organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3-Bromo­phen­yl)-1-(4-methyl­phenyl)prop-2-en-1-one

aKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Chemistry, PA College of Engineering, Nadupadavu, Mangalore 574 153, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 15 October 2008; accepted 25 October 2008; online 31 October 2008)

The title compound, C16H13BrO, was synthesized from the reaction of 3-bromo­benzaldehyde and 4-methyl­acetophenone in the presence of KOH. The mol­ecule adopts an E configuration with respect to the C=C double bond of the propenone unit. The dihedral angle formed by the aromatic rings is 46.91 (14)°. The crystal structure is stabilized by Br⋯Br inter­actions [3.4549 (11) Å].

Related literature

For the properties and applications of chalcones, see: Pandey et al. (2005[Pandey, S., Suryawanshi, S. N., Gupta, S. & Srivastava, V. M. L. (2005). Eur. J. Med. Chem. 40, 751-756.]); Conti (2006[Conti, M. (2006). Anticancer Drugs, 17, 1017-1022.]); Lawrence et al. (2001[Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421-426.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Dominguez et al. (2005[Dominguez, J. N., Leon, C., Rodrigues, J., De Dominguez, N. G., Gut, J. & Rosenthal, P. J. (2005). Farmaco, 60, 307-311.]). For related structures, see: Sarojini et al. (2007[Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007). Acta Cryst. E63, o4477.]) and references cited therein.

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO

  • Mr = 301.17

  • Triclinic, [P \overline 1]

  • a = 5.8984 (16) Å

  • b = 7.3015 (19) Å

  • c = 15.559 (4) Å

  • α = 83.461 (5)°

  • β = 87.860 (4)°

  • γ = 88.446 (5)°

  • V = 665.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 273 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.837

  • 3407 measured reflections

  • 2312 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.168

  • S = 1.00

  • 2312 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones are a class of naturally occurring compounds with interesting biological properties such as cytotoxicity (Pandey et al., 2005), antiherpes activity and antitumour activity (Conti, 2006) and may be useful for the chemotherapy of leishmaniasis among others (Lawrence et al., 2001). Chalcone derivatives are also used as antibiotics (Nielsen et al., 2005) and as anti malerials (Dominguez et al., 2005). Recently, the crystal structures of some methyl- and bromo-substituted chalcones have been reported by our group (Sarojini et al., 2007 and references cited therein). In a continuation of our studies, the title chalcone derivative was synthesized and its crystal structure is reported here.

The molecule of the title compound (Fig. 1) adopts an E configuration with respect to the CC double bond of the propenone unit. The two aromatic rings are not coplanar, they dihedral angle they form being 46.91 (14) °. Molecular dimensions are unexceptional. The crystal structure is stabilized by Br···Br interactions occurring between centrosymmetrically-related molecules [Br1···Br1i = 3.4549 (11) Å; symmetry code: (i) -x, 2-y, -z].

Related literature top

For the properties and applications of chalcones, see: Pandey et al. (2005); Conti (2006); Lawrence et al. (2001); Nielsen et al. (2005); Dominguez et al. (2005). For related structures, see: Sarojini et al. (2007) and references cited therein.

Experimental top

The title compound was prepared by adding 50% KOH (2.5 ml) to a solution of 4-methylacetophenone (1.34 g, 0.01 mol) and 3-bromobenzaldehyde (1.86 g, 0.01 mol) in ethanol (25 ml) at 273 K. The mixture was stirred for an hour and poured into crushed ice. The resulting yellow precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals suitable for X-ray analysis were grown by slow evaporation of an acetone solution (yield 80%). Analytical data: found (calculated): C %, 63.78 (63.81); H%, 4.30 (4.35).

Refinement top

All H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
(E)-3-(3-Bromophenyl)-1-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C16H13BrOZ = 2
Mr = 301.17F(000) = 304
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Melting point = 378–380 K
a = 5.8984 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3015 (19) ÅCell parameters from 1237 reflections
c = 15.559 (4) Åθ = 2.6–23.7°
α = 83.461 (5)°µ = 3.08 mm1
β = 87.860 (4)°T = 273 K
γ = 88.446 (5)°Block, colourless
V = 665.1 (3) Å30.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2312 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 76
Tmin = 0.709, Tmax = 0.837k = 86
3407 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.078P)2 + 0.164P]
where P = (Fo2 + 2Fc2)/3
2312 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H13BrOγ = 88.446 (5)°
Mr = 301.17V = 665.1 (3) Å3
Triclinic, P1Z = 2
a = 5.8984 (16) ÅMo Kα radiation
b = 7.3015 (19) ŵ = 3.08 mm1
c = 15.559 (4) ÅT = 273 K
α = 83.461 (5)°0.12 × 0.10 × 0.06 mm
β = 87.860 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1457 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.837Rint = 0.049
3407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.00Δρmax = 0.57 e Å3
2312 reflectionsΔρmin = 0.44 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20271 (11)0.91736 (11)0.07283 (4)0.0905 (4)
O10.2214 (6)0.7140 (5)0.5453 (2)0.0640 (10)
C10.3158 (8)0.9176 (7)0.1855 (3)0.0522 (13)
C20.1824 (8)0.8504 (7)0.2552 (3)0.0475 (12)
H20.04130.80240.24690.057*
C30.2584 (7)0.8541 (6)0.3379 (3)0.0436 (11)
C40.4711 (8)0.9273 (6)0.3481 (3)0.0474 (12)
H40.52460.93080.40330.057*
C50.6015 (8)0.9939 (7)0.2770 (4)0.0512 (13)
H50.74341.04120.28440.061*
C60.5234 (8)0.9912 (7)0.1949 (4)0.0556 (13)
H60.61001.03850.14660.067*
C70.1059 (7)0.7893 (6)0.4108 (3)0.0458 (12)
H70.04290.76730.39780.055*
C80.1579 (8)0.7590 (7)0.4923 (3)0.0519 (13)
H80.30690.77150.50790.062*
C90.0197 (8)0.7046 (6)0.5605 (3)0.0476 (12)
C100.0571 (7)0.6411 (6)0.6491 (3)0.0433 (11)
C110.2715 (8)0.5634 (7)0.6637 (4)0.0502 (12)
H110.37180.54910.61720.060*
C120.3359 (8)0.5073 (7)0.7474 (4)0.0518 (13)
H120.47730.45060.75670.062*
C130.1921 (8)0.5347 (7)0.8172 (3)0.0503 (12)
C140.0198 (8)0.6113 (7)0.8023 (3)0.0544 (13)
H140.11880.62760.84890.065*
C150.0881 (8)0.6646 (6)0.7191 (3)0.0468 (12)
H150.23220.71640.71010.056*
C160.2693 (12)0.4783 (10)0.9080 (4)0.0823 (19)
H16A0.18750.55020.94740.123*
H16B0.42890.49880.91040.123*
H16C0.24050.34990.92400.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0839 (5)0.1354 (8)0.0529 (5)0.0024 (4)0.0134 (3)0.0102 (4)
O10.043 (2)0.084 (3)0.064 (2)0.0043 (17)0.0094 (17)0.002 (2)
C10.050 (3)0.063 (3)0.044 (3)0.006 (2)0.003 (2)0.005 (2)
C20.038 (2)0.053 (3)0.052 (3)0.001 (2)0.007 (2)0.009 (2)
C30.037 (2)0.042 (3)0.052 (3)0.002 (2)0.000 (2)0.009 (2)
C40.039 (3)0.050 (3)0.055 (3)0.001 (2)0.005 (2)0.015 (2)
C50.039 (3)0.048 (3)0.068 (4)0.002 (2)0.004 (3)0.012 (3)
C60.048 (3)0.060 (3)0.057 (3)0.001 (2)0.007 (2)0.004 (3)
C70.036 (2)0.045 (3)0.059 (3)0.002 (2)0.009 (2)0.012 (2)
C80.043 (3)0.058 (3)0.056 (3)0.007 (2)0.007 (2)0.010 (3)
C90.042 (3)0.039 (3)0.063 (3)0.007 (2)0.001 (2)0.009 (2)
C100.037 (2)0.036 (3)0.057 (3)0.0047 (19)0.003 (2)0.005 (2)
C110.039 (3)0.049 (3)0.062 (3)0.003 (2)0.011 (2)0.010 (3)
C120.039 (3)0.046 (3)0.068 (4)0.000 (2)0.004 (3)0.003 (3)
C130.049 (3)0.047 (3)0.053 (3)0.007 (2)0.000 (2)0.001 (2)
C140.047 (3)0.062 (3)0.054 (3)0.003 (2)0.011 (2)0.008 (3)
C150.038 (2)0.043 (3)0.058 (3)0.002 (2)0.005 (2)0.005 (2)
C160.085 (4)0.091 (5)0.069 (4)0.000 (4)0.011 (4)0.002 (4)
Geometric parameters (Å, º) top
Br1—C11.899 (5)C8—H80.9300
O1—C91.220 (6)C9—C101.486 (7)
C1—C21.368 (7)C10—C151.383 (7)
C1—C61.370 (7)C10—C111.388 (6)
C2—C31.382 (6)C11—C121.384 (7)
C2—H20.9300C11—H110.9300
C3—C41.398 (6)C12—C131.382 (7)
C3—C71.464 (7)C12—H120.9300
C4—C51.374 (7)C13—C141.373 (7)
C4—H40.9300C13—C161.510 (8)
C5—C61.377 (7)C14—C151.380 (7)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—C81.309 (7)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—C91.491 (7)C16—H16C0.9600
C2—C1—C6122.1 (5)C10—C9—C8117.6 (4)
C2—C1—Br1118.6 (4)C15—C10—C11119.2 (5)
C6—C1—Br1119.3 (4)C15—C10—C9118.8 (4)
C1—C2—C3119.6 (4)C11—C10—C9122.0 (4)
C1—C2—H2120.2C12—C11—C10119.9 (5)
C3—C2—H2120.2C12—C11—H11120.0
C2—C3—C4118.7 (5)C10—C11—H11120.0
C2—C3—C7117.9 (4)C13—C12—C11120.7 (4)
C4—C3—C7123.3 (4)C13—C12—H12119.7
C5—C4—C3120.4 (5)C11—C12—H12119.7
C5—C4—H4119.8C14—C13—C12119.1 (5)
C3—C4—H4119.8C14—C13—C16121.2 (5)
C4—C5—C6120.4 (4)C12—C13—C16119.7 (5)
C4—C5—H5119.8C13—C14—C15120.9 (5)
C6—C5—H5119.8C13—C14—H14119.6
C1—C6—C5118.7 (5)C15—C14—H14119.6
C1—C6—H6120.6C14—C15—C10120.2 (4)
C5—C6—H6120.6C14—C15—H15119.9
C8—C7—C3126.6 (4)C10—C15—H15119.9
C8—C7—H7116.7C13—C16—H16A109.5
C3—C7—H7116.7C13—C16—H16B109.5
C7—C8—C9120.6 (5)H16A—C16—H16B109.5
C7—C8—H8119.7C13—C16—H16C109.5
C9—C8—H8119.7H16A—C16—H16C109.5
O1—C9—C10120.6 (5)H16B—C16—H16C109.5
O1—C9—C8121.8 (5)
C6—C1—C2—C30.7 (7)O1—C9—C10—C1526.2 (7)
Br1—C1—C2—C3178.1 (3)C8—C9—C10—C15152.7 (4)
C1—C2—C3—C40.1 (7)O1—C9—C10—C11155.4 (5)
C1—C2—C3—C7177.1 (4)C8—C9—C10—C1125.7 (6)
C2—C3—C4—C50.0 (7)C15—C10—C11—C121.3 (7)
C7—C3—C4—C5176.8 (4)C9—C10—C11—C12179.6 (4)
C3—C4—C5—C60.6 (7)C10—C11—C12—C132.7 (7)
C2—C1—C6—C51.3 (8)C11—C12—C13—C142.8 (7)
Br1—C1—C6—C5178.7 (4)C11—C12—C13—C16177.9 (5)
C4—C5—C6—C11.3 (7)C12—C13—C14—C151.5 (7)
C2—C3—C7—C8170.1 (5)C16—C13—C14—C15179.2 (5)
C4—C3—C7—C813.1 (7)C13—C14—C15—C100.1 (7)
C3—C7—C8—C9176.0 (4)C11—C10—C15—C140.0 (7)
C7—C8—C9—O111.5 (7)C9—C10—C15—C14178.4 (4)
C7—C8—C9—C10169.6 (4)

Experimental details

Crystal data
Chemical formulaC16H13BrO
Mr301.17
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)5.8984 (16), 7.3015 (19), 15.559 (4)
α, β, γ (°)83.461 (5), 87.860 (4), 88.446 (5)
V3)665.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.08
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.709, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
3407, 2312, 1457
Rint0.049
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.168, 1.00
No. of reflections2312
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

BKS thanks BRNS, DAE, Government of India (grant No. 2008/34/05-BRNS/457).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConti, M. (2006). Anticancer Drugs, 17, 1017–1022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDominguez, J. N., Leon, C., Rodrigues, J., De Dominguez, N. G., Gut, J. & Rosenthal, P. J. (2005). Farmaco, 60, 307–311.  CrossRef PubMed CAS Google Scholar
First citationLawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421–426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schonning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPandey, S., Suryawanshi, S. N., Gupta, S. & Srivastava, V. M. L. (2005). Eur. J. Med. Chem. 40, 751–756.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007). Acta Cryst. E63, o4477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds