organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­fluoro­aniline

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 10 September 2008; accepted 28 October 2008; online 31 October 2008)

The title compound, C6H4F3N, is a fluoro derivative of aniline. The mol­ecule shows non-crystallographic mirror symmetry. Bond lengths are normal. The C—C—C angles show some deviation from the expected ideal values by up to 5°, a finding which is in accordance with a similar structure in the literature. In the crystal structure H⋯F contacts and H⋯N contacts lead to the formation of sheets whose surfaces are made up by the hydro­phobic phenyl rings.

Related literature

For the crystal structure of a related compound, see: Gdaniec (2007[Gdaniec, M. (2007). Acta Cryst. E63, o2954.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4F3N

  • Mr = 147.10

  • Orthorhombic, P 21 21 21

  • a = 6.3220 (6) Å

  • b = 24.792 (2) Å

  • c = 3.8545 (5) Å

  • V = 604.14 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 200 (2) K

  • 0.50 × 0.09 × 0.05 mm

Data collection
  • Oxford Diffraction KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.])) Tmin = 0.921, Tmax = 0.992

  • 4517 measured reflections

  • 775 independent reflections

  • 489 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 0.94

  • 775 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯N1i 0.90 2.26 3.110 (3) 157
N1—H72⋯F3ii 0.88 2.31 3.086 (2) 147
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a program focused on the synthesis of derivatives of phenylarsonic acid a number of substituted aniline-derivatives were chosen as starting materials. In order to compare the influence of an arsonic group on the geometry of these starting materials, the crystal structure of 2,4,6-trifluoroaniline was elucidated by means of single-crystal X-ray diffraction.

In the molecule (Fig. 1) the C–C–C angles deviate from the expected ideal value of 120° by up to 5°. Angles bigger than the expected value are invariably found at C atoms bonded to fluorine, the smallest angle being present on the C atom bearing the amino group. This finding is in agreement with the situation observed in 2,3,4,5,6-pentafluoroaniline (Gdaniec, 2007).

In the crystal structure hydrogen bonds between fluorine and the amino group are present. If contacts whose ranges fall 0.2Å below the sum of van der Waals radii of the respective atoms are taken into consideration, only one of the F atoms in ortho position to the amino group is participating in these intermolecular interactions. These connect the molecules into sheets parallel to [1 0 1]. The surfaces of these sheets are made up by the aromatic moieties (Fig. 2 and Fig. 3). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the N–H···F pattern should be assigned a C(5) descriptor on the unitary level while the remaining H atom on nitrogen participates in a cooperative chain of hydrogen bonds (N–H···N).

Related literature top

For the crystal structure of a related compound, see: Gdaniec (2007). For graph-set analysis, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The compound was obtained commercially from Fluorochem. Crystals suitable for X-ray diffraction studies were obtained upon cooling the compound to 4 °C in a fridge.

Refinement top

All H atoms were located in a difference map and refined as riding on their parent atoms with Uiso(H) values of 1.2 Ueq(C) and 1.2 Ueq(N).

Due to the absence of a significant anomalous scatterer in the molecule, the Flack parameter is meaningless. Friedel opposites were merged and the absolute structure parameter was removed from the CIF file.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed along [0 0 - 1].
[Figure 3] Fig. 3. Intermolecular interactions in the crystal structure of the title compound, viewed along [0 0 1]. Symmetry operators: i -x + 3/2, -y, z - 1/2; ii -x + 1/2, -y, z - 1/2.
2,4,6-Trifluoroaniline top
Crystal data top
C6H4F3NF(000) = 296
Mr = 147.10Dx = 1.617 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1719 reflections
a = 6.3220 (6) Åθ = 4.1–26.3°
b = 24.792 (2) ŵ = 0.16 mm1
c = 3.8545 (5) ÅT = 200 K
V = 604.14 (11) Å3Rod, colourless
Z = 40.50 × 0.09 × 0.05 mm
Data collection top
Oxford Diffraction KappaCCD
diffractometer
775 independent reflections
Radiation source: fine-focus sealed tube489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005))
h = 77
Tmin = 0.921, Tmax = 0.992k = 3030
4517 measured reflectionsl = 43
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.082H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
775 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H4F3NV = 604.14 (11) Å3
Mr = 147.10Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3220 (6) ŵ = 0.16 mm1
b = 24.792 (2) ÅT = 200 K
c = 3.8545 (5) Å0.50 × 0.09 × 0.05 mm
Data collection top
Oxford Diffraction KappaCCD
diffractometer
775 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005))
489 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.992Rint = 0.034
4517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.94Δρmax = 0.13 e Å3
775 reflectionsΔρmin = 0.16 e Å3
91 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8818 (2)0.10411 (5)0.1028 (5)0.0618 (5)
F20.4694 (2)0.24248 (5)0.3783 (5)0.0712 (6)
F30.2254 (2)0.06360 (6)0.3828 (5)0.0715 (6)
N10.5886 (3)0.02701 (7)0.0726 (7)0.0564 (7)
H710.67690.02020.10540.068*
H720.46470.01090.06320.068*
C10.5551 (4)0.08172 (8)0.1384 (7)0.0398 (6)
C20.7034 (4)0.12061 (9)0.0624 (7)0.0414 (6)
C30.6805 (4)0.17436 (8)0.1376 (7)0.0447 (7)
H30.78680.20000.08110.054*
C40.4963 (4)0.18920 (8)0.2983 (7)0.0451 (7)
C50.3394 (4)0.15382 (8)0.3828 (8)0.0480 (7)
H50.21240.16520.49220.058*
C60.3757 (4)0.10062 (9)0.3004 (7)0.0444 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0434 (9)0.0688 (9)0.0731 (11)0.0014 (7)0.0104 (9)0.0040 (10)
F20.0870 (11)0.0420 (8)0.0845 (14)0.0118 (8)0.0120 (14)0.0085 (10)
F30.0534 (9)0.0641 (9)0.0969 (14)0.0156 (7)0.0105 (12)0.0123 (10)
N10.0574 (14)0.0408 (11)0.0712 (18)0.0029 (10)0.0014 (15)0.0017 (12)
C10.0441 (13)0.0354 (12)0.0397 (16)0.0004 (10)0.0070 (14)0.0045 (12)
C20.0379 (13)0.0476 (14)0.0386 (16)0.0022 (11)0.0023 (13)0.0011 (13)
C30.0503 (17)0.0412 (14)0.0426 (17)0.0103 (11)0.0064 (16)0.0057 (14)
C40.0573 (16)0.0326 (12)0.0453 (17)0.0063 (12)0.0101 (16)0.0018 (12)
C50.0445 (16)0.0496 (14)0.0499 (17)0.0094 (12)0.0004 (16)0.0009 (16)
C60.0408 (13)0.0473 (14)0.0453 (19)0.0087 (12)0.0001 (14)0.0094 (13)
Geometric parameters (Å, º) top
F1—C21.358 (3)C1—C61.377 (3)
F2—C41.367 (2)C2—C31.371 (3)
F3—C61.359 (2)C3—C41.369 (4)
N1—C11.396 (3)C3—H30.9500
N1—H710.9009C4—C51.364 (3)
N1—H720.8798C5—C61.376 (3)
C1—C21.377 (3)C5—H50.9500
C1—N1—H71114.6C2—C3—H3121.7
C1—N1—H72108.3C5—C4—F2118.5 (2)
H71—N1—H72115.8C5—C4—C3123.6 (2)
C2—C1—C6114.8 (2)F2—C4—C3117.9 (2)
C2—C1—N1122.6 (2)C4—C5—C6116.1 (2)
C6—C1—N1122.5 (2)C4—C5—H5121.9
F1—C2—C3118.7 (2)C6—C5—H5121.9
F1—C2—C1117.04 (19)F3—C6—C5118.5 (2)
C3—C2—C1124.3 (2)F3—C6—C1116.9 (2)
C4—C3—C2116.5 (2)C5—C6—C1124.6 (2)
C4—C3—H3121.7
C6—C1—C2—F1178.9 (2)F2—C4—C5—C6179.2 (2)
N1—C1—C2—F14.2 (4)C3—C4—C5—C60.7 (4)
C6—C1—C2—C30.0 (4)C4—C5—C6—F3179.2 (3)
N1—C1—C2—C3176.9 (3)C4—C5—C6—C10.8 (4)
F1—C2—C3—C4178.8 (2)C2—C1—C6—F3179.5 (2)
C1—C2—C3—C40.1 (4)N1—C1—C6—F32.7 (4)
C2—C3—C4—C50.2 (4)C2—C1—C6—C50.5 (4)
C2—C3—C4—F2179.6 (2)N1—C1—C6—C5177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N1i0.902.263.110 (3)157
N1—H72···F3ii0.882.313.086 (2)147
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC6H4F3N
Mr147.10
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)6.3220 (6), 24.792 (2), 3.8545 (5)
V3)604.14 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.50 × 0.09 × 0.05
Data collection
DiffractometerOxford Diffraction KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2005))
Tmin, Tmax0.921, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4517, 775, 489
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 0.94
No. of reflections775
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N1i0.902.263.110 (3)157.3
N1—H72···F3ii0.882.313.086 (2)146.9
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank Dr Peter Mayer for professional support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGdaniec, M. (2007). Acta Cryst. E63, o2954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds