# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (Acetato- $\kappa O$ )(2-{[2-(dimethylamino)ethylimino](phenyl)methyl}-5-methoxyphenolato- $\kappa^3 N, N', O^1$ )copper(II)

# Chieh-Shen Lin,<sup>a</sup> Chia-Her Lin,<sup>b</sup> Jui-Hsien Huang<sup>a</sup> and Bao-Tsan Ko<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, and <sup>b</sup>Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan

Correspondence e-mail: btko@cycu.edu.tw

Received 27 August 2008; accepted 13 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.103; data-to-parameter ratio = 15.7.

The Cu<sup>II</sup> atom in the title complex,  $[Cu(C_{18}H_{21}N_2O_2)-(C_2H_3O_2)]$ , is tetracoordinated by two N atoms and two O atoms, of which one O atom is attributed to the acetate group and the other atoms are from the tridentate salicylideneiminate ligand, forming a slight distorted square-planar environment. The other acetate O atom exhibits a very weak intramolecular interaction toward the Cu atom, the Cu–O distance of 2.771 (2) Å being shorter than the van der Waals radii for Cu and O atoms (2.92 Å). Furthermore, there are weak intermolecular interactions, in which the bonding O atom of the acetate group can bridge to the Cu atom of another complex, and the distance of 2.523 (2) Å is about 0.4 Å shorter than the van der Waals Cu–O distance in other crystal structures.

### **Related literature**

For general background, see: Coates & Moore (2004); Darensbourg *et al.* (2001); Inoue *et al.* (1969); Shen *et al.* (2003). For related structures, see: Chen *et al.* (2006); Luo *et al.* (1998, 1999).



# **Experimental**

#### Crystal data

### Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.656, T_{\rm max} = 0.803$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 244 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.103$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3822 reflections                | $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ |

11008 measured reflections

 $R_{\rm int} = 0.049$ 

3822 independent reflections

2673 reflections with  $I > 2\sigma(I)$ 

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support in part from the National Science Council, Taiwan, and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-97-CR-CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2108).

### References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, **39**, 3745–3752.
Coates, G. W. & Moore, D. R. (2004). Angew. Chem. Int. Ed. **43**, 6618–6639.
Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. **40**, 986–993.

Inoue, S., Koinuma, H. & Tsuruta, T. (1969). *Makromol. Chem.* **130**, 210–220. Luo, H., Fanwick, P. E. & Green, M. A. (1998). *Inorg. Chem.* **37**, 1127–1130.

Luo, H., Lo, J.-M., Fanwick, P. E. J. G., Stowell, M. A. & Green, M. A. (1999). *Inorg. Chem.* 38, 2071–2078.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559-1562.



