0.0275 (10)	-0.0077 (9)	-0.0032 (8)	-0.0095 (9)
C30	0.0255 (11)	0.0383 (12)	0.0211 (10)	-0.0202 (10)	-0.0038 (8)	-0.0007 (9)
C31	0.0356 (12)	0.0244 (10)	0.0251 (10)	-0.0168 (9)	-0.0131 (9)	0.0034 (9)
C32	0.0239 (10)	0.0225 (10)	0.0229 (10)	-0.0058 (8)	-0.0089 (8)	-0.0048 (8)
O3	0.0261 (8)	0.0244 (8)	0.0299 (8)	-0.0068 (6)	-0.0034 (6)	0.0023 (7)
O4	0.0313 (9)	0.0238 (8)	0.0272 (8)	-0.0068 (7)	-0.0010 (7)	0.0023 (6)
C33	0.0302 (11)	0.0166 (9)	0.0239 (10)	-0.0085 (9)	-0.0076 (9)	-0.0001 (8)
C34	0.0529 (16)	0.0179 (10)	0.0274 (11)	-0.0038 (10)	-0.0079 (11)	-0.0012 (9)
C35	0.0354 (12)	0.0139 (9)	0.0286 (11)	-0.0048 (9)	-0.0056 (9)	0.0006 (9)
C36	0.0304 (13)	0.0282 (12)	0.0446 (14)	-0.0035 (10)	-0.0012 (11)	-0.0101 (11)
C37	0.0309 (13)	0.0395 (14)	0.0561 (16)	-0.0032 (11)	-0.0164 (12)	-0.0156 (13)
C38	0.0400 (14)	0.0268 (11)	0.0363 (12)	-0.0072 (10)	-0.0150 (11)	-0.0041 (10)
C39	0.0330 (12)	0.0288 (11)	0.0256 (11)	-0.0069 (10)	-0.0035 (9)	-0.0002 (9)
C40	0.0274 (11)	0.0268 (11)	0.0275 (11)	-0.0052 (9)	-0.0078 (9)	0.0026 (9)
05	0.0506 (11)	0.0361 (9)	0.0412 (9)	-0.0205 (8)	-0.0180 (8)	-0.0034 (8)
O6	0.0385 (9)	0.0259 (8)	0.0460 (10)	-0.0092 (7)	-0.0167 (8)	-0.0065 (7)
O7	0.0279 (8)	0.0314 (8)	0.0277 (8)	-0.0047 (7)	-0.0064 (6)	-0.0044 (7)
08	0.0335 (9)	0.0430 (10)	0.0340 (8)	-0.0173 (8)	-0.0045 (7)	-0.0114 (8)
O9	0.0638 (13)	0.0678 (13)	0.0242 (8)	-0.0491 (11)	-0.0145 (8)	0.0113 (8)
O10	0.0317 (8)	0.0221 (7)	0.0245 (7)	-0.0073 (6)	-0.0095 (6)	-0.0031 (6)

Geometric parameters (Å, °)

Cu—N2	2.0009 (18)	C21—H21A	0.9300
Cu—O1	2.0011 (14)	C22—H22A	0.9300
Cu—N4	2.0128 (17)	C23—C24	1.430 (3)
Cu—N3	2.0600 (16)	O1—C25	1.281 (2)
Cu—N1	2.1866 (19)	O2—C25	1.247 (2)
N1—C1	1.330 (3)	C25—C26	1.522 (3)
N1—C12	1.357 (3)	C26—C27	1.517 (3)
N2-C10	1.336 (3)	C26—H26A	0.9700
N2-C11	1.365 (3)	C26—H26B	0.9700
C1—C2	1.405 (3)	C27—C28	1.388 (3)

