

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(Pyrazin-2-yl)aniline

Wan Ainna Mardhiah Wan Saffiee, Azila Idris, Zanariah Abdullah, Zaharah Aiyub and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 September 2008; accepted 4 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.101; data-to-parameter ratio = 15.9.

The two aromatic rings in the title compound, $C_{10}H_9N_3$, are inclined at 15.2 (1)° to each other; this opens up the angle at the amino N atom to 130.4 (1)°. The amino N atom forms a hydrogen bond to the 4-N atom of an adjacent molecule to create a chain motif.

Related literature

For the structure of aminopyrazine, see: Chao *et al.* (1976). For the structure of 2-pyrazinyl-*N*-2-nitrophenylaniline; see: Parsons *et al.* (2006).

b = 7.8423 (3) Å

c = 10.8907 (3) Å

 $\beta = 116.439 \ (2)^{\circ}$

V = 846.15 (5) Å³

Experimental

Crystal data

$C_{10}H_9N_3$	
$M_r = 171.20$	
Monoclinic, $P2_1/c$	
a = 11.0644 (3) Å	

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 5664 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.101$ S = 1.031934 reflections 122 parameters 1 restraint

Table 1 Hydrogen-bond geometry (Å, °).

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2121).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chao, M., Schempp, E. & Rosenstein, R. D. (1976). *Acta Cryst.* B**32**, 288–290. Parsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006).
- Private communication (Deposition No. 610410). CCDC, Union Road, Cambridge, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2008). *publCIF*. In preparation.

organic compounds

1934 independent reflections

1463 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 100 (2) K $0.20 \times 0.10 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.033$

refinement $\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2008). E64, o2105 [doi:10.1107/S1600536808031942]

N-(Pyrazin-2-yl)aniline

Wan Ainna Mardhiah Wan Saffiee, Azila Idris, Zanariah Abdullah, Zaharah Aiyub and Seik Weng Ng

S1. Comment

There are few structural examples of pyrazine compounds having an amino substituent; these are limited to, for example, aminopyrazine (Chao *et al.*, 1976) and pyrazinyl-*N*-2-nitrophenylaniline (Parsons *et al.*, 2006). In the title compound (Scheme I, Fig. 1), the two aromatic rings are aligned at $15.2 (1)^{\circ}$; these open up the angle at the amino nitrogen to 130.4 (1) °. The amino nitrogen forms a hydrogen bond to the 4-nitrogen atom of an adjacent molecule to furnish a chain motif.

S2. Experimental

Chloropyrazine (1 ml, 1.1 mmol) and aniline (1 ml, 1.1 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water. The compound was extracted with ether. The ether extract was dried over sodium sulfate; evaporation of the solvent gave a colorless crystals among some unidentified dark brown materials.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88 (1) Å.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_9N_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

N-(pyrazin-2-yl)aniline

Crystal data

C₁₀H₉N₃ $M_r = 171.20$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.0644 (3) Å b = 7.8423 (3) Å c = 10.8907 (3) Å $\beta = 116.439$ (2)° V = 846.15 (5) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 5664 measured reflections 1934 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.101$ S = 1.031934 reflections 122 parameters 1 restraint F(000) = 360 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3723 reflections $\theta = 3.3-26.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.20 \times 0.10 \times 0.05 \text{ mm}$

1463 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.3^\circ$ $h = -14 \rightarrow 14$ $k = -10 \rightarrow 10$ $l = -14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 + 0.247P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.36080 (11)	0.49391 (15)	0.56127 (12)	0.0188 (3)	
H1	0.4485 (9)	0.479 (2)	0.6153 (13)	0.024 (4)*	
N2	0.36741 (11)	0.89784 (15)	0.72193 (11)	0.0205 (3)	
N3	0.18404 (11)	0.69151 (16)	0.51024 (12)	0.0221 (3)	
C1	0.29407 (14)	0.36077 (18)	0.46992 (13)	0.0181 (3)	
C2	0.37632 (14)	0.23785 (18)	0.45198 (14)	0.0201 (3)	
H2	0.4717	0.2479	0.5007	0.024*	
C3	0.32046 (15)	0.1019 (2)	0.36410 (15)	0.0246 (3)	
Н3	0.3775	0.0188	0.3534	0.029*	
C4	0.18124 (15)	0.0862 (2)	0.29138 (15)	0.0255 (3)	
H4	0.1427	-0.0058	0.2293	0.031*	
C5	0.09930 (14)	0.20604 (19)	0.31037 (14)	0.0235 (3)	
Н5	0.0040	0.1948	0.2617	0.028*	
C6	0.15425 (14)	0.34292 (18)	0.39962 (14)	0.0204 (3)	
H6	0.0969	0.4236	0.4125	0.025*	
C7	0.31216 (13)	0.64466 (17)	0.58462 (13)	0.0174 (3)	
C8	0.40342 (13)	0.74982 (17)	0.69058 (14)	0.0184 (3)	
H8	0.4941	0.7127	0.7412	0.022*	
C9	0.23812 (14)	0.94629 (19)	0.64641 (14)	0.0232 (3)	
H9	0.2078	1.0522	0.6649	0.028*	
C10	0.14961 (14)	0.84350 (19)	0.54274 (15)	0.0245 (3)	
H10	0.0594	0.8820	0.4914	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0140 (6)	0.0182 (6)	0.0186 (6)	0.0013 (5)	0.0023 (5)	-0.0019 (5)
N2	0.0201 (6)	0.0197 (6)	0.0210 (6)	-0.0006 (5)	0.0085 (5)	-0.0008 (5)
N3	0.0182 (6)	0.0214 (7)	0.0220 (6)	0.0020 (5)	0.0048 (5)	-0.0008 (5)
C1	0.0201 (7)	0.0171 (7)	0.0147 (6)	-0.0012 (5)	0.0057 (5)	0.0009 (5)
C2	0.0176 (7)	0.0223 (8)	0.0194 (7)	-0.0005 (6)	0.0074 (6)	0.0000 (6)
C3	0.0285 (8)	0.0227 (8)	0.0257 (8)	-0.0008 (6)	0.0150 (6)	-0.0045 (6)
C4	0.0286 (8)	0.0236 (8)	0.0233 (7)	-0.0072 (6)	0.0108 (6)	-0.0075 (6)
C5	0.0197 (7)	0.0251 (8)	0.0214 (7)	-0.0047 (6)	0.0051 (6)	-0.0003 (6)
C6	0.0189 (7)	0.0197 (7)	0.0194 (7)	-0.0005 (6)	0.0056 (6)	0.0008 (6)
C7	0.0180 (7)	0.0175 (7)	0.0164 (7)	-0.0003 (5)	0.0073 (5)	0.0019 (5)
C8	0.0155 (6)	0.0193 (7)	0.0187 (7)	0.0006 (5)	0.0060 (5)	0.0019 (5)
C9	0.0215 (7)	0.0211 (7)	0.0250 (7)	0.0039 (6)	0.0087 (6)	-0.0015 (6)
C10	0.0191 (7)	0.0237 (8)	0.0266 (8)	0.0058 (6)	0.0065 (6)	-0.0001(6)

Geometric parameters (Å, °)

N1—C7	1.3689 (17)	С3—Н3	0.9500
N1—C1	1.4039 (17)	C4—C5	1.384 (2)
N1—H1	0.891 (9)	C4—H4	0.9500
N2—C8	1.3207 (18)	C5—C6	1.393 (2)
N2—C9	1.3488 (17)	С5—Н5	0.9500
N3—C7	1.3335 (17)	С6—Н6	0.9500
N3—C10	1.3458 (19)	C7—C8	1.4120 (19)
C1—C6	1.3944 (18)	С8—Н8	0.9500
C1—C2	1.3978 (19)	C9—C10	1.378 (2)
C2—C3	1.381 (2)	С9—Н9	0.9500
С2—Н2	0.9500	C10—H10	0.9500
C3—C4	1.389 (2)		
C7—N1—C1	130.38 (12)	С4—С5—Н5	119.5
C7—N1—H1	113.3 (10)	С6—С5—Н5	119.5
C1—N1—H1	116.3 (10)	C5—C6—C1	119.56 (13)
C8—N2—C9	116.75 (12)	С5—С6—Н6	120.2
C7—N3—C10	115.67 (12)	С1—С6—Н6	120.2
C6—C1—C2	119.09 (13)	N3—C7—N1	121.64 (12)
C6—C1—N1	124.65 (13)	N3—C7—C8	121.03 (12)
C2-C1-N1	116.25 (12)	N1—C7—C8	117.32 (12)
C3—C2—C1	120.72 (13)	N2—C8—C7	122.44 (12)
С3—С2—Н2	119.6	N2—C8—H8	118.8
С1—С2—Н2	119.6	С7—С8—Н8	118.8
C2—C3—C4	120.26 (14)	N2	120.58 (13)
С2—С3—Н3	119.9	N2—C9—H9	119.7
С4—С3—Н3	119.9	С10—С9—Н9	119.7
C5—C4—C3	119.26 (14)	N3-C10-C9	123.53 (13)
C5—C4—H4	120.4	N3—C10—H10	118.2
C3—C4—H4	120.4	C9—C10—H10	118.2
C4—C5—C6	121.08 (13)		
C7—N1—C1—C6	-12.7 (2)	C10—N3—C7—N1	-179.30 (12)
C7—N1—C1—C2	168.41 (13)	C10—N3—C7—C8	0.36 (19)
C6—C1—C2—C3	1.1 (2)	C1—N1—C7—N3	-4.2 (2)
N1—C1—C2—C3	-179.89 (12)	C1—N1—C7—C8	176.09 (13)
C1—C2—C3—C4	0.5 (2)	C9—N2—C8—C7	-0.73 (19)
C2—C3—C4—C5	-1.5(2)	N3-C7-C8-N2	0.3 (2)
C3—C4—C5—C6	0.9 (2)	N1—C7—C8—N2	-179.99 (12)
C4—C5—C6—C1	0.7 (2)	C8—N2—C9—C10	0.4 (2)
C2-C1-C6-C5	-1.7 (2)	C7—N3—C10—C9	-0.7 (2)
N1—C1—C6—C5	179.40 (13)	N2-C9-C10-N3	0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1····N2 ⁱ	0.89 (1)	2.12 (1)	2.977 (2)	162 (1)

Symmetry code: (i) -x+1, y-1/2, -z+3/2.