# supporting information

# Acta Cryst. (2008). E64, m1434 [doi:10.1107/S1600536808033114]

# $(Acetato-\kappa O)(2-\{[2-(dimethylamino)ethylimino](phenyl)methyl\}-5-methoxy-phenolato-\kappa^3N,N',O^1)copper(II)$

# Chieh-Shen Lin, Chia-Her Lin, Jui-Hsien Huang and Bao-Tsan Ko

# S1. Comment

Carbon dioxide is the most abundant carbon resource in the atmosphere and is used by green plants and anaerobic bacteria for chemical production on a massive scale. In contrast, industrial and laboratory utilization of CO<sub>2</sub> as a chemical feedstock is rare. The reuse and recovery of CO<sub>2</sub> have received much attention from the viewpoint of carbon resources and environmental problems during the last two decades of the twentieth century. In particular, the catalytic coupling of  $CO_2$  with heterocycles has been discovered and investigated over the past 35 years (Inoue *et al.*, 1969). One of the major successes is the utilization of epoxides and CO<sub>2</sub> as starting materials to prepare the polycarbonates and/or cyclic carbonates in the presence of a transition metal catalyst. However, only a few metals, including Al, Cr, Co, Mg, Li, Zn, Cu, and Cd (Coates & Moore, 2004) are active for the coupling of epoxides and CO<sub>2</sub>. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a number of bis(salicylaldiminato)zinc complexes, in which the most active catalyst for co-polymerization of cyclohexene oxide and CO<sub>2</sub> giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g mol<sup>-1</sup>, Mw/Mn = 10.3) with a turnover frequency of 6.9 h<sup>-1</sup>. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen-type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO<sub>2</sub> to achieve five-membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Most recently, Chen et al., (2006) has synthesized a series of Schiff base zinc complexes which have shown high activity in the ring-opening poymerization of lactide (Chen et al., 2006). We report herein the synthesis and crystal structure study of a N, N, O-tridentate Schiff base Cu<sup>II</sup> complex (I), a potential catalyst for CO<sub>2</sub>/epoxide coupling copolymerization (Fig. 1).

The solid structure of **I** reveals a monomeric Cu<sup>II</sup> complex (Fig. 1) containing a six–member and five–member ring coordinated from the tridentate salicylideneiminate ligand. The geometry around Cu atom is tetracoordinated with a slight distorted square planar environment in which two nitrogen atoms and two oxygen atoms are almost coplanar. The sums of bond angles around Cu center are 359.7 (1)°. The distances between the Cu atom and O1, O3, N1 and N2 are 1.908 (2), 1.968 (2), 2.073 (3), 1.969 (3)Å, respectively. These bond distances are similar to those found in other Schiff base Cu<sup>II</sup> complexes (Luo *et al.*, 1998). The other acetate's oxygen, O4 shows very weak intramolecular contact with Cu (Cu···O4 = 2.771 (2)Å) in comparison with Van der Waals contact (2.92Å) for Cu···O. In addition, there are weak intermolecular interactions, in which the bonding oxygen (O3) of acetate group can be bridged to the Cu atom of another complex and the distance (2.523 (2) Å) is about 0.4 Å shorter than Van der Waals contact of Cu···O in the other crystal structure.

# **S2. Experimental**

The ligand, 5–methoxy–2– $\{1-[2-(dimethylamino)ethylimino]benzyl\}$ phenol was prepared by the reaction in which 2–dimethylaminoethylamine (1.95 g, 22.1 mmol) and 5–methoxy–2–hydroxybenzophenone (4.60 g, 20.2 mmol) in refluxed ethanol (30 ml) for 24 h (Fig. 2). Volatile materials were removed under vacuum and the resulting solid was recrystallized from slowly cooling a hot hexane (40 ml) solution giving yellow powders (yield: 71%). The title complex was synthesized by the following procedures: 5–methoxy–2– $\{1-[2-(dimethylamino)ethylimino]benzyl\}$ phenol (0.597 g, 2.0 mmol) and Cu(OAc)<sub>2</sub>·2H<sub>2</sub>O (0.398 g, 2.0 mmol) was refluxed in *Et*OH (30 ml) for 3 h and the volatile materials were removed under vacuum giving green crystalline solid (Fig. 2). The resulting precipitate was crystallized from *Et*OH to yield green crystals.

# **S3. Refinement**

The C-bound H atoms were placed in calculated positions (C—H = 0.93-0.96 Å) and included in the refinement in the riding-model approximation, with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ .



# Figure 1

A view of the molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.



# Figure 2

The synthetic route of the title Cu complex.

# $(Acetato-\kappa O)(2-\{[2-(dimethylamino)ethylimino](phenyl)methyl\}-5-methoxyphenolato-\kappa^3N,N',O^1)copper(II)$

| Crystal data                             |                                                                 |
|------------------------------------------|-----------------------------------------------------------------|
| $[Cu(C_{18}H_{21}N_2O_2)(C_2H_3O_2)]$    | F(000) = 876                                                    |
| $M_r = 419.96$                           | $D_{\rm x} = 1.433 {\rm ~Mg} {\rm ~m}^{-3}$                     |
| Monoclinic, $P2_1/c$                     | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å                   |
| Hall symbol: -P 2ybc                     | Cell parameters from 3118 reflections                           |
| a = 11.9721 (16)  Å                      | $\theta = 2.2 - 25.4^{\circ}$                                   |
| b = 15.674 (2) Å                         | $\mu = 1.15 \text{ mm}^{-1}$                                    |
| c = 10.6346 (14)  Å                      | T = 293  K                                                      |
| $\beta = 102.655 \ (3)^{\circ}$          | Prism, green                                                    |
| V = 1947.1 (4) Å <sup>3</sup>            | $0.40 \times 0.30 \times 0.20 \text{ mm}$                       |
| Z = 4                                    |                                                                 |
| Data collection                          |                                                                 |
| Bruker SMART 1000 CCD                    | 11008 measured reflections                                      |
| diffractometer                           | 3822 independent reflections                                    |
| Radiation source: Fine-focus sealed tube | 2673 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                   | $R_{\rm int} = 0.049$                                           |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.2^\circ$ |
| Absorption correction: multi-scan        | $h = -14 \rightarrow 14$                                        |
| (SADABS; Sheldrick, 1996)                | $k = -18 \rightarrow 19$                                        |
| $T_{\min} = 0.656, \ T_{\max} = 0.803$   | $l = -8 \rightarrow 13$                                         |
| Refinement                               |                                                                 |
| Refinement on $F^2$                      | Secondary atom site location: Difmap                            |
| Least-squares matrix: Full               | Hydrogen site location: Geom                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.040$          | H-atom parameters constrained                                   |
| $wR(F^2) = 0.103$                        | $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$                           |
| S = 1.02                                 | where $P = (F_o^2 + 2F_c^2)/3$                                  |
| 3822 reflections                         | $(\Delta/\sigma)_{\rm max} = 0.001$                             |
| 244 parameters                           | $\Delta \rho_{\rm max} = 0.47 \text{ e} \text{ Å}^{-3}$         |
| 0 restraints                             | $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$      |
| Primary atom site location: Direct       |                                                                 |

## Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x            | У             | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|---------------|-------------|-----------------------------|--|
| Cu   | 0.93747 (3)  | 0.10053 (2)   | 0.02371 (4) | 0.02773 (13)                |  |
| 01   | 0.92068 (16) | 0.06311 (14)  | 0.1893 (2)  | 0.0332 (5)                  |  |
| O2   | 0.7404 (2)   | -0.04350 (17) | 0.5113 (2)  | 0.0474 (6)                  |  |
| O3   | 1.09237 (16) | 0.05131 (13)  | 0.0552 (2)  | 0.0303 (5)                  |  |
| O4   | 1.1426 (2)   | 0.17945 (16)  | 0.1343 (2)  | 0.0467 (6)                  |  |
| N1   | 0.7889 (2)   | 0.15948 (18)  | -0.0052 (3) | 0.0379 (7)                  |  |
| N2   | 0.9457 (2)   | 0.15348 (17)  | -0.1526 (3) | 0.0333 (6)                  |  |
| C1   | 0.8276 (2)   | 0.05790 (19)  | 0.2325 (3)  | 0.0268 (7)                  |  |
| C2   | 0.8331 (3)   | 0.0119 (2)    | 0.3478 (3)  | 0.0327 (7)                  |  |
| H2A  | 0.9021       | -0.0132       | 0.3880      | 0.039*                      |  |
| C3   | 0.7400 (3)   | 0.0029 (2)    | 0.4025 (3)  | 0.0355 (8)                  |  |
| C4   | 0.6361 (3)   | 0.0424 (2)    | 0.3444 (3)  | 0.0434 (9)                  |  |
| H4A  | 0.5733       | 0.0386        | 0.3825      | 0.052*                      |  |
| C5   | 0.6277 (3)   | 0.0858 (2)    | 0.2337 (4)  | 0.0392 (8)                  |  |
| H5A  | 0.5581       | 0.1112        | 0.1967      | 0.047*                      |  |
| C6   | 0.7199 (2)   | 0.0949 (2)    | 0.1702 (3)  | 0.0290 (7)                  |  |
| C7   | 0.7052 (3)   | 0.1444 (2)    | 0.0533 (3)  | 0.0321 (7)                  |  |
| C8   | 0.5879 (2)   | 0.1779 (2)    | -0.0065 (3) | 0.0348 (8)                  |  |
| C9   | 0.5162 (3)   | 0.1296 (3)    | -0.0985 (4) | 0.0603 (12)                 |  |
| H9A  | 0.5396       | 0.0757        | -0.1189     | 0.072*                      |  |
| C10  | 0.4106 (3)   | 0.1598 (3)    | -0.1607 (4) | 0.0675 (13)                 |  |
| H10A | 0.3635       | 0.1267        | -0.2232     | 0.081*                      |  |
| C11  | 0.3748 (3)   | 0.2386 (3)    | -0.1307 (4) | 0.0581 (11)                 |  |
| H11A | 0.3038       | 0.2593        | -0.1733     | 0.070*                      |  |
| C12  | 0.4432 (3)   | 0.2866 (3)    | -0.0384 (4) | 0.0635 (12)                 |  |
| H12A | 0.4181       | 0.3397        | -0.0169     | 0.076*                      |  |
| C13  | 0.5505 (3)   | 0.2568 (3)    | 0.0241 (4)  | 0.0527 (10)                 |  |
| H13A | 0.5970       | 0.2902        | 0.0868      | 0.063*                      |  |
| C14  | 0.7695 (3)   | 0.2182 (3)    | -0.1169 (4) | 0.0592 (12)                 |  |
| H14A | 0.7370       | 0.2715        | -0.0952     | 0.071*                      |  |
| H14B | 0.7167       | 0.1929        | -0.1896     | 0.071*                      |  |
| C15  | 0.8852 (3)   | 0.2344 (2)    | -0.1512 (4) | 0.0535 (10)                 |  |
| H15A | 0.8737       | 0.2613        | -0.2352     | 0.064*                      |  |
| H15B | 0.9306       | 0.2726        | -0.0883     | 0.064*                      |  |
| C16  | 0.8860 (3)   | 0.0981 (3)    | -0.2608 (4) | 0.0561 (11)                 |  |
| H16A | 0.8906       | 0.1237        | -0.3415     | 0.084*                      |  |
| H16B | 0.8071       | 0.0918        | -0.2567     | 0.084*                      |  |
| H16C | 0.9219       | 0.0430        | -0.2539     | 0.084*                      |  |
| C17  | 1.0606 (3)   | 0.1696 (3)    | -0.1764 (4) | 0.0522 (10)                 |  |
| H17A | 1.0535       | 0.1941        | -0.2606     | 0.078*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H17B | 1.1020     | 0.1169      | -0.1717    | 0.078*      |  |
|------|------------|-------------|------------|-------------|--|
| H17C | 1.1011     | 0.2084      | -0.1126    | 0.078*      |  |
| C18  | 0.8349 (3) | -0.1007 (3) | 0.5543 (4) | 0.0537 (10) |  |
| H18A | 0.8254     | -0.1296     | 0.6309     | 0.081*      |  |
| H18B | 0.9050     | -0.0688     | 0.5726     | 0.081*      |  |
| H18C | 0.8372     | -0.1418     | 0.4881     | 0.081*      |  |
| C19  | 1.1673 (3) | 0.1069 (2)  | 0.1073 (3) | 0.0329 (7)  |  |
| C20  | 1.2906 (3) | 0.0780 (3)  | 0.1325 (4) | 0.0571 (12) |  |
| H20A | 1.3396     | 0.1237      | 0.1713     | 0.086*      |  |
| H20B | 1.3096     | 0.0620      | 0.0525     | 0.086*      |  |
| H20C | 1.3008     | 0.0298      | 0.1896     | 0.086*      |  |
|      |            |             |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cu  | 0.0244 (2)  | 0.0309 (2)  | 0.0274 (2)  | 0.00498 (16) | 0.00454 (14) | 0.00588 (17) |
| O1  | 0.0233 (11) | 0.0480 (14) | 0.0286 (13) | 0.0067 (10)  | 0.0060 (9)   | 0.0079 (10)  |
| O2  | 0.0479 (14) | 0.0579 (18) | 0.0401 (15) | -0.0047 (12) | 0.0181 (11)  | 0.0103 (13)  |
| O3  | 0.0234 (10) | 0.0327 (13) | 0.0332 (13) | -0.0008 (9)  | 0.0027 (9)   | 0.0013 (10)  |
| O4  | 0.0470 (15) | 0.0407 (16) | 0.0502 (17) | 0.0011 (12)  | 0.0061 (12)  | -0.0130 (12) |
| N1  | 0.0352 (15) | 0.0444 (19) | 0.0333 (17) | 0.0152 (13)  | 0.0055 (12)  | 0.0123 (13)  |
| N2  | 0.0354 (15) | 0.0289 (16) | 0.0344 (17) | 0.0033 (12)  | 0.0053 (12)  | 0.0072 (12)  |
| C1  | 0.0257 (15) | 0.0265 (17) | 0.0271 (18) | -0.0019 (12) | 0.0034 (13)  | -0.0033 (13) |
| C2  | 0.0295 (16) | 0.037 (2)   | 0.0309 (19) | 0.0011 (14)  | 0.0042 (13)  | 0.0023 (14)  |
| C3  | 0.0411 (19) | 0.035 (2)   | 0.032 (2)   | -0.0092 (15) | 0.0106 (15)  | -0.0030 (15) |
| C4  | 0.0347 (19) | 0.050 (2)   | 0.052 (2)   | 0.0000 (16)  | 0.0217 (16)  | 0.0017 (19)  |
| C5  | 0.0282 (17) | 0.040 (2)   | 0.050(2)    | 0.0031 (14)  | 0.0106 (15)  | 0.0002 (17)  |
| C6  | 0.0242 (15) | 0.0284 (18) | 0.0334 (18) | 0.0011 (13)  | 0.0039 (13)  | -0.0032 (14) |
| C7  | 0.0293 (16) | 0.0291 (19) | 0.036 (2)   | 0.0068 (13)  | 0.0024 (14)  | -0.0061 (15) |
| C8  | 0.0277 (17) | 0.041 (2)   | 0.033 (2)   | 0.0092 (14)  | 0.0008 (14)  | 0.0031 (15)  |
| С9  | 0.041 (2)   | 0.059 (3)   | 0.071 (3)   | 0.0148 (19)  | -0.011 (2)   | -0.026 (2)   |
| C10 | 0.043 (2)   | 0.077 (3)   | 0.069 (3)   | 0.013 (2)    | -0.017 (2)   | -0.021 (2)   |
| C11 | 0.0314 (19) | 0.070 (3)   | 0.065 (3)   | 0.0144 (19)  | -0.0067 (18) | 0.011 (2)    |
| C12 | 0.045 (2)   | 0.049 (3)   | 0.090 (3)   | 0.0256 (19)  | 0.002 (2)    | -0.003 (2)   |
| C13 | 0.038 (2)   | 0.047 (2)   | 0.065 (3)   | 0.0128 (17)  | -0.0054 (18) | -0.011 (2)   |
| C14 | 0.059 (2)   | 0.071 (3)   | 0.053 (3)   | 0.034 (2)    | 0.0219 (19)  | 0.034 (2)    |
| C15 | 0.068 (3)   | 0.041 (2)   | 0.055 (3)   | 0.0165 (19)  | 0.022 (2)    | 0.0177 (19)  |
| C16 | 0.070 (3)   | 0.053 (3)   | 0.041 (2)   | -0.003(2)    | 0.0019 (19)  | 0.0058 (19)  |
| C17 | 0.048 (2)   | 0.062 (3)   | 0.051 (3)   | 0.0074 (19)  | 0.0203 (18)  | 0.021 (2)    |
| C18 | 0.058 (2)   | 0.062 (3)   | 0.041 (2)   | -0.005 (2)   | 0.0095 (18)  | 0.015 (2)    |
| C19 | 0.0274 (16) | 0.045 (2)   | 0.0265 (18) | -0.0012 (15) | 0.0061 (13)  | -0.0016 (16) |
| C20 | 0.0288 (19) | 0.063 (3)   | 0.076 (3)   | 0.0009 (17)  | 0.0047 (18)  | -0.011 (2)   |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| Cu—O1 | 1.908 (2) | C9—C10  | 1.377 (5) |
|-------|-----------|---------|-----------|
| Cu—N1 | 1.968 (3) | С9—Н9А  | 0.9300    |
| Cu—O3 | 1.968 (2) | C10—C11 | 1.368 (6) |

| Cu—N2                       | 2.073 (3)             | C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9300            |
|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| O1—C1                       | 1.298 (3)             | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.359 (5)         |
| O2—C3                       | 1.366 (4)             | C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9300            |
| O2—C18                      | 1.437 (4)             | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.392 (5)         |
| O3—C19                      | 1.287 (4)             | C12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9300            |
| O4—C19                      | 1.224 (4)             | C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9300            |
| N1—C7                       | 1.312 (4)             | C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.529 (5)         |
| N1—C14                      | 1.481 (4)             | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700            |
| N2—C15                      | 1.463 (4)             | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700            |
| N2—C17                      | 1.475 (4)             | C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700            |
| N2—C16                      | 1.493 (4)             | C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9700            |
| C1—C2                       | 1.412 (4)             | C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| C1 - C6                     | 1 436 (4)             | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| $C^2 - C^3$                 | 1 374 (4)             | C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| C2—H2A                      | 0.9300                | C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| $C_3 - C_4$                 | 1405(5)               | C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| C4-C5                       | 1.405(5)<br>1 345(5)  | C17H17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9600            |
| $C_4 = H_4 \Lambda$         | 0.0300                | C18 H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| $C_{1}$                     | 1,421,(4)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9600            |
| C5_H5A                      | 0.0200                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9000            |
| C5—H5A                      | 0.9300                | C10 - C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9000            |
| $C_0 = C_1$                 | 1.443(4)              | $C_{19}$ $C_{20}$ $H_{20A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0600            |
| $C^{2} = C^{2}$             | 1.303(4)<br>1.278(5)  | C20—H20A<br>C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9000            |
| $C^{\circ}$                 | 1.378(3)              | C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| 6-69                        | 1.578(5)              | C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600            |
| 01—Cu—N1                    | 90.82 (10)            | C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.9 (3)         |
| O1—Cu—O3                    | 90.49 (8)             | C10-C11-H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0             |
| N1—Cu—O3                    | 175.05 (11)           | C12—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0             |
| O1—Cu—N2                    | 173.51 (10)           | C13—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.4 (4)         |
| N1—Cu—N2                    | 83.74 (11)            | C13—C12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8             |
| O3—Cu—N2                    | 94.64 (9)             | C11—C12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8             |
| C1—O1—Cu                    | 128.17 (19)           | C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1 (3)         |
| C3—O2—C18                   | 117.2 (3)             | C8—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.9             |
| C19—O3—Cu                   | 110.5 (2)             | C12—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.9             |
| C7—N1—C14                   | 119.4 (3)             | N1-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.7 (3)         |
| C7—N1—Cu                    | 126.8 (2)             | N1-C14-H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2             |
| C14 N1 $Cu$                 | 1133(2)               | C15—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.2             |
| $C_{15} N_{2} C_{17}$       | 109.6(2)              | N1-C14-H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.2             |
| C15 - N2 - C16              | 103.0(3)              | C15-C14-H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.2             |
| C17 - N2 - C16              | 105.9(3)              | H14A— $C14$ — $H14B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.5             |
| $C_{15}$ $N_{2}$ $C_{10}$   | 102.5(2)              | N2-C15-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.5<br>109.6(3) |
| $C_{13} = N_2 = C_{14}$     | 102.3(2)<br>1171(2)   | $N_2 = C_{15} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.8 (3)         |
| $C_{1} = N_2 = C_{u}$       | 117.1(2)<br>110.8(2)  | $C_{14} - C_{15} - H_{15A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.8             |
| $01_1_2 = 01_2$             | 110.0(2)<br>117.2(3)  | N2 - C15 - H15P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.0             |
| 01 - 01 - 02                | 117.3(3)<br>1244(3)   | $C14\_C15\_H15P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0             |
| $C_1 = C_1 = C_0$           | 124.4(3)<br>118 2 (2) | $U_{14} = U_{13} = \Pi_{13} D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.0             |
| $C_2 = C_1 = C_0$           | 110.3(3)<br>122.2(3)  | $\frac{113}{12} - \frac{13}{12} - \frac{113}{12} - 11$ | 100.2             |
| $C_3 = C_2 = U_1$           | 122.2 (3)             | $\frac{112}{10} - \frac{110}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5             |
| $U_J = U_L = \Pi_L \Lambda$ | 110.7                 | 112 - 0.10 - 0.10D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.5             |

| C1—C2—H2A    | 118.9     | H16A—C16—H16B | 109.5     |
|--------------|-----------|---------------|-----------|
| O2—C3—C2     | 124.1 (3) | N2-C16-H16C   | 109.5     |
| O2—C3—C4     | 116.5 (3) | H16A—C16—H16C | 109.5     |
| C2—C3—C4     | 119.4 (3) | H16B—C16—H16C | 109.5     |
| C5—C4—C3     | 119.8 (3) | N2—C17—H17A   | 109.5     |
| C5—C4—H4A    | 120.1     | N2—C17—H17B   | 109.5     |
| C3—C4—H4A    | 120.1     | H17A—C17—H17B | 109.5     |
| C4—C5—C6     | 123.4 (3) | N2-C17-H17C   | 109.5     |
| C4—C5—H5A    | 118.3     | H17A—C17—H17C | 109.5     |
| С6—С5—Н5А    | 118.3     | H17B—C17—H17C | 109.5     |
| C7—C6—C5     | 120.2 (3) | O2-C18-H18A   | 109.5     |
| C7—C6—C1     | 122.8 (3) | O2-C18-H18B   | 109.5     |
| C5—C6—C1     | 116.9 (3) | H18A—C18—H18B | 109.5     |
| N1—C7—C6     | 123.0 (3) | O2-C18-H18C   | 109.5     |
| N1—C7—C8     | 118.4 (3) | H18A—C18—H18C | 109.5     |
| C6—C7—C8     | 118.6 (3) | H18B—C18—H18C | 109.5     |
| C13—C8—C9    | 118.5 (3) | O4—C19—O3     | 123.3 (3) |
| C13—C8—C7    | 122.3 (3) | O4—C19—C20    | 120.9 (3) |
| C9—C8—C7     | 119.1 (3) | O3—C19—C20    | 115.8 (3) |
| С10—С9—С8    | 121.0 (4) | C19—C20—H20A  | 109.5     |
| С10—С9—Н9А   | 119.5     | C19—C20—H20B  | 109.5     |
| С8—С9—Н9А    | 119.5     | H20A—C20—H20B | 109.5     |
| C11—C10—C9   | 120.0 (4) | C19—C20—H20C  | 109.5     |
| C11—C10—H10A | 120.0     | H20A—C20—H20C | 109.5     |
| С9—С10—Н10А  | 120.0     | H20B—C20—H20C | 109.5     |
|              |           |               |           |