C1—H1A	0.9300	C27—C32	1.395 (3)
C2—C3	1.366 (3)	C28—C29	1.389 (3)
C2—H2A	0.9300	C28—H28A	0.9300
C3—C4	1.408 (3)	C29—C30	1.393 (3)
С3—НЗА	0.9300	С29—Н29А	0.9300
C4—C12	1.404 (3)	C30—C31	1.387 (3)
C4—C5	1.441 (3)	С30—Н30А	0.9300
C5—C6	1.347 (3)	C31—C32	1.391 (3)
C5—H5A	0.9300	C31—H31A	0.9300
C6—C7	1434(3)	C_{32} H37A	0.9300
С6—Н6А	0.9300	03-033	1.250(3)
C7 C8	1.407(3)	$04 - C^{33}$	1.250(3)
$C_{7} = C_{8}$	1.407(3)	C_{1}^{22} C_{24}^{24}	1.234(3)
C^{2}	1.410(3) 1.266(2)	$C_{33} = C_{34}$	1.550(5)
	1.300 (3)	C34—C35	1.513 (3)
C8—H8A	0.9300	C34—H34A	0.9700
C9—C10	1.403 (3)	С34—Н34В	0.9700
С9—Н9А	0.9300	C35—C36	1.382 (3)
C10—H10A	0.9300	C35—C40	1.395 (3)
C11—C12	1.441 (3)	C36—C37	1.394 (4)
N3—C13	1.327 (3)	C36—H36A	0.9300
N3—C24	1.365 (3)	C37—C38	1.378 (4)
N4—C22	1.329 (2)	С37—Н37А	0.9300
N4—C23	1.367 (2)	C38—C39	1.375 (3)
C13—C14	1.402 (3)	C38—H38A	0.9300
C13—H13A	0.9300	C39—C40	1.393 (3)
C14—C15	1.373 (3)	С39—Н39А	0.9300
C14—H14A	0.9300	C40—H40A	0.9300
C15—C16	1.409 (3)	O5—H5B	0.8492
C15—H15A	0.9300	O5—H5C	0.9025
C16—C24	1.401 (3)	O6—H6B	0.8443
C16—C17	1.429 (3)	06—H6C	0.9634
C17—C18	1 359 (3)	07—H7B	0.9596
C17—H17A	0.9300	07—H7C	0.9107
C18 - C19	1 438 (3)	08—H8B	0.8418
C18 H18A	0.0300		0.8508
C10 C23	1.404(3)	00 H0B	0.8308
$C_{19} = C_{23}$	1.404(3)		0.8328
$C_{19} = C_{20}$	1.410(3)		0.7473
	1.371 (3)		0.9033
C20—H20A	0.9300	010—HIOC	0.8749
C21—C22	1.404 (3)		
N2—Cu—O1	95.38 (6)	C20—C19—C18	124.14 (18)
N2—Cu—N4	173.84 (6)	C21—C20—C19	119.44 (18)
01—Cu—N4	90.11 (6)	C21—C20—H20A	120.3
N2-Cu-N3	92.59(7)	C19—C20—H20A	120.3
01_Cu_N3	159.85 (6)	C_{20} C_{21} C_{22}	119 49 (10)
N4_Cu_N3	81 31 (7)	C_{20} C_{21} H_{21}	120.3
N2_Cu_N1	80.25 (7)	$C_{22} = C_{21} = H_{21} A$	120.3
112 UU IVI	00.20 (1)	$022 - 021 - 1121\Lambda$	140.5

O1—Cu—N1	99.99 (6)	N4—C22—C21	122.70 (18)
N4—Cu—N1	101.58 (7)	N4—C22—H22A	118.7
N3—Cu—N1	99.58 (7)	C21—C22—H22A	118.7
C1—N1—C12	118.02 (18)	N4—C23—C19	123.02 (18)
C1—N1—Cu	132.56 (14)	N4—C23—C24	116.59 (16)
C12—N1—Cu	109.42 (13)	C19—C23—C24	120.39 (17)
C10—N2—C11	118.72 (17)	N3—C24—C16	123.45 (18)
C10—N2—Cu	126.25 (14)	N3—C24—C23	116.65 (17)
C11—N2—Cu	114.99 (13)	C16—C24—C23	119.90 (18)
N1-C1-C2	122.3 (2)	C25—O1—Cu	108.11 (12)
N1—C1—H1A	118.8	02-C25-01	122.11 (18)
C2-C1-H1A	118.8	02-C25-C26	119.94 (18)
$C_3 - C_2 - C_1$	119.9 (2)	$01 - C^{25} - C^{26}$	117.82 (17)
$C_3 - C_2 - H_2 A$	120.1	C_{27} C_{26} C_{25}	108.99(15)
C1 - C2 - H2A	120.1	C27—C26—H26A	109.9
$C^2 - C^3 - C^4$	119.2 (2)	C_{25} C_{26} H_{26A}	109.9
$C_2 = C_3 = H_3 A$	120.4	C_{27} C_{26} H_{26B}	109.9
C4 - C3 - H3A	120.4	$C_{25} = C_{26} = H_{26B}$	109.9
$C_{12} C_{4} C_{3}$	1173(2)	$H_{26}^{-} = C_{26}^{-} = H_{26B}^{-}$	108.3
$C_{12} = C_{4} = C_{5}$	117.5(2) 110 5 (2)	C_{28} C_{27} C_{32}	110.05 (10)
$C_{12} - C_{4} - C_{5}$	123 19 (19)	$C_{28} = C_{27} = C_{32}$	120.48(18)
$C_{5} = C_{4} = C_{5}$	125.15(19) 121.05(19)	$C_{20} = C_{27} = C_{20}$	120.43(18) 120.47(18)
C_{0}	110.5	$C_{32} = C_{27} = C_{20}$	120.47(10)
C_{0}	119.5	$C_{27} = C_{28} = C_{29}$	120.3 (2)
$C_4 = C_5 = C_7$	119.5	$C_{20} = C_{20} = H_{20}$	119.0
$C_{5} = C_{6} = U_{6}$	121.2(2)	$C_{29} = C_{20} = C_{20}$	119.6
C_{3}	119.4	$C_{28} = C_{29} = C_{30}$	120.0 (2)
$C^{2} = C^{2} = C^{11}$	117.4	$C_{20} = C_{20} = H_{20A}$	119.7
C_{8}	117.52(19) 122.42(10)	$C_{30} = C_{29} = H_{29A}$	119.7
	123.42 (19)	$C_{31} = C_{30} = C_{29}$	118.83 (19)
$C_1 = C_2 = C_2$	119.0 (2)	$C_{31} = C_{30} = H_{30A}$	120.6
C9—C8—C/	119.88 (19)	C29—C30—H30A	120.6
C9—C8—H8A	120.1	$C_{30} = C_{31} = C_{32}$	120.7 (2)
C/C8H8A	120.1	C30—C31—H31A	119.6
C8—C9—C10	119.5 (2)	С32—С31—Н31А	119.6
C8—C9—H9A	120.3	C31—C32—C27	120.3 (2)
С10—С9—Н9А	120.3	С31—С32—Н32А	119.9
N2—C10—C9	122.2 (2)	С27—С32—Н32А	119.9
N2—C10—H10A	118.9	O3—C33—O4	124.60 (19)
C9—C10—H10A	118.9	O3—C33—C34	118.50 (19)
N2—C11—C7	122.18 (19)	O4—C33—C34	116.88 (19)
N2-C11-C12	117.75 (17)	C35—C34—C33	114.35 (18)
C7—C11—C12	120.06 (18)	C35—C34—H34A	108.7
N1—C12—C4	123.28 (19)	C33—C34—H34A	108.7
N1—C12—C11	117.49 (17)	C35—C34—H34B	108.7
C4—C12—C11	119.20 (18)	C33—C34—H34B	108.7
C13—N3—C24	117.51 (17)	H34A—C34—H34B	107.6
C13—N3—Cu	130.54 (14)	C36—C35—C40	118.0 (2)
C24—N3—Cu	111.93 (12)	C36—C35—C34	121.2 (2)

C22—N4—C23	118.00 (17)	C40—C35—C34	120.9 (2)
C22—N4—Cu	128.52 (13)	C35—C36—C37	121.2 (2)
C23—N4—Cu	113.47 (12)	С35—С36—Н36А	119.4
N3—C13—C14	123.11 (19)	С37—С36—Н36А	119.4
N3—C13—H13A	118.4	C38—C37—C36	120.3 (2)
C14—C13—H13A	118.4	С38—С37—Н37А	119.8
C15—C14—C13	119.33 (19)	С36—С37—Н37А	119.8
C15—C14—H14A	120.3	C39—C38—C37	119.4 (2)
C13—C14—H14A	120.3	С39—С38—Н38А	120.3
C14—C15—C16	119.35 (19)	С37—С38—Н38А	120.3
C14—C15—H15A	120.3	C38—C39—C40	120.5 (2)
C16—C15—H15A	120.3	С38—С39—Н39А	119.8
C24—C16—C15	117.25 (19)	С40—С39—Н39А	119.8
C24—C16—C17	119.03 (19)	C39—C40—C35	120.8 (2)
C15—C16—C17	123.72 (19)	C39—C40—H40A	119.6
C18—C17—C16	121.23 (19)	С35—С40—Н40А	119.6
C18—C17—H17A	119.4	H5B—O5—H5C	102.2
C16—C17—H17A	119.4	H6B—O6—H6C	97.9
C17—C18—C19	120.92 (19)	H7B—O7—H7C	97.3
C17—C18—H18A	119.5	H8B—O8—H8C	109.3
C19—C18—H18A	119.5	H9B—O9—H9C	112.4
C23—C19—C20	117.33 (18)	H10B-010-H10C	107.4
C23—C19—C18	118.53 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O5—H5 <i>B</i> ···O6	0.849	1.920	2.769 (3)	178.64
O5—H5 <i>C</i> ···O8 ⁱ	0.902	1.898	2.794 (3)	171.66
O6—H6 <i>B</i> ···O2	0.844	1.912	2.723 (2)	160.78
О6—H6 <i>C</i> …О7 ^{іі}	0.963	1.767	2.682 (3)	157.25
О7—H7 <i>B</i> ···O3	0.960	1.754	2.710 (2)	173.79
О7—H7 <i>C</i> ⋯О3 ^{ііі}	0.911	2.028	2.896 (2)	158.83
O8—H8 <i>B</i> …O6	0.842	2.076	2.888 (3)	161.67
O8—H8 <i>C</i> ···O10 ^{iv}	0.851	1.915	2.749 (3)	166.41
О9—H9 <i>B</i> ⋯О5 ^v	0.833	1.915	2.746 (3)	175.07
О9—H9 <i>C</i> ⋯О4	0.747	2.046	2.790 (3)	173.58
O10—H10B…O1	0.903	1.911	2.812 (2)	175.12
O10—H10 <i>C</i> ···O4	0.875	1.842	2.686 (2)	161.44

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*-1, *y*+1, *z*; (iii) -*x*+2, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*-1, *z*.