metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridylmethyl­ene­amino)benzene­sulfonato-κ3N,N′,O]cadmium(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and bSchool of Medicine, Shao Yang Medical College, Shaoyang 422000, People's Republic of China
*Correspondence e-mail: ouyangmiao123456@126.com

(Received 13 September 2008; accepted 21 October 2008; online 25 October 2008)

The title complex, [Cd(Paba)2]·2H2O or [Cd(C12H9N2O3S)2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid (PabaK) with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. There are extensive hydrogen bonds of the type O—H⋯O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001).

Related literature

For the isostructural Zn compound, see: Cai et al. (2008[Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.]). For synthesis of the ligand, see: Casella & Gullotti (1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H9N2O3S)2]·2H2O

  • Mr = 670.98

  • Orthorhombic, P b c n

  • a = 20.255 (4) Å

  • b = 7.8924 (17) Å

  • c = 16.475 (3) Å

  • V = 2633.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 291 (2) K

  • 0.23 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.950

  • 18106 measured reflections

  • 2443 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.04

  • 2443 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2W⋯O3i 0.83 2.27 2.968 (5) 142
O4—H1W⋯O1 0.85 2.01 2.863 (5) 179
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex (Fig. 1) is isostructural with [Zn(Paba)2].2H2O, whose structure has been described in detail (Cai, et al., 2008). The six-coordinated CdII lies on a crystallographic 2-fold axis of rotation and two deprotonated PabaH anions coordinate to CdII in a facial arrangement as N,N',O-tridentate donor ligands.

The O—H donor group of the guest waters and the S=O acceptor group of the Paba ligands participate in the hydrogen bonding and form a two-dimensional network in the ab plane (Fig. 2).

Related literature top

For general background, see: Cai et al. (2008); Casella & Gullotti (1986).

Experimental top

The potassium salt of 2-(2- pyridylmethyleneamino)benzenesulfonic acid(PabaK) was synthesized according to the literature methods (Casella & Gullotti, 1986).

For the preparation of the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml) at 333 K and an aqueous solution (10 ml) containing CdCl2.2.5H2O (0.5 mmol, 0.12 g) was added. The resulting mixture was stirred at 333 K for 4 h. Then the mixture was filtrated and the filtrate was left to stand at room temperature. Yellow crystals suitable for X-ray diffraction were obtained after a week in a yield of 35%. Elemental analysis,.found (%): C, 46.91; H, 3.36; N, 8.30; S, 9.45; calc (%): C, 42.96; H, 3.31; N, 8.35; S, 9.56.

Refinement top

H atoms bonded to C were positioned geometrically with C—H distance 0.93 Å, and treated as riding atoms,with Uiso(H)= 1.2Ueq(C). Water hydrogens were placed in fixed positions and assigned Uiso values of 1.5 Ueq of the water oxygen atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (30% probability) showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: 1# -x + 1, y, -z + 3/2.
[Figure 2] Fig. 2. 2-D network, as viewed down the c axis. Dashed lines indicate hydrogen bonds.
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- κ3N,N',O]cadmium(II) dihydrate top
Crystal data top
[Cd(C12H9N2O3S)2]·2H2OF(000) = 1352
Mr = 670.98Dx = 1.692 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2541 reflections
a = 20.255 (4) Åθ = 2.5–23.2°
b = 7.8924 (17) ŵ = 1.04 mm1
c = 16.475 (3) ÅT = 291 K
V = 2633.7 (9) Å3Block, colourless
Z = 40.23 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.798, Tmax = 0.950k = 99
18106 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0212P)2 + 3.1957P]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cd(C12H9N2O3S)2]·2H2OV = 2633.7 (9) Å3
Mr = 670.98Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 20.255 (4) ŵ = 1.04 mm1
b = 7.8924 (17) ÅT = 291 K
c = 16.475 (3) Å0.23 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1672 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.950Rint = 0.075
18106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2443 reflectionsΔρmin = 0.33 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.68040 (5)0.75000.03074 (13)
S20.62752 (5)0.83468 (15)0.66388 (6)0.0372 (3)
N10.59409 (15)0.7358 (4)0.83494 (18)0.0302 (7)
C120.60345 (19)0.6263 (5)0.8904 (2)0.0382 (10)
H120.63930.63810.92530.046*
N30.50869 (16)0.4691 (4)0.84673 (18)0.0373 (8)
O10.64757 (15)0.6598 (4)0.67446 (17)0.0523 (8)
O20.55529 (12)0.8506 (4)0.66248 (15)0.0413 (7)
O30.65696 (14)0.9203 (4)0.59556 (16)0.0509 (8)
O40.69916 (18)0.4179 (6)0.5615 (2)0.1121 (17)
H1W0.68400.49040.59480.168*
H2W0.73240.37780.58330.168*
C10.65210 (16)0.9451 (5)0.7530 (3)0.0342 (9)
C20.63521 (18)0.8827 (5)0.8292 (2)0.0319 (9)
C30.6563 (2)0.9697 (6)0.8973 (3)0.0455 (11)
H30.64620.92810.94860.055*
C40.6920 (2)1.1170 (6)0.8899 (3)0.0552 (13)
H40.70571.17480.93610.066*
C50.7074 (2)1.1785 (6)0.8147 (3)0.0561 (13)
H50.73101.27900.80990.067*
C60.6880 (2)1.0922 (5)0.7457 (3)0.0481 (11)
H60.69921.13330.69470.058*
C70.55885 (19)0.4823 (5)0.9002 (2)0.0334 (9)
C80.5667 (2)0.3684 (5)0.9628 (2)0.0445 (11)
H80.60200.37800.99850.053*
C90.5212 (2)0.2402 (6)0.9716 (3)0.0520 (13)
H90.52530.16251.01380.062*
C100.4700 (2)0.2279 (5)0.9178 (3)0.0491 (12)
H100.43870.14240.92320.059*
C110.4654 (2)0.3423 (6)0.8565 (3)0.0465 (11)
H110.43080.33220.81970.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0291 (2)0.0362 (2)0.0269 (2)0.0000.00588 (19)0.000
S20.0355 (6)0.0497 (7)0.0265 (5)0.0025 (6)0.0008 (4)0.0002 (5)
N10.0246 (16)0.0403 (19)0.0257 (17)0.0062 (15)0.0016 (14)0.0016 (16)
C120.032 (2)0.055 (3)0.027 (2)0.000 (2)0.0072 (18)0.001 (2)
N30.043 (2)0.0398 (19)0.0289 (17)0.0012 (18)0.0090 (17)0.0029 (15)
O10.065 (2)0.047 (2)0.0442 (18)0.0116 (16)0.0022 (15)0.0107 (15)
O20.0329 (15)0.059 (2)0.0322 (15)0.0061 (14)0.0076 (12)0.0112 (14)
O30.0464 (18)0.077 (2)0.0296 (16)0.0113 (17)0.0048 (14)0.0037 (16)
O40.066 (2)0.168 (4)0.102 (3)0.043 (3)0.025 (2)0.068 (3)
C10.0245 (18)0.044 (2)0.034 (2)0.0008 (16)0.004 (2)0.004 (2)
C20.024 (2)0.037 (2)0.034 (2)0.0001 (18)0.0021 (18)0.0005 (19)
C30.042 (3)0.062 (3)0.032 (2)0.007 (2)0.001 (2)0.004 (2)
C40.053 (3)0.070 (3)0.043 (3)0.020 (3)0.002 (2)0.019 (2)
C50.048 (3)0.058 (3)0.062 (3)0.026 (3)0.002 (2)0.011 (3)
C60.042 (2)0.057 (3)0.045 (3)0.012 (2)0.001 (2)0.000 (3)
C70.035 (2)0.036 (2)0.029 (2)0.0003 (19)0.0025 (18)0.0014 (18)
C80.052 (3)0.047 (3)0.035 (2)0.006 (2)0.011 (2)0.005 (2)
C90.081 (4)0.037 (3)0.038 (3)0.002 (2)0.007 (2)0.010 (2)
C100.071 (3)0.036 (3)0.040 (3)0.013 (2)0.005 (2)0.001 (2)
C110.055 (3)0.045 (3)0.039 (3)0.013 (2)0.010 (2)0.004 (2)
Geometric parameters (Å, º) top
Cd1—O2i2.267 (3)C1—C61.375 (5)
Cd1—O22.267 (3)C1—C21.390 (5)
Cd1—N3i2.313 (3)C2—C31.383 (5)
Cd1—N32.313 (3)C3—C41.374 (6)
Cd1—N1i2.405 (3)C3—H30.9300
Cd1—N12.405 (3)C4—C51.367 (6)
S2—O31.442 (3)C4—H40.9300
S2—O11.449 (3)C5—C61.381 (6)
S2—O21.469 (3)C5—H50.9300
S2—C11.779 (4)C6—H60.9300
N1—C121.272 (5)C7—C81.377 (5)
N1—C21.431 (5)C8—C91.376 (6)
C12—C71.461 (5)C8—H80.9300
C12—H120.9300C9—C101.368 (6)
N3—C111.340 (5)C9—H90.9300
N3—C71.349 (5)C10—C111.359 (6)
O4—H1W0.8502C10—H100.9300
O4—H2W0.8263C11—H110.9300
O2i—Cd1—O2107.31 (15)C6—C1—S2119.3 (4)
O2i—Cd1—N3i145.88 (11)C2—C1—S2120.2 (3)
O2—Cd1—N3i91.52 (11)C3—C2—C1118.7 (4)
O2i—Cd1—N391.52 (11)C3—C2—N1121.9 (4)
O2—Cd1—N3145.88 (11)C1—C2—N1119.3 (3)
N3i—Cd1—N387.74 (16)C4—C3—C2120.7 (4)
O2i—Cd1—N1i82.58 (10)C4—C3—H3119.6
O2—Cd1—N1i85.04 (10)C2—C3—H3119.6
N3i—Cd1—N1i70.73 (11)C5—C4—C3120.0 (4)
N3—Cd1—N1i126.32 (11)C5—C4—H4120.0
O2i—Cd1—N185.04 (10)C3—C4—H4120.0
O2—Cd1—N182.58 (10)C4—C5—C6120.4 (4)
N3i—Cd1—N1126.32 (11)C4—C5—H5119.8
N3—Cd1—N170.73 (11)C6—C5—H5119.8
N1i—Cd1—N1159.04 (16)C1—C6—C5119.6 (5)
O3—S2—O1115.11 (19)C1—C6—H6120.2
O3—S2—O2111.07 (17)C5—C6—H6120.2
O1—S2—O2111.26 (18)N3—C7—C8121.7 (4)
O3—S2—C1107.40 (18)N3—C7—C12117.0 (4)
O1—S2—C1106.80 (18)C8—C7—C12121.3 (4)
O2—S2—C1104.47 (17)C9—C8—C7118.8 (4)
C12—N1—C2120.8 (3)C9—C8—H8120.6
C12—N1—Cd1114.4 (3)C7—C8—H8120.6
C2—N1—Cd1124.8 (2)C10—C9—C8119.4 (4)
N1—C12—C7121.1 (4)C10—C9—H9120.3
N1—C12—H12119.5C8—C9—H9120.3
C7—C12—H12119.5C11—C10—C9119.2 (4)
C11—N3—C7118.2 (3)C11—C10—H10120.4
C11—N3—Cd1124.8 (3)C9—C10—H10120.4
C7—N3—Cd1116.9 (3)N3—C11—C10122.7 (4)
S2—O2—Cd1115.56 (15)N3—C11—H11118.6
H1W—O4—H2W105.8C10—C11—H11118.6
C6—C1—C2120.5 (4)
O2i—Cd1—N1—C1293.5 (3)O2—S2—C1—C6113.1 (3)
O2—Cd1—N1—C12158.3 (3)O3—S2—C1—C2174.9 (3)
N3i—Cd1—N1—C1271.9 (3)O1—S2—C1—C250.9 (3)
N3—Cd1—N1—C120.1 (3)O2—S2—C1—C267.1 (3)
N1i—Cd1—N1—C12147.4 (3)C6—C1—C2—C31.2 (6)
O2i—Cd1—N1—C282.9 (3)S2—C1—C2—C3178.6 (3)
O2—Cd1—N1—C225.3 (3)C6—C1—C2—N1175.8 (3)
N3i—Cd1—N1—C2111.7 (3)S2—C1—C2—N14.3 (5)
N3—Cd1—N1—C2176.3 (3)C12—N1—C2—C339.6 (5)
N1i—Cd1—N1—C229.0 (3)Cd1—N1—C2—C3136.5 (3)
C2—N1—C12—C7175.6 (3)C12—N1—C2—C1143.4 (4)
Cd1—N1—C12—C70.9 (5)Cd1—N1—C2—C140.4 (4)
O2i—Cd1—N3—C1191.9 (3)C1—C2—C3—C41.4 (6)
O2—Cd1—N3—C11143.3 (3)N1—C2—C3—C4175.5 (4)
N3i—Cd1—N3—C1153.9 (3)C2—C3—C4—C50.4 (7)
N1i—Cd1—N3—C1110.0 (4)C3—C4—C5—C60.9 (7)
N1—Cd1—N3—C11176.1 (3)C2—C1—C6—C50.1 (6)
O2i—Cd1—N3—C783.5 (3)S2—C1—C6—C5179.9 (3)
O2—Cd1—N3—C741.3 (4)C4—C5—C6—C11.1 (7)
N3i—Cd1—N3—C7130.7 (3)C11—N3—C7—C80.9 (6)
N1i—Cd1—N3—C7165.4 (2)Cd1—N3—C7—C8176.6 (3)
N1—Cd1—N3—C70.7 (3)C11—N3—C7—C12177.2 (4)
O3—S2—O2—Cd1168.04 (16)Cd1—N3—C7—C121.4 (4)
O1—S2—O2—Cd138.4 (2)N1—C12—C7—N31.6 (6)
C1—S2—O2—Cd176.5 (2)N1—C12—C7—C8176.5 (4)
O2i—Cd1—O2—S2118.00 (19)N3—C7—C8—C91.3 (6)
N3i—Cd1—O2—S290.86 (18)C12—C7—C8—C9176.7 (4)
N3—Cd1—O2—S22.6 (3)C7—C8—C9—C100.6 (7)
N1i—Cd1—O2—S2161.36 (19)C8—C9—C10—C110.4 (7)
N1—Cd1—O2—S235.59 (17)C7—N3—C11—C100.2 (6)
O3—S2—C1—C64.9 (4)Cd1—N3—C11—C10175.2 (3)
O1—S2—C1—C6128.9 (3)C9—C10—C11—N30.9 (7)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2W···O3ii0.832.272.968 (5)142
O4—H1W···O10.852.012.863 (5)179
Symmetry code: (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C12H9N2O3S)2]·2H2O
Mr670.98
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)20.255 (4), 7.8924 (17), 16.475 (3)
V3)2633.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.23 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
18106, 2443, 1672
Rint0.075
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.04
No. of reflections2443
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2W···O3i0.832.272.968 (5)141.8
O4—H1W···O10.852.012.863 (5)179.3
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds